Exercise 12 for Number theory III]

Kay Rülling

Exercise 12.1. Let G be a finite group (written multiplicatively) and A an abelian group (written additively) with G action

$$
G \times A \rightarrow A, \quad(g, a) \mapsto g \cdot a
$$

Set $C^{0}(G, A):=A$ and $C^{i}(G, A):=\left\{\right.$ set maps $\left.\varphi: \prod_{j=1}^{i} G \rightarrow A\right\}$, $i \geq 1$. The addition on A induces a structure of an abelian group on $C^{i}(G, A)$, all i, and we define group homomorphisms $\partial^{i}: C^{i}(G, A) \rightarrow$ $C^{i+1}(G, A), i=0,1,2$, by

$$
\begin{gathered}
\partial^{0}(a)(g):=g \cdot a-a, \\
\partial^{1}(\alpha)(g, h):=g \cdot \alpha(h)-\alpha(g h)+\alpha(g), \\
\partial^{2}(\varphi)(f, g, h):=f \cdot \varphi(g, h)-\varphi(f g, h)+\varphi(f, g h)-\varphi(f, g),
\end{gathered}
$$ for $a \in A, f, g, h \in G, \alpha \in C^{1}(G, A), \varphi \in C^{2}(G, A)$.

Set $B^{0}(G, A):=0$ and

$$
B^{i}(G, A):=\operatorname{Im}\left(\partial^{i-1}\right), i=1,2, \quad Z^{i}(G, A):=\operatorname{Ker}\left(\partial^{i}\right), i \in[0,2] .
$$

(1) Show $\partial^{i+1} \circ \partial^{i}=0, i=0,1$. In particular $B^{i}(G, A) \subset Z^{i}(G, A)$ and we set

$$
H^{i}(G, A):=Z^{i}(G, A) / B^{i}(G, A), \quad i=0,1,2 .
$$

(2) Show that $H^{0}(G, A)=A^{G}$ and that if G acts trivial on A (i.e. $g \cdot a=a$ for all $g \in G$ and $a \in A$), then $H^{1}(G, A)=$ $\operatorname{Hom}(G, A)=\operatorname{Hom}\left(G^{\text {ab }}, A\right)$, where $\operatorname{Hom}(-,-)$ denotes group homomorphisms and G^{ab} is the maximal abelian quotient of G.
(3) Let $r: A \rightarrow B$ be a G-equivariant group homomorphism (i.e. $\left.r\left(g \cdot a+a^{\prime}\right)=g \cdot r(a)+r\left(a^{\prime}\right), g \in G, a, a^{\prime} \in A\right)$. Show that the composition $C^{i}(G, A) \rightarrow C^{i}(G, B), \varphi \mapsto r \circ \varphi$ induces a group homomorphism

$$
r^{(i)}: H^{i}(G, A) \rightarrow H^{i}(G, B), \quad i=0,1,2
$$

[^0](4) Let $0 \rightarrow A \xrightarrow{r} B \xrightarrow{s} C \rightarrow 0$ be a short exact sequence of abelian groups with G action and assume the maps r and s are G-equivariant. Show that there is a group homomorphism
$$
\delta^{i}: H^{i}(G, C) \rightarrow H^{i+1}(G, A), \quad i=0,1
$$
constructed as follows:
(a) For $\varphi \in Z^{i}(G, C)$ show there is an element $\tilde{\varphi} \in C^{i}(G, B)$ with $\varphi=s \circ \tilde{\varphi}$.
(b) Show that the element $\partial^{i}(\tilde{\varphi}) \in C^{i+1}(G, B)$ maps to zero under $C^{i+1}(G, B) \xrightarrow{s \circ} C^{i+1}(G, C)$.
(c) Conclude that there is a unique element $\psi \in C^{i+1}(G, A)$ with $r \circ \psi=\partial^{i}(\tilde{\varphi})$.
(d) Show that $\psi \in Z^{i+1}(G, A)$.
(e) Show that the class ψ in $H^{i+1}(G, A)$ is independent from the choice of $\tilde{\varphi}$ in (a).
(f) Show that this construction induces a well-defined map δ^{i}.
(5) Let $H \triangleleft G$ be a normal subgroup. Notice that we get a natural G / H-action on A^{H} and there is a natural map $C^{i}\left(G / H, A^{H}\right) \rightarrow$ $C^{i}(G, A)$ induced by precomposing with the natural surjection $\prod^{i} G \rightarrow \prod^{i} G / H$ and composing with the inclusion $A^{H} \subset A$. Show that this induces a natural map (called the inflation map)
$$
\operatorname{Inf}=\operatorname{Inf}_{G / H}^{G}: H^{i}\left(G / H, A^{H}\right) \rightarrow H^{i}(G, A), \quad i \in[0,2]
$$
(6) Show that if $H^{\prime} \triangleleft H \triangleleft G$ is a chain of normal subgroups, then
$$
\operatorname{Inf}_{G / H}^{G}=\operatorname{Inf}_{G / H^{\prime}}^{G} \circ \operatorname{Inf}_{G / H}^{G / H^{\prime}}
$$
(7) Let $H \triangleleft G$ be a normal subgroup. Assume we have a exact sequence as in (4) and that H acts trivially on A, B, C. Show that we have a commutative diagram for $i=0,1$

Exercise 12.2. Let k be a field and L / k a finite Galois extension with Galois group $G=G(L / k)$. Recall from the lecture that we have an isomorphism $H^{2}\left(G, L^{\times}\right) \xrightarrow{\simeq} \operatorname{Br}(L / k),[\varphi] \mapsto[A(\varphi)]$.
(1) Let $\varphi: G \times G \rightarrow L^{\times}$be a normalized 2-cocycle. Let $\left\{e_{\sigma}\right\}_{\sigma \in G}$ be an L-basis of $A(\varphi)$ satisfying $e_{\sigma} \cdot \lambda=\sigma(\lambda) e_{\sigma}$, for $\lambda \in L$, and $e_{\sigma} \cdot e_{\tau}=\varphi(\sigma, \tau) e_{\sigma \tau}$. We form the left L-vector space $A(\varphi) \otimes_{L}$
$M_{m}(L)$, where the tensor product is formed using the left L vector space structure of $A(\varphi)$.
(a) Show that there is a unique k-algebra structure on $A(\varphi) \otimes_{L}$ $M_{m}(L)$ such that

$$
\left(e_{\sigma} \otimes \alpha\right) \cdot\left(e_{\tau} \otimes \beta\right)=e_{\sigma} e_{\tau} \otimes \alpha \sigma(\beta)
$$

(b) Show that there is an isomorphism of k-algebras $A(\varphi) \otimes_{k}$ $M_{m}(k) \cong A(\varphi) \otimes_{L} M_{m}(L)$.
(2) Let L^{\prime} / L be another finite Galois extension of degree m. Set $G^{\prime}=G\left(L^{\prime} / k\right)$ and denote by $G^{\prime} \rightarrow G, \sigma \mapsto \bar{\sigma}$ the quotient map. Fix a basis of L^{\prime} / L and denote by $\mu_{\sigma} \in M_{m}(L)$ the matrix obtained by the action of σ on this fixed basis. (Be aware that σ is not L-linear!) Show that there is an isomorphism of k algebras

$$
A\left(\operatorname{Inf}_{G(L / k)}^{G\left(L^{\prime} / k\right)}(\varphi)\right) \xrightarrow{\simeq} A(\varphi) \otimes_{L} M_{m}(L), \quad e_{\sigma} \mapsto e_{\bar{\sigma}} \otimes \mu_{\sigma},
$$

where we use the standard notations and the right hand side has the algebra structure defined in (1).
(3) Let $L^{\prime} / L / k$ be as above. Conclude that in $\operatorname{Br}(k)$ we have

$$
[A(\varphi)]=\left[A\left(\operatorname{Inf}_{G(L / k)}^{G\left(L^{\prime} / k\right)}(\varphi)\right)\right]
$$

for all $\varphi \in H^{2}\left(G(L / k), L^{\times}\right)$.
(4) Let $k^{\text {sep }}$ be a separable closure of k and define

$$
H^{2}\left(G\left(k^{\mathrm{sep}} / k\right), k^{\operatorname{sep} \times}\right):=\underset{L / k}{\lim } H^{2}\left(G(L / k), L^{\times}\right)
$$

where the limit is over all finite Galois extensions L / k and the transition maps are given by the inflation maps. Show that there is an isomorphism (induced by (1))

$$
H^{2}\left(G\left(k^{\mathrm{sep}} / k\right), k^{\mathrm{sep} \times}\right) \xrightarrow{\simeq} \operatorname{Br}(k) .
$$

Exercise 12.3. Let k be a field, $a \in k^{\times}$and $\chi: G\left(k^{\text {sep }} / k\right) \rightarrow \mathbb{Q} / \mathbb{Z}$ a continuous homomorphism of order n. Let L / k be the cyclic Galois extension and $\sigma \in G(L / k)$ be the generator corresponding to χ (see Exercise $11.2(1))$. Let $\varphi_{\chi, a} \in Z^{2}\left(G(L / k), L^{\times}\right)$be the normalized 2cocycle defined in Exercise 11.2.
(1) Show that the class of $\varphi_{\chi, a} \in H^{2}\left(G(L / k), L^{\times}\right)$is equal to

$$
\left[\varphi_{\chi, a}\right]=a^{(2)} \circ \delta^{1}(\chi),
$$

where $\delta^{1}: H^{1}(G(L / k), \mathbb{Q} / \mathbb{Z})=\operatorname{Hom}(G(L / k), \mathbb{Q} / \mathbb{Z}) \rightarrow H^{2}(G(L / k), \mathbb{Z})$ is the map from Exercise 12.1, (4) computed using the exact sequence of trivial Galois modules $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{Q} / \mathbb{Z} \rightarrow 0$
and $a^{(2)}$ denotes the map from 12.1, (3) induces by the $G(L / k)$ equivariant homomorphism $\mathbb{Z} \rightarrow L^{\times}, n \mapsto a^{n}$.
(2) Conclude that in $H^{2}\left(G\left(k^{\text {sep }} / k\right), k^{\text {sep } \times}\right)$ we have

$$
\left[\varphi_{\chi+\chi^{\prime}, a}\right]=\left[\varphi_{\chi, a}\right]+\left[\varphi_{\chi^{\prime}, a}\right], \quad\left[\varphi_{\chi, a a^{\prime}}\right]=\left[\varphi_{\chi, a}\right]+\left[\varphi_{\chi, a^{\prime}}\right],
$$

for all continuous homomorphisms $\chi, \chi^{\prime}: G\left(k^{\text {sep }} / k\right) \rightarrow \mathbb{Q} / \mathbb{Z}$ and elements $a, a^{\prime} \in k$. (Hint: For the first equation use Exercise 12.1, (7).)
(3) Conclude that we have a bilinear homomorphism

$$
\operatorname{Hom}_{\text {cont }}\left(G\left(k^{\mathrm{sep}} / k\right), \mathbb{Q} / \mathbb{Z}\right) \times k^{\times} \rightarrow \operatorname{Br}(k), \quad(\chi, a) \mapsto\left[A\left(\varphi_{\chi, a}\right)\right] .
$$

[^0]: ${ }^{1}$ This exercise sheet will be discussed on January 23 . If you have questions or remarks please contact kay.ruelling@fu-berlin.de or kindler@math.fu-berlin. de or l.zhang@fu-berlin.de

