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Exercise 12 for Number theory III1

Kay Rülling

Exercise 12.1. Let G be a finite group (written multiplicatively) and
A an abelian group (written additively) with G action

G× A→ A, (g, a) 7→ g · a.

Set C0(G,A) := A and Ci(G,A) := {set maps ϕ :
∏i

j=1G → A},
i ≥ 1. The addition on A induces a structure of an abelian group on
Ci(G,A), all i, and we define group homomorphisms ∂i : Ci(G,A) →
Ci+1(G,A), i = 0, 1, 2, by

∂0(a)(g) := g · a− a,

∂1(α)(g, h) := g · α(h)− α(gh) + α(g),

∂2(ϕ)(f, g, h) := f · ϕ(g, h)− ϕ(fg, h) + ϕ(f, gh)− ϕ(f, g),

for a ∈ A , f, g, h ∈ G, α ∈ C1(G,A), ϕ ∈ C2(G,A).
Set B0(G,A) := 0 and

Bi(G,A) := Im(∂i−1), i = 1, 2, Zi(G,A) := Ker(∂i), i ∈ [0, 2].

(1) Show ∂i+1 ◦ ∂i = 0, i = 0, 1. In particular Bi(G,A) ⊂ Zi(G,A)
and we set

H i(G,A) := Zi(G,A)/Bi(G,A), i = 0, 1, 2.

(2) Show that H0(G,A) = AG and that if G acts trivial on A
(i.e. g · a = a for all g ∈ G and a ∈ A), then H1(G,A) =
Hom(G,A) = Hom(Gab, A), where Hom(−,−) denotes group
homomorphisms and Gab is the maximal abelian quotient of G.

(3) Let r : A → B be a G-equivariant group homomorphism (i.e.
r(g · a+ a′) = g · r(a) + r(a′), g ∈ G, a, a′ ∈ A). Show that the
composition Ci(G,A) → Ci(G,B), ϕ 7→ r ◦ ϕ induces a group
homomorphism

r(i) : H i(G,A)→ H i(G,B), i = 0, 1, 2.

1This exercise sheet will be discussed on January 23. If you have questions or re-
marks please contact kay.ruelling@fu-berlin.de or kindler@math.fu-berlin.
de or l.zhang@fu-berlin.de
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(4) Let 0 → A
r−→ B

s−→ C → 0 be a short exact sequence of
abelian groups with G action and assume the maps r and s are
G-equivariant. Show that there is a group homomorphism

δi : H i(G,C)→ H i+1(G,A), i = 0, 1

constructed as follows:
(a) For ϕ ∈ Zi(G,C) show there is an element ϕ̃ ∈ Ci(G,B)

with ϕ = s ◦ ϕ̃.
(b) Show that the element ∂i(ϕ̃) ∈ Ci+1(G,B) maps to zero

under Ci+1(G,B)
s◦−→ Ci+1(G,C).

(c) Conclude that there is a unique element ψ ∈ Ci+1(G,A)
with r ◦ ψ = ∂i(ϕ̃).

(d) Show that ψ ∈ Zi+1(G,A).
(e) Show that the class ψ in H i+1(G,A) is independent from

the choice of ϕ̃ in (a).
(f) Show that this construction induces a well-defined map δi.

(5) Let H C G be a normal subgroup. Notice that we get a natural
G/H-action on AH and there is a natural map Ci(G/H,AH)→
Ci(G,A) induced by precomposing with the natural surjection∏iG →

∏iG/H and composing with the inclusion AH ⊂ A.
Show that this induces a natural map (called the inflation map)

Inf = InfGG/H : H i(G/H,AH)→ H i(G,A), i ∈ [0, 2].

(6) Show that if H ′ C H C G is a chain of normal subgroups, then

InfGG/H = InfGG/H′ ◦ Inf
G/H′

G/H .

(7) Let H C G be a normal subgroup. Assume we have a exact
sequence as in (4) and that H acts trivially on A,B,C. Show
that we have a commutative diagram for i = 0, 1

H i(G/H,C)

Inf
��

δi // H i+1(G/H,A)

Inf
��

H i(G,C)
δi // H i+1(G,A).

Exercise 12.2. Let k be a field and L/k a finite Galois extension with
Galois group G = G(L/k). Recall from the lecture that we have an
isomorphism H2(G,L×)

'−→ Br(L/k), [ϕ] 7→ [A(ϕ)].
(1) Let ϕ : G × G → L× be a normalized 2-cocycle. Let {eσ}σ∈G

be an L-basis of A(ϕ) satisfying eσ · λ = σ(λ)eσ, for λ ∈ L, and
eσ · eτ = ϕ(σ, τ)eστ . We form the left L-vector space A(ϕ) ⊗L
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Mm(L), where the tensor product is formed using the left L-
vector space structure of A(ϕ).
(a) Show that there is a unique k-algebra structure on A(ϕ)⊗L

Mm(L) such that

(eσ ⊗ α) · (eτ ⊗ β) = eσeτ ⊗ ασ(β).

(b) Show that there is an isomorphism of k-algebras A(ϕ) ⊗k
Mm(k) ∼= A(ϕ)⊗LMm(L).

(2) Let L′/L be another finite Galois extension of degree m. Set
G′ = G(L′/k) and denote by G′ → G, σ 7→ σ̄ the quotient map.
Fix a basis of L′/L and denote by µσ ∈ Mm(L) the matrix
obtained by the action of σ on this fixed basis. (Be aware that
σ is not L-linear!) Show that there is an isomorphism of k-
algebras

A(Inf
G(L′/k)
G(L/k) (ϕ))

'−→ A(ϕ)⊗LMm(L), eσ 7→ eσ̄ ⊗ µσ,

where we use the standard notations and the right hand side
has the algebra structure defined in (1).

(3) Let L′/L/k be as above. Conclude that in Br(k) we have

[A(ϕ)] = [A(Inf
G(L′/k)
G(L/k) (ϕ))],

for all ϕ ∈ H2(G(L/k), L×).
(4) Let ksep be a separable closure of k and define

H2(G(ksep/k), ksep×) := lim−→
L/k

H2(G(L/k), L×),

where the limit is over all finite Galois extensions L/k and the
transition maps are given by the inflation maps. Show that
there is an isomorphism (induced by (1))

H2(G(ksep/k), ksep×)
'−→ Br(k).

Exercise 12.3. Let k be a field, a ∈ k× and χ : G(ksep/k) → Q/Z
a continuous homomorphism of order n. Let L/k be the cyclic Galois
extension and σ ∈ G(L/k) be the generator corresponding to χ (see
Exercise 11.2 (1)). Let ϕχ,a ∈ Z2(G(L/k), L×) be the normalized 2-
cocycle defined in Exercise 11.2.

(1) Show that the class of ϕχ,a ∈ H2(G(L/k), L×) is equal to

[ϕχ,a] = a(2) ◦ δ1(χ),

where δ1 : H1(G(L/k),Q/Z) = Hom(G(L/k),Q/Z)→ H2(G(L/k),Z)
is the map from Exercise 12.1, (4) computed using the exact se-
quence of trivial Galois modules 0 → Z → Q → Q/Z → 0
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and a(2) denotes the map from 12.1, (3) induces by the G(L/k)-
equivariant homomorphism Z→ L×, n 7→ an.

(2) Conclude that in H2(G(ksep/k), ksep×) we have
[ϕχ+χ′,a] = [ϕχ,a] + [ϕχ′,a], [ϕχ,aa′ ] = [ϕχ,a] + [ϕχ,a′ ],

for all continuous homomorphisms χ, χ′ : G(ksep/k)→ Q/Z and
elements a, a′ ∈ k. (Hint: For the first equation use Exercise
12.1, (7).)

(3) Conclude that we have a bilinear homomorphism
Homcont(G(ksep/k),Q/Z)× k× → Br(k), (χ, a) 7→ [A(ϕχ,a)].


