Exercise 12 for Number theory III^{1}

Kay Rülling

Exercise 12.1. Let G be a finite group (written multiplicatively) and A an abelian group (written additively) with G action

$$G \times A \to A, \quad (g, a) \mapsto g \cdot a.$$

Set $C^0(G, A) := A$ and $C^i(G, A) := \{\text{set maps } \varphi : \prod_{j=1}^i G \to A\}, i \ge 1$. The addition on A induces a structure of an abelian group on $C^i(G, A)$, all i, and we define group homomorphisms $\partial^i : C^i(G, A) \to C^{i+1}(G, A), i = 0, 1, 2$, by

$$\partial^{0}(a)(g) := g \cdot a - a,$$

$$\partial^{1}(\alpha)(g,h) := g \cdot \alpha(h) - \alpha(gh) + \alpha(g),$$

$$\partial^{2}(\varphi)(f,g,h) := f \cdot \varphi(g,h) - \varphi(fg,h) + \varphi(f,gh) - \varphi(f,g),$$

for $a \in A$, $f, g, h \in G$, $\alpha \in C^1(G, A)$, $\varphi \in C^2(G, A)$. Set $B^0(G, A) := 0$ and

$$B^{i}(G,A) := \operatorname{Im}(\partial^{i-1}), i = 1, 2, \quad Z^{i}(G,A) := \operatorname{Ker}(\partial^{i}), i \in [0,2].$$

(1) Show $\partial^{i+1} \circ \partial^i = 0, i = 0, 1$. In particular $B^i(G, A) \subset Z^i(G, A)$ and we set

 $H^i(G, A) := Z^i(G, A) / B^i(G, A), \quad i = 0, 1, 2.$

- (2) Show that $H^0(G, A) = A^G$ and that if G acts trivial on A (i.e. $g \cdot a = a$ for all $g \in G$ and $a \in A$), then $H^1(G, A) =$ $\operatorname{Hom}(G, A) = \operatorname{Hom}(G^{\operatorname{ab}}, A)$, where $\operatorname{Hom}(-, -)$ denotes group homomorphisms and G^{ab} is the maximal abelian quotient of G.
- (3) Let $r: A \to B$ be a *G*-equivariant group homomorphism (i.e. $r(g \cdot a + a') = g \cdot r(a) + r(a'), g \in G, a, a' \in A$). Show that the composition $C^{i}(G, A) \to C^{i}(G, B), \varphi \mapsto r \circ \varphi$ induces a group homomorphism

$$r^{(i)}: H^i(G, A) \to H^i(G, B), \quad i = 0, 1, 2.$$

¹This exercise sheet will be discussed on January 23. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or kindler@math.fu-berlin. de or l.zhang@fu-berlin.de

(4) Let $0 \to A \xrightarrow{r} B \xrightarrow{s} C \to 0$ be a short exact sequence of abelian groups with G action and assume the maps r and s are G-equivariant. Show that there is a group homomorphism

$$\delta^{i}: H^{i}(G, C) \to H^{i+1}(G, A), \quad i = 0, 1$$

constructed as follows:

- (a) For $\varphi \in Z^i(G, C)$ show there is an element $\tilde{\varphi} \in C^i(G, B)$ with $\varphi = s \circ \tilde{\varphi}$.
- (b) Show that the element $\partial^i(\tilde{\varphi}) \in C^{i+1}(G, B)$ maps to zero under $C^{i+1}(G, B) \xrightarrow{s_0} C^{i+1}(G, C)$.
- (c) Conclude that there is a unique element $\psi \in C^{i+1}(G, A)$ with $r \circ \psi = \partial^i(\tilde{\varphi})$.
- (d) Show that $\psi \in Z^{i+1}(G, A)$.
- (e) Show that the class ψ in $H^{i+1}(G, A)$ is independent from the choice of $\tilde{\varphi}$ in (a).
- (f) Show that this construction induces a well-defined map δ^i .
- (5) Let $H \triangleleft G$ be a normal subgroup. Notice that we get a natural G/H-action on A^H and there is a natural map $C^i(G/H, A^H) \rightarrow C^i(G, A)$ induced by precomposing with the natural surjection $\prod^i G \rightarrow \prod^i G/H$ and composing with the inclusion $A^H \subset A$. Show that this induces a natural map (called the inflation map)

$$\mathrm{Inf}=\mathrm{Inf}_{G/H}^G:H^i(G/H,A^H)\to H^i(G,A),\quad i\in[0,2].$$

(6) Show that if $H' \triangleleft H \triangleleft G$ is a chain of normal subgroups, then

$$\operatorname{Inf}_{G/H}^G = \operatorname{Inf}_{G/H'}^G \circ \operatorname{Inf}_{G/H}^{G/H'}.$$

(7) Let $H \triangleleft G$ be a normal subgroup. Assume we have a exact sequence as in (4) and that H acts trivially on A, B, C. Show that we have a commutative diagram for i = 0, 1

$$\begin{array}{c} H^{i}(G/H,C) \xrightarrow{\delta^{i}} H^{i+1}(G/H,A) \\ & \downarrow^{\mathrm{Inf}} & \downarrow^{\mathrm{Inf}} \\ H^{i}(G,C) \xrightarrow{\delta^{i}} H^{i+1}(G,A). \end{array}$$

Exercise 12.2. Let k be a field and L/k a finite Galois extension with Galois group G = G(L/k). Recall from the lecture that we have an isomorphism $H^2(G, L^{\times}) \xrightarrow{\simeq} Br(L/k), [\varphi] \mapsto [A(\varphi)].$

(1) Let $\varphi : G \times G \to L^{\times}$ be a normalized 2-cocycle. Let $\{e_{\sigma}\}_{\sigma \in G}$ be an *L*-basis of $A(\varphi)$ satisfying $e_{\sigma} \cdot \lambda = \sigma(\lambda)e_{\sigma}$, for $\lambda \in L$, and $e_{\sigma} \cdot e_{\tau} = \varphi(\sigma, \tau)e_{\sigma\tau}$. We form the left *L*-vector space $A(\varphi) \otimes_L$

2

 $M_m(L)$, where the tensor product is formed using the *left L*-vector space structure of $A(\varphi)$.

(a) Show that there is a unique k-algebra structure on $A(\varphi) \otimes_L M_m(L)$ such that

$$(e_{\sigma} \otimes \alpha) \cdot (e_{\tau} \otimes \beta) = e_{\sigma} e_{\tau} \otimes \alpha \sigma(\beta)$$

- (b) Show that there is an isomorphism of k-algebras $A(\varphi) \otimes_k M_m(k) \cong A(\varphi) \otimes_L M_m(L)$.
- (2) Let L'/L be another finite Galois extension of degree m. Set G' = G(L'/k) and denote by $G' \to G$, $\sigma \mapsto \bar{\sigma}$ the quotient map. Fix a basis of L'/L and denote by $\mu_{\sigma} \in M_m(L)$ the matrix obtained by the action of σ on this fixed basis. (Be aware that σ is not *L*-linear!) Show that there is an isomorphism of *k*-algebras

$$A(\mathrm{Inf}_{G(L/k)}^{G(L'/k)}(\varphi)) \xrightarrow{\simeq} A(\varphi) \otimes_L M_m(L), \quad e_{\sigma} \mapsto e_{\bar{\sigma}} \otimes \mu_{\sigma},$$

where we use the standard notations and the right hand side has the algebra structure defined in (1).

(3) Let L'/L/k be as above. Conclude that in Br(k) we have

$$[A(\varphi)] = [A(\operatorname{Inf}_{G(L/k)}^{G(L'/k)}(\varphi))],$$

for all $\varphi \in H^2(G(L/k), L^{\times})$.

(4) Let k^{sep} be a separable closure of k and define

$$H^2(G(k^{\text{sep}}/k), k^{\text{sep}\times}) := \lim_{\overrightarrow{L/k}} H^2(G(L/k), L^{\times}),$$

where the limit is over all finite Galois extensions L/k and the transition maps are given by the inflation maps. Show that there is an isomorphism (induced by (1))

$$H^2(G(k^{\operatorname{sep}}/k), k^{\operatorname{sep}\times}) \xrightarrow{\simeq} \operatorname{Br}(k).$$

Exercise 12.3. Let k be a field, $a \in k^{\times}$ and $\chi : G(k^{\text{sep}}/k) \to \mathbb{Q}/\mathbb{Z}$ a continuous homomorphism of order n. Let L/k be the cyclic Galois extension and $\sigma \in G(L/k)$ be the generator corresponding to χ (see Exercise 11.2 (1)). Let $\varphi_{\chi,a} \in Z^2(G(L/k), L^{\times})$ be the normalized 2-cocycle defined in Exercise 11.2.

(1) Show that the class of $\varphi_{\chi,a} \in H^2(G(L/k), L^{\times})$ is equal to

$$[\varphi_{\chi,a}] = a^{(2)} \circ \delta^1(\chi),$$

where $\delta^1 : H^1(G(L/k), \mathbb{Q}/\mathbb{Z}) = \text{Hom}(G(L/k), \mathbb{Q}/\mathbb{Z}) \to H^2(G(L/k), \mathbb{Z})$ is the map from Exercise 12.1, (4) computed using the exact sequence of trivial Galois modules $0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \to 0$ and $a^{(2)}$ denotes the map from 12.1, (3) induces by the G(L/k)-equivariant homomorphism $\mathbb{Z} \to L^{\times}$, $n \mapsto a^n$.

(2) Conclude that in $H^2(G(k^{\text{sep}}/k), k^{\text{sep}\times})$ we have

$$[\varphi_{\chi+\chi',a}] = [\varphi_{\chi,a}] + [\varphi_{\chi',a}], \quad [\varphi_{\chi,aa'}] = [\varphi_{\chi,a}] + [\varphi_{\chi,a'}],$$

for all continuous homomorphisms $\chi, \chi' : G(k^{\text{sep}}/k) \to \mathbb{Q}/\mathbb{Z}$ and elements $a, a' \in k$. (*Hint*: For the first equation use Exercise 12.1, (7).)

(3) Conclude that we have a bilinear homomorphism

 $\operatorname{Hom}_{\operatorname{cont}}(G(k^{\operatorname{sep}}/k), \mathbb{Q}/\mathbb{Z}) \times k^{\times} \to \operatorname{Br}(k), \quad (\chi, a) \mapsto [A(\varphi_{\chi, a})].$