Exercise 11 for Number theory III^{1}

Kay Rülling

Exercise 11.1. Let L/k be a finite Galois extension with Galois group G = G(L/k). Let $\varphi : G \times G \to L^{\times}$ be a normalized 2-cocycle, i.e. it is a map of sets satisfying

(CC)
$$\rho(\varphi(\sigma,\tau)) \cdot \varphi(\rho,\sigma\tau) = \varphi(\rho\sigma,\tau) \cdot \varphi(\rho,\sigma)$$
, for all $\rho,\sigma,\tau \in G$.
(N) $\varphi(\mathrm{id}_L,\sigma) = 1 = \varphi(\sigma,\mathrm{id}_L)$, for all $\sigma \in G$.

- (1) Show that there exists a unique (up to isomorphism) k-algebra $A(\varphi)$, which contains L and whose underlying left L-vector space has a basis $\{e_{\sigma}\}_{\sigma \in G}$ satisfying:
 - $e_{\sigma} \cdot e_{\tau} = \varphi(\sigma, \tau) e_{\sigma\tau}$, for all $\sigma, \tau \in G$.
 - $e_{\sigma}\lambda = \sigma(\lambda)e_{\sigma}$, for all $\sigma \in G$, $\lambda \in L$.
- (2) Show that the k-algebra $A(\varphi)$ constructed above satisfies $c_{A(\varphi)}(L) = L$.
- (3) Show that the center of $A(\varphi)$ is $c_{A(\varphi)}(A(\varphi)) = k$.
- (4) Let $I \subset A(\varphi)$ be a non-zero two sided ideal. Let $x = \sum_{\sigma \in G} \lambda_{\sigma} e_{\sigma}$, with $\lambda_{\sigma} \in L$, be an element in $I \setminus \{0\}$. Assume that the number of non-zero coefficients λ_{σ} is minimal (among all elements in $I \setminus \{0\}$) and that there exists a $\sigma_0 \in G$ with $\lambda_{\sigma_0} = 1$. Show that $x = e_{\sigma_0}$.
- (5) Conclude from (4) that $A(\varphi)$ is simple. All together we obtain that $A(\varphi)$ is a central simple k-algebra of degree $[A:k] = [L:k]^2$.
- (6) Let $\varphi' : G \times G \to L^{\times}$ be another normalized 2-cocycle and assume that there exists a map $\alpha : G \to L^{\times}$ with

$$\alpha(\sigma) \cdot \sigma(\alpha(\tau)) \cdot \varphi'(\sigma, \tau) = \alpha(\sigma\tau) \cdot \varphi(\sigma, \tau),$$

for all $\sigma, \tau \in G$ (i.e. φ and φ' have the same image in $H^2(G, L^{\times})$). Show that there is an isomorphism of k-algebras $A(\varphi) \xrightarrow{\simeq} A(\varphi')$ which sends (with the obvious notations) $\lambda \cdot e_{\sigma}$ to $\lambda \alpha(\sigma) \cdot e'_{\sigma}$.

¹This exercise sheet will be discussed on January 16. If you have questions or remarks please contact kay.ruelling@fu-berlin.de or kindler@math.fu-berlin. de or l.zhang@fu-berlin.de

Exercise 11.2. Let k be a field, k^s its separable closure and denote by $G(k^s/k)$ the absolute Galois group of k. We equip \mathbb{Q}/\mathbb{Z} with the discrete topology.

(1) Show that the map

$$\begin{aligned} \{\chi: G(k^s/k) \to \frac{1}{n} \mathbb{Z}/\mathbb{Z} \mid \chi \text{ is surjective and continuous} \} \\ \to \{(L,\sigma) \mid L/k \text{ cyclic Gal ext of order } n, \langle \sigma \rangle = G(L/k) \end{aligned}$$

given by

$$\chi \mapsto \left((k^s)^{\operatorname{Ker}(\chi)}, \chi^{-1}(\frac{1}{n}) \mod \operatorname{Ker}(\chi) \right)$$

is bijective.

(2) Let $\chi : G(k^s/k) \to \mathbb{Q}/\mathbb{Z}$ be a continuous group homomorphism of order *n* and denote by (L, σ) the corresponding pair from (1). Take $b \in k^{\times}$ and define a map $\varphi_{\chi,b} : G(L/k) \times G(L/k) \to L^{\times}$ via

$$\varphi_{\chi,b}(\sigma^i,\sigma^j) = \begin{cases} 1, & \text{if } i+j < n, \\ b, & \text{if } i+j \ge n, \end{cases} \text{ for all } i,j \in \{0,1,\ldots,n-1\}.$$

Show that $\varphi_{\chi,b}$ is a normalized 2-cocycle.

- (3) Explicitly describe the central simple k-algebra $A(\chi, b) := A(\varphi_{\chi, b})$ from Exercise 11.1.
- (4) For a in k^{\times} the Galois group $G(k(\sqrt{a}/k))$ has a unique generator. Therefore by (1) there corresponds a unique continuous group homomorphism $\chi_a : G(k^s/k) \to \mathbb{Q}/\mathbb{Z}$ to the extension $k(\sqrt{a})$. Show that $A(\chi_a, b)$ is isomorphic to the quaternion algebra A(a, b; k) constructed in Exercise 8.4.

Exercise 11.3. Let L/k be a finite Galois extension of degree n with Galois group G = G(L/k). Set $\operatorname{Br}(k)[n] = \operatorname{Ker}(n \cdot : \operatorname{Br}(k) \to \operatorname{Br}(k))$.

- (1) Let $\varphi : G \times G \to L^{\times}$ be a 2-cocycle. Show that φ^n is a 2-coboundary. (*Hint*: Define $\alpha : G \to L^{\times}$ by $\alpha(\sigma) = \prod_{\rho \in G} \varphi(\sigma, \rho)$. Show $\varphi(\sigma, \tau)^n = \alpha(\sigma) \cdot \sigma(\alpha(\tau)) \cdot \alpha(\sigma\tau)^{-1}$.)
- (2) Show that $\operatorname{Br}(L/k) \subset \operatorname{Br}(k)[n]$. (*Hint:* In the lecture we prove $\operatorname{Br}(L/k) = H^2(G, L^{\times})$.)
- (3) Conclude that any element in Br(k) has finite order.