In the exercise session we wanted to find a prime ideal in an infinite product of domains, which is not the inverse image of a prime ideal under the projection to one of the factors (in contrast to what happens for finite products). Actually it is a bit more involved than my first try. Here is the example:

We first need the notion of an ultrafilter: Let Λ be a set. Then an ultrafilter on Λ is a subset \(U \subseteq \mathcal{P}(\Lambda) \) of the power set of Λ which satisfies the following properties:

(i) \(\emptyset \notin U \)
(ii) \(A \subseteq B \subseteq \Lambda \) and \(A \in U \implies B \in U \)
(iii) \(A, B \in U \implies A \cap B \in U \)
(iv) \(A \subseteq \Lambda \implies \) either \(A \in U \) or \(\Lambda \setminus A \in U \)

Observe that

(1) \[A \cup B \in U \implies A \in U \text{ or } B \in U. \]

(Indeed, if \(A \notin U \), then \(\Lambda \setminus A \in U \); hence \((A \cup B) \cap (\Lambda \setminus A) \in U \) but it is a subset set of \(B \); hence \(B \in U \).) It follows that if \(U \) contains a finite set, then it contains a set with one element say \(\{\lambda_0\} \in U \). Then

(2) \[U = \{A \subseteq \Lambda \mid \lambda_0 \in A\}. \]

(Indeed, if \(\lambda_0 \in A \), then \(A \in U \), by (ii); if \(\lambda_0 \notin A \), then \(A \subseteq \Lambda \setminus \{\lambda_0\} \) and hence \(A \notin U \) by (ii), (i).) Ultrafilters of type (2) are called principal ultrafilters and we just saw that an ultrafilter is principal if and only if it contains a finite set. It can be shown using Zorn’s Lemma that if \(\Lambda \) is an infinite set, then non-principal ultrafilters on \(\Lambda \) exist.

Claim 1. Let \(\Lambda \) be an infinite set and \(R_i, i \in \Lambda \), domains. Set \(R = \prod_{i \in \Lambda} R_i \). Let \(U \) be a non-principal ultrafilter on \(\Lambda \) and set

\[p := \{(a_i)_{i \in \Lambda} \mid \exists A \in U \text{ s. t. } a_i = 0 \text{ if and only if } i \in A \} \subseteq R. \]

Then \(p \subset R \) is a prime ideal, which is not of the form \(\pi_i^{-1}(p_i) \), for some \(i \in \Lambda \) and \(p_i \subset R_i \), where \(\pi_i : R \to R_i \) is the \(i \)-th projection.

Proof. For \(\alpha = (a_i) \in R \) define \(A(\alpha) := \{i \in \Lambda \mid a_i = 0\}. \) Then \(\alpha \in p \) if and only if \(A(\alpha) \notin U \).

\(p \) is an ideal: Given \(\alpha, \beta \in p \), \(x \in R \), we have \(A(\alpha) \cap A(\beta) \subset A(\alpha + x\beta) \). Hence \(A(\alpha + x\beta) \in U \), by (ii), (iii), i.e., \(\alpha + x\beta \in p \).

\(p \) is a prime ideal: Take \(\alpha, \beta \in R \) with \(\alpha \beta \in p \). Then \(A(\alpha \beta) \in U \). Since the \(R_i \)’s are domains we have \(A(\alpha \beta) = A(\alpha) \cup A(\beta) \), whence \(A(\alpha) \in U \) or \(A(\beta) \in U \), by (1). It follows that \(\alpha \in p \) or \(\beta \in p \), i.e., \(p \) is prime.

\(p \) is not of the form \(\pi_i^{-1}(p_i) \): Notice that e.g. the element \((\delta'_{i,j})_{i \in \Lambda} \in \pi_j^{-1}(p_j) \), where \(\delta'_{i,j} = 1 \), if \(i \neq j \), and = 0, if \(i = j \). But this element is
not in p, since U is a non-principal ultrafilter and hence any element $(a_i) \in p$ has to have infinitely many $a_i = 0$. □