In the exercise session we wanted to find a prime ideal in an infinite product of domains, which is not the inverse image of a prime ideal under the projection to one of the factors (in contrast to what happens for finite products). Actually it is a bit more involved than my first try. Here is the example:

We first need the notion of an ultrafilter: Let Λ be a set. Then an ultrafilter on Λ is a subset $U \subset \mathbf{P}(\Lambda)$ of the power set of Λ which satisfies the following properties:
(i) $\emptyset \notin U$
(ii) $A \subset B \subset \Lambda$ and $A \in U \Longrightarrow B \in U$
(iii) $A, B \in U \Longrightarrow A \cap B \in U$
(iv) $A \subset \Lambda \Longrightarrow$ either $A \in U$ or $\Lambda \backslash A \in U$

Observe that

$$
\begin{equation*}
A \cup B \in U \Longrightarrow A \in U \text { or } B \in U \tag{1}
\end{equation*}
$$

(Indeed, if $A \notin U$, then $\Lambda \backslash A \in U$; hence $(A \cup B) \cap(\Lambda \backslash A) \in U$ but it is a subset set of B; hence $B \in U$.) It follows that if U contains a finite set, then it contains a set with one element say $\left\{\lambda_{0}\right\} \in U$. Then

$$
\begin{equation*}
U=\left\{A \subset \Lambda \mid \lambda_{0} \in A\right\} \tag{2}
\end{equation*}
$$

(Indeed, if $\lambda_{0} \in A$, then $A \in U$, by (ii); if $\lambda_{0} \notin A$, then $A \subset \Lambda \backslash\left\{\lambda_{0}\right\}$ and hence $A \notin U$ by (ii), (i).) Ultrafilters of type (2) are called principal ultrafilters and we just saw that an ultrafilter is principal if and only if it contains a finite set. It can be shown using Zorn's Lemma that if Λ is an infinite set, then non-principal ultrafilters on Λ exist.
Claim 1. Let Λ be an infinite set and $R_{i}, i \in \Lambda$, domains. Set $R=$ $\prod_{i \in \Lambda} R_{i}$. Let U be a non-principal ultrafilter on Λ and set

$$
\mathfrak{p}:=\left\{\left(a_{i}\right)_{i \in \Lambda} \mid \exists A \in U \text { s. t. } a_{i}=0 \text { if and only if } i \in A\right\} \subset R .
$$

Then $\mathfrak{p} \subset R$ is a prime ideal, which is not of the form $\pi_{i}^{-1}\left(\mathfrak{p}_{i}\right)$, for some $i \in \Lambda$ and $\mathfrak{p}_{i} \subset R_{i}$, where $\pi_{i}: R \rightarrow R_{i}$ is the i-th projection.
Proof. For $\alpha=\left(a_{i}\right) \in R$ define $A(\alpha):=\left\{i \in \Lambda \mid a_{i}=0\right\}$. Then $\alpha \in \mathfrak{p}$ if and only if $A(\alpha) \in U$.
\mathfrak{p} is an ideal: Given $\alpha, \beta \in \mathfrak{p}, x \in R$, we have $A(\alpha) \cap A(\beta) \subset$ $A(\alpha+x \beta)$. Hence $A(\alpha+x \beta) \in U$, by (ii), (iii), i.e., $\alpha+x \beta \in \mathfrak{p}$.
\mathfrak{p} is a prime ideal: Take $\alpha, \beta \in R$ with $\alpha \beta \in \mathfrak{p}$. Then $A(\alpha \beta) \in U$. Since the R_{i} 's are domains we have $A(\alpha \beta)=A(\alpha) \cup A(\beta)$, whence $A(\alpha) \in U$ or $A(\beta) \in U$, by (1). It follows that $\alpha \in \mathfrak{p}$ or $\beta \in \mathfrak{p}$, i.e., \mathfrak{p} is prime.
\mathfrak{p} is not of the form $\pi_{j}^{-1}\left(\mathfrak{p}_{j}\right)$: Notice that e.g. the element $\left(\delta_{i, j}^{\prime}\right)_{i \in \Lambda} \in$ $\pi_{j}^{-1}\left(\mathfrak{p}_{j}\right)$, where $\delta_{i, j}^{\prime}=1$, if $i \neq j$, and $=0$, if $i=j$. But this element is
not in \mathfrak{p}, since U is a non-principal ultrafilter and hence any element $\left(a_{i}\right) \in \mathfrak{p}$ has to have infinitely many $a_{i}=0$.

