n	C	A	D D	$T_{\text {min }}$	$T_{\text {max }}$	$S T_{\text {min }}$	$E_{\text {min }}$	$S T_{\text {avg }}$	$S T_{\text {max }}$	U	R
1	1	1	$1{ }_{0,0,1}$	1	1	1	1	1	1	1	1
2	2	2	$20,1,1$	2	2	2	2	2	2	2	2
3	5	12	$6_{1,1,1}$	4	8	3	3	4.667	6	4	4.5
4	14	55	18 1,1,2	11	30	7	7	11.510	18	8.666667	10.6
5	42	273	$60_{1,2,2}$	32	150	14	14	29.313	60	19.333333	25.6
6	132	1428	222 2,2,2	96	780	27	27	75.799	222	44.200000	62.828571
7	429	7752	794 2,2,3	305	4550	58		197.617	794	102.733333	155.958929
8	1430	43263	2988 2,3,3			127	127	517.247	2988	241.834921	390.444048
9	4862	246675	11856 3,3,3				266			574.914286	983.978857
10	16796	1430715	45580 3,3,4							1377.587302	2492.993468
11	58786	8414640	180960 3,4,4							3322.336508	6343.812317
12	208012	50067108	$743160{ }_{4,4,4}$							8055.810467	16201.746633
lim	it 4.0	6.75	4.5							≈ 2.48.	≈ 2.65

n inner points in a triangular convex hull
$C=$ Catalan numbers
$A=$ abstract stacked triangulations $=$ ternary trees with n inner nodes and
$2 n-1$ leaves $=\binom{3 n+1}{n} /(3 n+1) \approx 6.75^{n}$
$D=3$ chains, of lengths ${ }_{i, j, k}$. The limit exponent of 4.5 has been established by Marc.
$T_{\min }, T_{\max }$ all triangulations of a point set (Oswin, from the database)
$S T_{\min }, S T_{\max }$ stacked triangulations of a point set (Oswin, from the database)
$S T_{\text {avg }}$ Average over all realizable order types of the given cardinality (Oswin)
$E_{\min }$ lower bounds on stacked triangulations (Günter) It seems that the lowerbound examples (for n a multiple of 3) look like a series of nested concentric triangles, where successive levels are rotated by 180 degrees. The points lying close to a line through the center (they lie on both sides of the center) are probably not uniformly "curved" but they lie in such a way that a line through two such points cuts the points between them evenly. It remains to define such a family precisely and count the stacked triangulations for this family.
$U=$ something random defined by the recursion $U_{n}=\sum_{i=1}^{n} U_{n-i} \cdot \frac{\sum_{j=1}^{i-1} U_{j-1} U_{i-1-j}}{i-1}$.
(For $i=1$, the value of the fraction is taken as 1.) Maybe this is something related to the degree-3-vertices?
$R=$ average number of stacked triangulations on a random set, according to Emo's recursion $R_{n}=\sum_{i+j+k=n-1} R_{i} R_{j} R_{k} \cdot \frac{2}{n+1}$.
Prob[the balanced stacked triangulation with n inner vertices can be embedded on a random point set $] \approx 0.61886974^{n}$ (when n is of the form $\left(3^{k}-1\right) / 2$).
This is probably $>\operatorname{Prob}[$ any other fixed stacked triangulation with n inner vertices can be embedded on a random point set].

