Sandwich Ap.proximation of Univariate Convex
Functions with an Application to
Separable Convex Programming

Rainer E. Burkard

Institut fiir Mathematik, Technische Universitdat Graz, Kopernikusgasse 24
A-8010 Graz, Austria |

Horst W. Hamacher
Universi/@t Kaiserslautern, Fachbereich Mathematik,
Erwin-Schr/odinger-Strasse, D-6750 Katiserslautern, Germany

Gunter Rote

[nstitut/ fiir Mathematik, Technische Universitat Graz, Kopernikusgasse 24,
A-8010 Graz, Austria

In this article an algorithm for computing upper and lower ¢ approximations of a
(implicitly or explicitly) given convex function A defined on an interval of length
T is developed. The approximations can be obtained under weak assumptions on
h (in particular, no differentiability), and the error decreases quadratically with the
number of iterations. To reach an absolute accuracy of ¢ the number of iterations
is bounded by V9DT/8¢, where D is the total increase in slope of A. As an

application we discuss separable convex programs.

1. INTRODUCTION

Convex functions play an important role in mathematical programming. Many
models lead directly to convex functions, or they arise as value functions of
parametric linear programs, in time/cost trade-off problems, or In multicriteria
optimization. There are several reasons for replacing a convex function Dy a
piecewise linear approximation with few breakpoints: In some models piecewise
linear functions are easier to handle, for example, in separable convex pro-
gramming. This will be utilized in Section 3. Another reason is that the evaluation
of a convex function A(f) for a given parameter { may be costly. Theretfore one

is interested in getting an approximation of this function with as few function

evaluations as possible. This arises, for instance, if h(r) is the value function of

a parametric linear program: Evaluating A(f) amounts tO solving a linear pro-

gram. The same situation occurs in the context of bicriteria linear programs,

since the efficient point curve is convex. The special case of bicriterial minimum

Naval Research Logistics, Vol. 38, pp. 911-924 (1991)
Copyright © 1991 by John Wiley & Sons, Inc. ~ CCC 0894-069X /91/060911-14504.00

r1li INUVLE NI CHT L UKIYILY, YUL, DO (L)

cost network-flow problems has been investigated in Fruhwirth, Burkard, and
Rote [6].

Whereas in convex programming a locally good approximation in the neigh-
borhood of the optimal solution is sufficient, a global approximation with a
uniform error bound on the whole range is required in the other applications
mentioned above: In bicriteria and parametric programming one is interested
in the optimal value function (or efficient point curve, respectively) as a whole.

Several authors have considered the problem of approximating convex func-
tions A(¢) by a piecewise linear function. If 4 1s twice continuously differentiable
(h € C?), Phillips {13} finds approximations with a given error bound on the
whole domain of A. Phillip’s procedure requires the computation of roots of
nonlinear equations to find the points at which the piecewise approximation and
the original function coincide. (These points will subsequently be called knots).
By using this procedure iteratively one can also find the best approximation with
respect to a given number of knots. Cox [4] showed that Phillip’s results hold
if h is just continuously differentiable (2 € C'), but that the computations of
the knots can be simplified if # € C* Thakur’s [20-22] objective is to find
approximations such that the difference between the optimal objective values
of the original mathematical program and its approximate version is bounded
by a given error. He solves a series of smaller piecewise linear problems and
uses an equidistant partitioning of the domain of % to develop convergent pro-
cedures. Salem and Elmaghraby [17] develop local approximation methods for
convex, decreasing, but nonquadratic functions, and apply their results to project
networks. Further references for approximation by piecewise linear functions
include Kao and Meyer [10], Sonnevend [18, 19], and the textbooks of Bazaraa
and Shetty [2] and Rockafellar [14]. Geoffrion [7] develops a more general theory

of approximating objective functions in mathematical programming.

The geometric problem of approximating a plane convex figure by a convex
polygon, which is essentially the same as our problem, has also received great
attention in the literature, both from a geometric theoretical view point (cf. the
overview of Gruber [8)]) as well as in the applied areas of image processing and
computational geometry. A nice overview of algorithms from this area Is given
in Kurozumi and Davis [11], cf. also Rote [16].

In this article we develop the sandwich algorithm for computing a global
approximation for a convex function 4 in a given interval {a, b]. At any stage
of the algorithm piecewise-linear lower and upper approximations /(¢) and u(z),
respectively, of h(¢) are known on the whole domain [a, b] of 4 and will satisty

I(t) < h(t) = u(t), foralla =t =0b.

The algorithm terminates when the global error is less than a prespecified &;
i.e.,

sup {u(t) — I{t)} < e.

a=sish

Alternatively, the sandwich algorithm may be terminated if a given numbe{ of
knots have been computed. In this case one will be able to compute a prion an
achievable error bound of the approximation.

Burkard et al.: Convex Functions yi3

Sandwiching is a very natural process that has been proposed in different
contexts and with different variations by various authors, like Aneja and Nair
[1979] or some of the articles cited above. The contribution of our article is
mainly theoretical, by giving an error analysis: After presenting the sandwich
algorithm (in Section 2), we will show that, for a given bound ¢, the number of
necessary iterations is bounded by IVD(b — a)/2¢, where D is the total Increase
in slope of & on the interval [a, b]. Each iteration amounts essentially to an
evaluation of A(r) and two (one-sided) derivatives. A similar approach was
developed by Sonnevend [19] in a more general setting. Sonnevend uses an
inductive argument for establishing that the number of iterations is
O[V D(b — a)/e]. Our proof is constructive, uses combinatorial arguments, and
yields the best possible constant in the iteration bound.

In Section 3, we describe as a simple application the approximative solution
of separable convex programs. Concluding remarks and some lines for further
research are given in the last section.

2. THE SANDWICH ALGORITHM: APPROXIMATION OF
CONVEX FUNCTIONS

2.1. Preliminaries

Let h: [a, b] — R be a convex function, defined on a bounded interval
la, b] C R. We assume that / is continuous at the endpoints of the interval and
that for any ¢ € [a, b] the left and right derivative of 4 is available (or can be
computed). Moreover, the one-sided derivatives should be finite in the endpoints
of [a, b].

We want to compute efficiently two piecewise-linear, convex functions /(¢) and
u(t) such that

[(£) = h(t) = w(t) and u(t) — I(t) = ¢, for all r € [a, b].

The idea for constructing /() and u(¢) is as follows. Let a = f, < f, < £, <

- <1, = b be a finite partition of the interval [a, b]. Forany . (i = 0, 1.. . .,
n — 1) let A7 be the right derivative of h at 1, and let i be the left derivative
ofhatf; (i = 1,2,...,n). Then I(¢) and u(¢) are defined as follows:
h e _ h f,'
u(t) := h(ty) + (I'I) ((). (t — 1)
i+1 4
and

i(t) = max{h(t) + h} - (¢t — 1), h(t,,) + hivy - (6 = 400}

for t=t=1¢,,, i=0,1,...,n — 1.

The definition of / and u is illustrated in Figure 1. It should be noted that A" as
well as A7 can be replaced by any subgradient ¢; of & at £, Whereas the worst-
case bound developed in the following is independent of the choice of d;, A/
and h; are certainly preferable, since they yield the tightest lower bounds.

014 Naval Research Logistics, Vol. 38 (1991)

Figure 1. A convex function h(t) with lower approximation [(¢t) and upper approximation

().

It follows from the definitions that

® /(1) and u(r) are piccewise linear and convex
o for all t € [a, b]: (1) = h(¢) = uls).

In any interval (¢, £] the maximal difference between u(t) and /() is attained
at the point ¢, defined by

h(t) + R —) = h(ti,y) + hia(t® — i+1)
i.e., t* is uniquely defined, if A" < hiy, namely, by

_ h(tfﬂ) - h(l',-) + h:’+t.-' _' h;+1t:‘+l
h!+ o hF—{»l |

1

If bt = h;,, then I(t) = h(t) = u(t) forall 4 =1 < ¢..,. Therefore the maximal
error E 1= max,e.,(|h(t) — u(®), th(t) — L)) is bounded by

max {u(r) — I(tF)} = max E,

0=i=n—1 0=is=n—1

where

Ch(t,) — h(t) h;‘] C(tF - 1) (1)

tivr — &

E,‘=

The following lemma (cf. Thakur [20, Lemma 2]) show§ a re}ation betwefzn the
length of an interval I = [, tis,], the one-sided derivatives in the endpoints of

I and the error max,c,(u(?) — I(t)).

916 Naval Research Logistics, Vol. 38 (1991)

2.3. The Convergence Rate of the Sandwich Algorithm

We shall analyze in the following the two bisection rules and we show that
they guarantee quadratic convergence of /(t) and u(¢) to k(). For the maximum
error rule, the proof methods of this article cannot be applied. However, by
using different techniques, the quadratic convergence of the Sandwich algorithm
with the maximum error rule has been established recently by Rote [16]; cf. also
Rote [15].

The treatment of the two bisection rules is very similar. We shall first deal
with the interval bisection rule.

The bisection algorithm can be visualized on a binary tree (Figure 3). The
root of the tree corresponds to the interval [a, b]. Every inner node of the tree
corresponds to an interval in which the error bound is not met and has exactly
two successors. When the sandwich algorithm terminates, every leaf correspond.s
to an interval in which the error is not greater than ¢.

In each iteration the algorithm picks a leaf of the tree with associated interval
[#;,, 7] in which the error exceeds ¢. Then we set I = 3(f, —). we compute
h(7) and the one-sided derivatives h*(f) and A~ (f), and we add two successors
corresponding to [¢;, f] and [7, 7] to the tree.

[et + be the tree at the end of the algorithm. If M is the number of evaluations
of k(1) and its one-sided derivatives h*(t), h~ (1), then 7 has M-2 inner nodes
and M-1 leaves. When we remove all leaves from we get a binary tree 1 with
M-2 nodes. Let v; be the number of leaves of this new tree t at level {. Now we
shall make use of the following lemma on binary trees, which will be shown

later.

LEMMA 2.2: If a binary tree t has n — 1 nodes (n = 2) and the number
of its leaves at level i (i = 0) is v;, then

1
" n

W(T) . == 2 2"0,» =

il

o

and this bound is tight for infinitely many #.

if we denote T : = b — a, any node at level i corresponds to an interval [1,. ¢/]

root & [a,b]

Figure 3. A bisection tree.

Burkard et al.: Convex Functions 917

with length T - 27'. Thus Lemma 2.1 yields

4¢2'

_ 4¢
h=(t) — h*(t) > - = —,

Therefore we get for M > 2 (i.e., T nonempty)

ho(b) ~ k@2 X [FE) - Rl

lcaves of 1

since the intervals corresponding to the leaves are disjoint (except for common
endpoints); the one-sided derivatives are nondecreasing and A~ (t) = h*(¢) for

all ¢.
Hence, by Lemma 2.2, we get

24 |
h-(b) — h*(a) > . o, 2 —%-zzfufgg%w - 1)

z L =

Thus we have shown the following theorem for the interval bisection rule.

THEOREM 2.3: The number M of evaluations of h(t), h*(t), and h~(¢)
needed to obtain an upper and lower ¢ approximation of h(r) by the sandwich
algorithm with interval bisection or with slope bisection is bounded as follows:

M= max(Z, B \/52 . (h~(b) — h+(a))]).

by saying: If we use M evaluations of A(¢),
the largest error to be

tions /(¢) and u(r) fulfill

We can express this conversely
h*(t), and A-(¢) and always choose the interval with

partitioned next, then the lower and upper approxima
I(t) < h(t) = u(t) and

max (u(t) — I(t)) = %

astsh

(M = 1)

K

=M = 1 K constant.

In case of the slope bisection rule, we simply have to exchange the role of

h~(1) — h*(1) with I, — t. The proof is then completely analogous: We know

that the slope difference at level i is at most (h~(t) — h*(t))/2, and Lemma

2.1.gwe§ us then a lower bound for 7; — ;. We then sum t; — fover all leaves,

which gives T = b — a, and the theorem follows in the same way as above.
What remains to be shown is Lemma 2.2.

Q1 K PROOF (of Lemma 2.2): Let.7 be a binary tree with height d and let
d
w(7) 1= D, 2\,
=0

where v; is the number of leaves of 7 at level i. At first we change 7 by applying

the following two transformations, as long as they are possible (d always denotes
the height of the current tree 7).

Transformation I (cf. Figure 4): If there is a node y at some level i = d ~ 2, which has

at most one successor, then we remove an arbitrary node x from level 4 and make it a
successor of y.

By transformation I, w decreases by 29 by removing x and increases by at

most 2¢-1 by inserting x. Moreover, w may additionally increase by 2¢-%, if the
predecessor of x becomes a leaf in z’. Thus we get in any case

w(t') = w(t).

Transformation II (cf. Figure 5): If there is a node z at level & — 1 with two successors

x and y and another node u at level d — 1 which is a leaf, then we make y a successor
of u.

By transformation II w(z) decreases by 2?~', because u ceases to be a leaf.

When we perform these two transformations as long as they are possible, we
arrive finally at a tree T with the following properties:

e t and 7 have the same number of nodes;
® w(?) = w(r);
® p(7) =0fori=d — 2;

® cvery node of ¢ at level i, i = d — 2, has exactly two successors;
® there are two cases:

(a) all nodes at level 4 — 1 have at most one successor, of
(b) all nodes at level d — 1 have one or two Successors.

Since we consider from now on only the tree #, we abbreviate d = d(%) and
v; = vft). The nodes in % from level 0 to d — 1 form a complete binary tree

with 2¢ — 1 nodes. At level d — 1 there are exactly 27! nodes and there remain
(n - 1) — (2¢ — 1) = n — 27 nodes for level 4.

level

Figure 4. [Ilustration of transformation I.

% Y

Figure 5. [Illustration of transtormation [I.

Therefore we get

Case A: v, = 247" — (n — 29,
w(t) = n - 2471 — 441,
Case B: vy, = 0
w(?) = n-2¢ - 49

But in Case A, 0 = n — 2¢ = 247! holds, which yields

1A
-
A
b
(=~
+
2
T

2d

1A

whereas in Case B, 2¢°! = n — 29 = 2¢ implies

2d-1 4 2d = p = 24+1

Thus we get for n with

2= =24 4+ 24-1 (Case A): w(t) = 2¢71-n — 4470 =1 wu(n).

24 4 24-1 = p = 24+1 (Case B): w(%) = 29 n — 44 =1 wy(n).

In case n = 2¢ + 2¢-1 (i.e., every node at level d — 1 has exactly one successor’
both expressions w,(n) and wy(n) have the same value.

These two expressions w,(n) and wg(n) are tight lower bounds on w(?) for ¢
tree + with n — 1 nodes. To conclude the proof, we have to show tha
w,(n) = #n2 and wy(n) = #n?. Since both expressions are linear functions of 7
it suffices to consider the boundary cases n =,2¢, n = 2¢ + 2971 and n = PARRS

In the first case, n = 29, we get

e

n n

waln) = 297'n — 44V = —n — (_) -

n
4

t-J

iV
O | N
~

2 2

In the second case, n = 2¢ + 2971 we have 2¢ = %n. Therefore

wa(n) = wy(n) = 29n — 44 = > — (§n)? = &n’,

P

