

Günter Rote, Moritz Rüber, and Morteza Saghafian Freie Universität Berlin / IST Austria

convex layers onion layers

Günter Rote, Moritz Rüber, and Morteza Saghafian Freie Universität Berlin / IST Austria

Günter Rote, Moritz Rüber, and Morteza Saghafian Freie Universität Berlin / IST Austria

Günter Rote, Moritz Rüber, and Morteza Saghafian Freie Universität Berlin / IST Austria

grid peeling of a convex curve

Grid Peeling of the Square

[Sariel Har-Peled and Bernard Lidický 2013]

The $n \times n$ grid has $\Theta(n^{4/3})$ convex layers.

Affine Curve-Shortening Flow (ACSF)

velocity = $\kappa^{1/3}$ (κ = curvature)

invariant under area-preserving affine transformations!

- [L. Alvarez, F. Guichard, P.-L. Lions, J.-M. Morel:
- "Axioms and fundamental equations of image processing" 1993 brace
- [G. Sapiro and A. Tannenbaum:
- "Affine invariant scale-space." Int. J. Computer Vision 1993

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics **29** (2020), 306–316

As the grid is more and more refined, grid peeling approaches the ACSF.

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics **29** (2020), 306–316

As the grid is more and more refined, grid peeling approaches the ACSF.

Grid peeling and the affine curve-shortening flow

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics **29** (2020), 306–316

As the grid is more and more refined, grid peeling approaches the ACSF.

ACSF at time $T \approx$ Grid peeling on $\frac{1}{n}$ -grid after $C_{\rm g} T n^{4/3}$ steps.

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics **29** (2020), 306–316

As the grid is more and more refined, grid peeling approaches the ACSF.

ACSF at time $T \approx$ Grid peeling on $\frac{1}{n}$ -grid after $C_{\rm g} T n^{4/3}$ steps.

This is true for parabolas $y = ax^2 + bx + c$ with vertical axis (and axes with rational slopes).

$$C_{\rm g} = \sqrt[3]{\frac{\pi^2}{2\zeta(3)}} \approx 1.60120980542577$$

$$\zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \cdots$$

Result

THEOREM. Parabola $y = ax^2 + bx + c$. Time T > 0.

- (A) ACSF = a vertical translation by $(2a)^{1/3} T$.
- (B) Grid peeling with spacing 1/n for $m = \lfloor C_{\rm g} T n^{4/3} \rfloor$ steps:
 - \implies vertical distance between (A) and (B) is

$$O\left(\frac{Ta^{2/3}\log\frac{n}{a}}{n^{1/3}}\right). \qquad \left(\to 0 \text{ for } n\to\infty\right)$$

$$C_{\rm g} = \sqrt[3]{\frac{\pi^2}{2\zeta(3)}} \approx 1.60120980542577$$

• Invariant under affine transformations?

- ullet integer parameter $t \geq 1$
- $S_t := \{ \text{ all slopes } a/b \text{ with } 0 < b \le t \}$
- ullet for each slope $a/b \in S_t$, take the longest integer vector

$$\binom{x}{y} = k \binom{b}{a} \quad (k \in \mathbb{Z})$$

with $0 < x \le t$

t=11 slope 2/5

Example

- ullet integer parameter $t \geq 1$
- $S_t := \{ \text{ all slopes } a/b \text{ with } 0 < b \le t \}$
- for each slope $a/b \in S_t$, take the longest integer vector

$$\binom{x}{y} = k \binom{b}{a} \quad (k \in \mathbb{Z})$$

with $0 < x \le t$

t=11 slope 2/5

Example

- integer parameter $t \ge 1$
- $S_t := \{ \text{ all slopes } a/b \text{ with } 0 < b \le t \}$
- for each slope $a/b \in S_t$, take the longest integer vector

$$\binom{x}{y} = k \binom{b}{a} \quad (k \in \mathbb{Z})$$

with $0 < x \le t$

Example

 $H_{\downarrow}H_2, \ldots = 1, 4, 11, 22, 43, 64, 107, 150, 211, 274, 385, \ldots$

Main technical lemma:

t odd: The polygon P_t repeats after t steps, one level higher.

t even: after t+1 steps.

Proof of the theorem: Sandwich

Proof of the theorem: Sandwich

Asymptotic horizontal period

 $H_1, H_2, \ldots = 1, 4, 11, 22, 43, 64, 107, 150, 211, 274, 385, \ldots$ [OEIS A174405]

$$H_t := \sum_{\substack{0 < j \le i \le t \\ \gcd(i,j) = 1}} \left\lfloor \frac{t}{i} \right\rfloor i = \sum_{1 \le j \le i \le t} \frac{i}{\gcd(i,j)} = \sum_{1 \le i \le t} \sum_{d|i} d\varphi(d)$$

$$H_t = \frac{2\zeta(3)}{\pi^2} t^3 + O(t^2 \log t)$$

with
$$\zeta(3) = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \dots \approx 1.2020569$$

[Sándor and Kramer 1999]

$$y = \frac{1}{20}x^2$$

affine lattice-preserving shearing transformations

$$y = \frac{1}{20}x^2$$

affine lattice-preserving shearing transformations

$$y = \frac{a_N}{a_D}x^2 + \frac{b_N}{b_D}x + c$$

Lemma:

Horizontal period $H = lcm(a_D, b_D)$ or $H = lcm(a_D, b_D)/2$

$$y = ax^2 + bx$$

$$y = ax^2 + bx$$

Asymptotic horizontal period

 $H_1, H_2, \ldots = 1, 4, 11, 22, 43, 64, 107, 150, 211, 274, 385, \ldots$

Online Encyclopedia of Integer Sequences (OEIS) A174405

$$H_t := \sum_{\substack{0 < j \le i \le t \\ \gcd(i,j) = 1}} \left\lfloor \frac{t}{i} \right\rfloor i = \sum_{1 \le j \le i \le t} \frac{i}{\gcd(i,j)} = \sum_{1 \le i \le t} \sum_{d|i} d\varphi(d)$$

interpretation?

Proof of the lemma: Focus on one slope

Proof of the lemma: Focus on one slope

What happens at a jump?

JUMP RULES:

- ullet jump to the *next* grid line of slope s
- ullet fill the extended strip $[\bar{L}_s,\bar{R}_s]$ as much as possible

Two adjacent slopes s, s'

The minimum-area lattice n-gon

The minimum-area lattice n-gon

[Bárány and Tokushige, 2003] (n large)

The minimum-area lattice n-gon

[Bárány and Tokushige, 2003] (n large)

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics **29** (2020), 306–316

As the grid is more and more refined, grid peeling approaches the ACSF.

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics **29** (2020), 306–316

As the grid is more and more refined, grid peeling approaches the ACSF.

Grid peeling and the affine curve-shortening flow

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics **29** (2020), 306–316

As the grid is more and more refined, grid peeling approaches the ACSF.

ACSF at time $T \approx$ Grid peeling on $\frac{1}{n}$ -grid after $C_g T n^{4/3}$ steps.

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics **29** (2020), 306–316

As the grid is more and more refined, grid peeling approaches the ACSF.

ACSF at time $T \approx$ Grid peeling on $\frac{1}{n}$ -grid after $C_g T n^{4/3}$ steps.

This is true for parabolas $y = ax^2 + bx + c$ with vertical axis (and axes with rational slopes).

$$C_g = \sqrt[3]{\frac{\pi^2}{2\zeta(3)}} \approx 1.60120980542577$$

$$\zeta(s) = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \frac{1}{4^s} + \cdots$$

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics **29** (2020), 306–316

As the grid is more and more refined, grid peeling approaches the ACSF.

 \rightarrow Jeff Calder and Charles K Smart. The limit shape of convex hull peeling. Duke Math. J. (2020)

random points

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics **29** (2020), 306–316

As the grid is more and more refined, grid peeling approaches the ACSF.

 \rightarrow Jeff Calder and Charles K Smart. The limit shape of convex hull peeling. Duke Math. J. (2020)

random points

Jeff Calder and Charles K. Smart. The limit shape of convex hull peeling. 2020

10000 random points in the shaded region

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics **29** (2020), 306–316

As the grid is more and more refined, grid peeling approaches the ACSF.

ACSF at time $T \approx$ Grid peeling on $\frac{1}{n}$ -grid after $C_g T n^{4/3}$ steps.

Jeff Calder and Charles K Smart. The limit shape of convex hull peeling. Duke Math. J. 169 (2020)

Theorem:

ACSF at time $T \approx$ Peeling on density- n^2 set after $C_r T n^{4/3}$ steps.

 $C_g \approx 1.6$, $C_r \approx 1.3$

• Invariant under affine transformations?

Random-set peeling

Jeff Calder and Charles K. Smart. The limit shape of convex hull peeling. 2020

semiconvex peeling, on a cylinder

Conics maintain their shape under ACSF.

- Ellipses (and circles) *shrink* (and collapse to the center).
- Parabolas are translated.
- Hyperbolas expand.

Conics maintain their shape under ACSF.

- Ellipses (and circles) shrink (and collapse to the center).
- Parabolas are translated.
- Hyperbolas expand.

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch 2020:

layers 5, 10, ..., 30 of \mathbb{N}^2

Conics maintain their shape under ACSF.

- Ellipses (and circles) *shrink* (and collapse to the center).
- Parabolas are translated.
- Hyperbolas expand.

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch 2020:

THEOREM:

The n-th layer of \mathbb{N}^2 is sandwiched between two hyperbolas:

$$c_1 n^{3/2} \leq xy \leq c_2 n^{3/2}$$
 (except within $\sqrt{n} \log^2 n$ of the axes)

Conics maintain their shape under ACSF.

- Ellipses (and circles) shrink (and collapse to the center).
- Parabolas are translated.
- Hyperbolas expand.

THEOREM. Parabola $y = ax^2/2 + bx + c$. Time T > 0.

- (A) ACSF = a vertical translation by $a^{1/3}T$.
- (B) Grid peeling with spacing 1/n for $m = \lfloor C_{\rm g} T n^{4/3} \rfloor$ steps:
- ⇒ vertical distance between (A) and (B) is

$$O\left(\frac{Ta^{2/3}\log\frac{n}{a}}{n^{1/3}}\right). \qquad (\to 0 \text{ for } n\to\infty)$$

Conics maintain their shape under ACSF.

- Ellipses (and circles) shrink (and collapse to the center).
- Parabolas are translated.
- Hyperbolas expand.

THEOREM. Parabola $y = ax^2/2 + bx + c$. Time T > 0.

- (A) ACSF = a vertical translation by $a^{1/3}T$.
- (B) Grid peeling with spacing 1/n for $m = \lfloor C_{\rm g} T n^{4/3} \rfloor$ steps:
- ⇒ vertical distance between (A) and (B) is

$$O\left(\frac{Ta^{2/3}\log\frac{n}{a}}{n^{1/3}}\right). \qquad (\to 0 \text{ for } n\to\infty)$$

Unimodular transformation: vertical axis \rightarrow axis with arbitrary rational slope

The "grid parabola" P_5

Main technical lemma:

t odd: The polygon P_t repeats after t steps, one level higher.

t even: after t+1 steps.

Experiments with parabolas

Experiments with parabolas

$$y = \frac{1}{20}x^2$$

affine lattice-preserving shearing transformations

Experiments with parabolas

$$y = \frac{1}{20}x^2$$

affine lattice-preserving shearing transformations

$$y = \frac{a_N}{a_D}x^2 + \frac{b_N}{b_D}x + c$$

Lemma:

Horizontal period $H = lcm(a_D, b_D)$ or $H = lcm(a_D, b_D)/2$

All possible grid lines of slope s=2/5

