Grid Peeling and the Affine Curve-Shortening Flow (ACSF)

Günter Rote, Moritz Rüber, and Morteza Saghafian Freie Universität Berlin / IST Austria
convex layers onion layers

Grid Peeling and the Affine Curve-Shortening Flow (ACSF)

Günter Rote, Moritz Rüber, and Morteza Saghafian Freie Universität Berlin / IST Austria
convex layers onion layers

Grid Peeling and the Affine Curve-Shortening Flow (ACSF)

Günter Rote, Moritz Rüber, and Morteza Saghafian
Freie Universität Berlin / IST Austria

Grid Peeling and the Affine Curve-Shortening Flow (ACSF)

Günter Rote, Moritz Rüber, and Morteza Saghafian
Freie Universität Berlin / IST Austria

grid peeling of a convex curve

Grid Peeling of the Square

[Sariel Har-Peled and Bernard Lidický 2013]

The $n \times n$ grid has $\Theta\left(n^{4 / 3}\right)$ convex layers.

Affine Curve-Shortening Flow (ACSF)

invariant under area-preserving affine transformations!
[L. Alvarez, F. Guichard, P.-L. Lions, J.-M. Morel:
"Axioms and fundamental equations of image processing" 1993]
[G. Sapiro and A. Tannenbaum:
"Affine invariant scale-space." Int. J. Computer Vision 1993]

Peeling and the ACSF

Conjecture:
David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics 29 (2020), 306-316
As the grid is more and more refined, grid peeling approaches the ACSF.

Günte, Freie Universität Berlin

Peeling and the ACSF

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics 29 (2020), 306-316
As the grid is more and more refined, grid peeling approaches the ACSF.

Peeling and the ACSF

Peeling and the ACSF

Conjecture:
David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics 29 (2020), 306-316
As the grid is more and more refined, grid peeling approaches the ACSF.

ACSF at time $T \approx$ Grid peeling on $\frac{1}{n}$-grid after $C_{\mathrm{g}} T n^{4 / 3}$ steps.

Peeling and the ACSF

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics 29 (2020), 306-316
As the grid is more and more refined, grid peeling approaches the ACSF.

ACSF at time $T \approx$ Grid peeling on $\frac{1}{n}$-grid after $C_{\mathrm{g}} T n^{4 / 3}$ steps.
This is true for parabolas $y=a x^{2}+b x+c$ with vertical axis (and axes with rational slopes).

$$
C_{\mathrm{g}}=\sqrt[3]{\frac{\pi^{2}}{2 \zeta(3)}} \approx 1.60120980542577
$$

$\zeta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\cdots$

Result

FREIE

- UNIVERSITÄT

BERLIN
THEOREM. Parabola $y=a x^{2}+b x+c$. Time $T>0$.
(A) ACSF $=$ a vertical translation by $(2 a)^{1 / 3} T$.
(B) Grid peeling with spacing $1 / n$ for $m=\left\lfloor C_{\mathrm{g}} T n^{4 / 3}\right\rfloor$ steps:
\Longrightarrow vertical distance between (A) and (B) is

$$
O\left(\frac{T a^{2 / 3} \log \frac{n}{a}}{n^{1 / 3}}\right) \cdot \quad(\rightarrow 0 \text { for } n \rightarrow \infty)
$$

$$
C_{\mathrm{g}}=\sqrt[3]{\frac{\pi^{2}}{2 \zeta(3)}} \approx 1.60120980542577
$$

- Invariant under affine transformations?

The "grid parabola" P_{t}

- integer parameter $t \geq 1$
- $S_{t}:=\{$ all slopes a / b with $0<b \leq t\}$
- for each slope $a / b \in S_{t}$, take the longest integer vector

$$
\binom{x}{y}=k\binom{b}{a} \quad(k \in \mathbb{Z})
$$

with $0<x \leq t$

The "grid parabola" P_{t}

- integer parameter $t \geq 1$
- $S_{t}:=\{$ all slopes a / b with $0<b \leq t\}$
- for each slope $a / b \in S_{t}$, take the longest integer vector

$$
\binom{x}{y}=k\binom{b}{a} \quad(k \in \mathbb{Z})
$$

with $0<x \leq t$

The "grid parabola" P_{t}

- integer parameter $t \geq 1$
- $S_{t}:=\{$ all slopes a / b with $0<b \leq t\}$
- for each slope $a / b \in S_{t}$, take the longest integer vector

$$
\binom{x}{y}=k\binom{b}{a} \quad(k \in \mathbb{Z})
$$

with $0<x \leq t$

The "grid parabola" P_{5}
$t=5$

The "grid parabola" P_{5}
$t=5$

$H_{1}, H_{2}, \ldots=1,4,11,22,43,64,107,150,211,274,385$,

The "grid parabola" P_{5}

The "grid parabola" P_{5}

Main technical lemma:
t odd: The polygon P_{t} repeats after t steps, one level higher.
t even: after $t+1$ steps.

$$
t=5
$$

Proof of the theorem: Sandwich

Proof of the theorem: Sandwich

after m iterations

Asymptotic horizontal period
$H_{1}, H_{2}, \ldots=1,4,11,22,43,64,107,150,211,274,385, \ldots$
[OEIS A174405]

$$
H_{t}:=\sum_{\substack{0<j \leq i \leq t \\ \operatorname{gcd}(i, j)=1}}\left\lfloor\frac{t}{i}\right\rfloor i=\sum_{1 \leq j \leq i \leq t} \frac{i}{\operatorname{gcd}(i, j)}=\sum_{1 \leq i \leq t} \sum_{d \mid i} d \varphi(d)
$$

$$
H_{t}=\frac{2 \zeta(3)}{\pi^{2}} t^{3}+O\left(t^{2} \log t\right)
$$

with $\zeta(3)=1+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\frac{1}{4^{3}}+\cdots \approx 1.2020569$
[Sándor and Kramer 1999]

Experiments with parabolas

Experiments with parabolas

$$
y=\frac{1}{20} x^{2}
$$

affine lattice-preserving shearing transformations

Experiments with parabolas

$$
y=\frac{1}{20} x^{2}
$$

affine lattice-preserving shearing transformations

$$
y=\frac{a_{N}}{a_{D}} x^{2}+\frac{b_{N}}{b_{D}} x+c
$$

Lemma:
Horizontal period $H=\operatorname{lcm}\left(a_{D}, b_{D}\right)$ or $H=\operatorname{lcm}\left(a_{D}, b_{D}\right) / 2$

Experiments with parabolas

Experiments with parabolas

Results of experiments

$$
y=a x^{2}+b x
$$

average vertical speed depending on a (various values of b)

Results of experiments

$$
y=a x^{2}+b x
$$

average vertical speed depending on a (various values of b)

Results of experiments

$$
y=a x^{2}+b x
$$

average vertical speed depending on a (various values of b)

Results of experiments

$$
y=a x^{2}+b x
$$

average vertical speed depending on a (various values of b)

Asymptotic horizontal period
$H_{1}, H_{2}, \ldots=1,4,11,22,43,64,107,150,211,274,385, \ldots$
Online Encyclopedia of Integer Sequences (OEIS) A174405

$$
H_{t}:=\sum_{\substack{0<j \leq i \leq t \\ \operatorname{gcd}(i, j)=1}}\left\lfloor\frac{t}{i}\right\rfloor i=\sum_{1 \leq j \leq i \leq t} \frac{i}{\operatorname{gcd}(i, j)}=\sum_{1 \leq i \leq t} \sum_{d \mid i} d \varphi(d)
$$

interpretation?

Proof of the lemma: Focus on one slope

Proof of the lemma: Focus on one slope

What happens at a jump?

JUMP RULES:

- jump to the next grid line of slope s
- fill the extended $\operatorname{strip}\left[\bar{L}_{s}, \bar{R}_{s}\right]$ as much as possible

Two adjacent slopes s, s^{\prime}

More general curves than parabolas?

Idea: Approximate by parabolas from outside/inside

More general curves than parabolas?

Idea: Approximate by parabolas from outside/inside

More general curves than parabolas?

Idea: Approximate by parabolas from outside/inside

More general curves than parabolas?

Idea: Approximate by parabolas from outside/inside

The minimum-area lattice n-gon

The minimum-area lattice n-gon

[Bárány and Tokushige, 2003] (n large)

The minimum-area lattice n-gon

[Bárány and Tokushige, 2003] (n large)

Peeling and the ACSF

Conjecture:
David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics 29 (2020), 306-316
As the grid is more and more refined, grid peeling approaches the ACSF.

Peeling and the ACSF

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow.
Experimental Mathematics 29 (2020), 306-316
As the grid is more and more refined, grid peeling approaches the ACSF.

Peeling and the ACSF

Peeling and the ACSF

Conjecture:
David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics 29 (2020), 306-316
As the grid is more and more refined, grid peeling approaches the ACSF.

ACSF at time $T \approx$ Grid peeling on $\frac{1}{n}$-grid after $C_{g} T n^{4 / 3}$ steps.

Peeling and the ACSF

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow.
Experimental Mathematics 29 (2020), 306-316
As the grid is more and more refined, grid peeling approaches the ACSF.

ACSF at time $T \approx$ Grid peeling on $\frac{1}{n}$-grid after $C_{g} T n^{4 / 3}$ steps.
This is true for parabolas $y=a x^{2}+b x+c$ with vertical axis (and axes with rational slopes).

$$
C_{g}=\sqrt[3]{\frac{\pi^{2}}{2 \zeta(3)}} \approx 1.60120980542577
$$

$\zeta(s)=1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\cdots$

Peeling and the ACSF

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow.
Experimental Mathematics 29 (2020), 306-316
As the grid is more and more refined, grid peeling approaches the ACSF.
\rightarrow Jeff Calder and Charles K Smart. The limit shape of convex hull peeling. Duke Math. J. (2020) random points

Peeling and the ACSF

Conjecture:

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow.
Experimental Mathematics 29 (2020), 306-316
As the grid is more and more refined, grid peeling approaches the ACSF.
\rightarrow Jeff Calder and Charles K Smart. The limit shape of convex hull peeling. Duke Math. J. (2020) random points

Peeling and the ACSF

Jeff Calder and Charles K. Smart. The limit shape of convex hull peeling. 2020 10000 random points in the shaded region

Peeling and the ACSF

Conjecture:
David Eppstein, Sariel Har-Peled, and Gabriel Nivasch. Grid peeling and the affine curve shortening flow. Experimental Mathematics 29 (2020), 306-316
As the grid is more and more refined, grid peeling approaches the ACSF.

ACSF at time $T \approx$ Grid peeling on $\frac{1}{n}$-grid after $C_{g} T n^{4 / 3}$ steps.

Jeff Calder and Charles K Smart. The limit shape of convex hull peeling. Duke Math. J. 169 (2020)
Theorem:
ACSF at time $T \approx$ Peeling on density- n^{2} set after $C_{r} T n^{4 / 3}$ steps.

$$
C_{g} \approx 1.6, \quad C_{r} \approx 1.3
$$

- Invariant under affine transformations?

Random-set peeling

Jeff Calder and Charles K. Smart. The limit shape of convex hull peeling. 2020

semiconvex peeling, on a cylinder

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Homotopic peeling

[Sergey Avvakumov and Gabriel Nivasch 2019]

Conics

Conics maintain their shape under ACSF.

- Ellipses (and circles) shrink (and collapse to the center).
- Parabolas are translated.
- Hyperbolas expand.

Conics

Conics maintain their shape under ACSF.

- Ellipses (and circles) shrink (and collapse to the center).
- Parabolas are translated.
- Hyperbolas expand.

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch 2020:

Conics

Conics maintain their shape under ACSF.

- Ellipses (and circles) shrink (and collapse to the center).
- Parabolas are translated.
- Hyperbolas expand.

David Eppstein, Sariel Har-Peled, and Gabriel Nivasch 2020:

THEOREM:

The n-th layer of \mathbb{N}^{2} is sandwiched between two hyperbolas:

Conics

Conics maintain their shape under ACSF.

- Ellipses (and circles) shrink (and collapse to the center).
- Parabolas are translated.
- Hyperbolas expand.

THEOREM. Parabola $y=a x^{2} / 2+b x+c$. Time $T>0$.
(A) ACSF $=$ a vertical translation by $a^{1 / 3} T$.
(B) Grid peeling with spacing $1 / n$ for $m=\left\lfloor C_{\mathrm{g}} T n^{4 / 3}\right\rfloor$ steps:
\Longrightarrow vertical distance between (A) and (B) is

$$
O\left(\frac{T a^{2 / 3} \log \frac{n}{a}}{n^{1 / 3}}\right) . \quad(\rightarrow 0 \text { for } n \rightarrow \infty)
$$

Conics

Conics maintain their shape under ACSF.

- Ellipses (and circles) shrink (and collapse to the center).
- Parabolas are translated.
- Hyperbolas expand.

THEOREM. Parabola $y=a x^{2} / 2+b x+c$. Time $T>0$.
(A) ACSF $=$ a vertical translation by $a^{1 / 3} T$.
(B) Grid peeling with spacing $1 / n$ for $m=\left\lfloor C_{\mathrm{g}} T n^{4 / 3}\right\rfloor$ steps: \Longrightarrow vertical distance between (A) and (B) is

$$
O\left(\frac{T a^{2 / 3} \log \frac{n}{a}}{n^{1 / 3}}\right) . \quad(\rightarrow 0 \text { for } n \rightarrow \infty)
$$

Unimodular transformation:
vertical axis \rightarrow axis with arbitrary rational slope

The "grid parabola" P_{5}
$t=5$

$$
y=f(x)-\frac{1}{2 H_{t}} x^{2}
$$

Main technical lemma: t odd: The polygon P_{t} repeats after t steps, one level higher. t even: after $t+1$ steps.

500

禺
禺
0

Experiments with parabolas

Experiments with parabolas

$$
y=\frac{1}{20} x^{2}
$$

affine lattice-preserving shearing transformations

Experiments with parabolas

$$
y=\frac{1}{20} x^{2}
$$

affine lattice-preserving shearing transformations

$$
y=\frac{a_{N}}{a_{D}} x^{2}+\frac{b_{N}}{b_{D}} x+c
$$

Lemma:
Horizontal period $H=\operatorname{lcm}\left(a_{D}, b_{D}\right)$ or $H=\operatorname{lcm}\left(a_{D}, b_{D}\right) / 2$

All possible grid lines of slope $s=2 / 5$

