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Pseudotriangulations and the Expansion Polytope

A pointed pseudotriangulation of a set of points in the plane is a partition

of the convex hull into pseudotriangles: polygons with three convex corners

and an arbitrary number of reflex vertices. This geometric structure arises

naturally in the context of rigidity of frameworks and expansive motions:

motions of points in the plane where no pairwise distance decreases. The

set of expansive infinitesimal motions is a polyhedron. By perturbing

its facets, one arrives at a polytope whose vertices are in one-to-one

correspondence with the pointed pseudotriangulations. The expansion

polytope can also be considered in one dimension. It leads to the well-

known associahedron in this case.

The expansion polytope provides an indirect existence proof of infinitesimal

expansive motions for a polygonal chain, which is a crucial step in the

solution of the Carpenter’s Rule Problem: Every planar polygonal chain

can be straightened without self-intersections.
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Pointed Vertices

A pointed vertex is incident to an angle > 180◦ (a reflex angle

or big angle).

A straight-line graph is pointed if all vertices are pointed.
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Pointed Vertices

A pointed vertex is incident to an angle > 180◦ (a reflex angle

or big angle).

A straight-line graph is pointed if all vertices are pointed.

Where do pointed vertices arise?
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Visibility among convex obstacles

Equivalence classes of visibility segments. Extreme segments

are bitangents of convex obstacles.

[Pocchiola and Vegter 1996]
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Pseudotriangulations

Given: A set V of vertices, a subset Vp ⊆ V of pointed

vertices.

A pseudotriangulation is a maximal (with respect to ⊆) set of

non-crossing edges with all vertices in Vp pointed.
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vertices.

A pseudotriangulation is a maximal (with respect to ⊆) set of

non-crossing edges with all vertices in Vp pointed.
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Pseudotriangles

A pseudotriangle has three convex corners and an arbitrary

number of reflex vertices (> 180◦).
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Pseudotriangulations
Given: A set V of vertices, a subset Vp ⊆ V of pointed

vertices.
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non-crossing edges with all vertices in Vp pointed.
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Pseudotriangulations
Given: A set V of vertices, a subset Vp ⊆ V of pointed

vertices.

(1) A pseudotriangulation is a maximal (w.r.t. ⊆) set E of

non-crossing edges with all vertices in Vp pointed.

(2) A pseudotriangulation is a partition of a convex polygon

into pseudotriangles.

Proof. (2) =⇒ (1) No edge can be added inside a

pseudotriangle without creating a nonpointed vertex.

Proof. (1) =⇒ (2) All convex hull edges are in E.

→ decomposition of the polygon into faces.

Need to show: If a face is not a pseudotriangle, then one can

add an edge without creating a nonpointed vertex.
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Characterization of pseudotriangulations

Lemma. If a face is not a pseudotriangle, then one can add

an edge without creating a nonpointed vertex.
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convex vertex. Take the shortest path.
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Characterization of pseudotriangulations

Lemma. If a face is not a pseudotriangle, then one can add

an edge without creating a nonpointed vertex.

Go from a convex vertex along the boundary to the third

convex vertex. Take the shortest path.
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Characterization of pseudotriangulations
continued

A new edge is always added, unless the face is already a

pseudotriangle (without inner obstacles).

[Rote, C. A. Wang, L. Wang, Xu 2003]
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Flipping of Edges

Any interior edge can be flipped against another edge. That

edge is unique.

before after
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Flipping of Edges

Any interior edge can be flipped against another edge. That

edge is unique.

before after

The flip graph is connected.

Its diameter is O(n log n). [Bespamyatnikh 2003]
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Flipping

Every pseudoquadrangle has precisely two diagonals, which

cut it into two pseudotriangles.

[Proof. Every tangent ray can be continued to a geodesic

path running along the boundary to a corner, in a unique way.]
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Vertex and face counts

Lemma. A pseudotriangulation with x nonpointed and y

pointed vertices has e = 3x + 2y − 3 edges and 2x + y − 2
pseudotriangles.

Corollary. A pointed pseudotriangulation with n vertices has

e = 2n− 3 edges and n− 2 pseudotriangles.
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Vertex and face counts

Lemma. A pseudotriangulation with x nonpointed and y

pointed vertices has e = 3x + 2y − 3 edges and 2x + y − 2
pseudotriangles.

Corollary. A pointed pseudotriangulation with n vertices has

e = 2n− 3 edges and n− 2 pseudotriangles.

Proof. A k-gon pseudotriangle has k − 3 large angles.∑
t∈T

(kt − 3) + kouter = y∑
t
kt + kouter︸ ︷︷ ︸
2e

−3|T | = y

e + 2 = (|T |+ 1) + (x + y) (Euler)
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Vertex and face counts

Lemma. A pseudotriangulation with x nonpointed and y

pointed vertices has e = 3x + 2y − 3 edges and 2x + y − 2
pseudotriangles.

Corollary. A pointed pseudotriangulation with n vertices has

e = 2n− 3 edges and n− 2 pseudotriangles.

Corollary. A non-crossing pointed graph with n ≥ 2 vertices

has at most 2n− 3 edges.
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Pseudotriangulations/
Geodesic Triangulations

Applications:

• kinetics of bar frameworks, robot motion planning, the

“Carpenter’s Rule Problem” [ Streinu 2000 ]

• data structures for ray shooting [Chazelle, Edelsbrunner, Grigni,

Guibas, Hershberger, Sharir, and Snoeyink 1994] and visibility

[Pocchiola and Vegter 1996]

• kinetic collision detection [Agarwal, Basch, Erickson, Guibas,

Hershberger, Zhang 1999–2001] [Kirkpatrick, Snoeyink, and Speckmann

2000] [Kirkpatrick & Speckmann 2002]

• art gallery problems [Pocchiola and Vegter 1996b],

[Speckmann and Tóth 2001]



86

2A. RIGIDITY, PLANAR LAMAN GRAPHS
Infinitesimal motions — rigid frameworks

A framework is a set of movable joints (vertices) connected

by rigid bars (edges) of fixed length.

n points p1, . . . , pn.

1. (global) motion pi = pi(t), t ≥ 0
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2A. RIGIDITY, PLANAR LAMAN GRAPHS
Infinitesimal motions — rigid frameworks

A framework is a set of movable joints (vertices) connected

by rigid bars (edges) of fixed length.

n points p1, . . . , pn.

1. (global) motion pi = pi(t), t ≥ 0

2. infinitesimal motion (local motion)

vi =
d

dt
pi(t) = ṗi(0)

velocity vectors v1, . . . , vn.

3. constraints:

|pi(t)− pj(t)| is constant for every edge (bar) ij.
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Expansion

1
2 ·

d

dt
|pi(t)− pj(t)|2 = 〈vi − vj, pi − pj〉 =: expij

vi · (pj − pi) vj · (pj − pi)

pj − pi

vi

pjpi

vj

expansion (or strain) expij of the segment ij



84

The rigidity map

of a framework ((V,E), (p1, . . . , pn)):

M : (v1, . . . , vn) 7→ (expij)ij∈E
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The rigidity map

of a framework ((V,E), (p1, . . . , pn)):

M : (v1, . . . , vn) 7→ (expij)ij∈E

The rigidity matrix:

M =

 the

rigidity

matrix


︸ ︷︷ ︸

2|V |

 E
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Infinitesimally rigid frameworks

A framework is infinitesimally rigid if

M(v) = 0

has only the trivial solutions: translations and rotations of the

framework as a whole.
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Rigid frameworks

An infinitesimally rigid framework is rigid.

This framework is rigid, but not infinitesimally rigid:
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Generically rigid frameworks

A given graph can be rigid in most embeddings, but it may

have special non-rigid embeddings:

A graph is generically rigid if it is infinitesimally rigid in almost

all embeddings.

This is a combinatorial property of the graph.
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Minimally rigid frameworks

Theorem. A graph with n vertices is minimally rigid in the

plane (with respect to ⊆) iff it has the Laman property :

• It has 2n− 3 edges.

• Every subset of k ≥ 2 vertices spans at most 2k − 3 edges.

n = 10, e = 17n = 6, e = 9

[Laman 1961]
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A pointed pseudotriangulation
is a Laman graph

Proof: Every subset of k ≥ 2 vertices is pointed and has

therefore at most 2k − 3 edges.

[Streinu 2001]
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Every planar Laman graph is a pointed
pseudotriangulation

Theorem. Every planar Laman graph has a realization as a

pointed pseudotriangulation. The outer face can be chosen

arbitrarily.

[Haas, Rote, Santos, B. Servatius, H. Servatius, Streinu, Whiteley 2003]
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Every planar Laman graph is a pointed
pseudotriangulation

Theorem. Every planar Laman graph has a realization as a

pointed pseudotriangulation. The outer face can be chosen

arbitrarily.

[Haas, Rote, Santos, B. Servatius, H. Servatius, Streinu, Whiteley 2003]

Proof I: Induction, using Henneberg constructions

Proof II: via Tutte embeddings for directed graphs

Theorem. Every rigid planar graph has a realization as a

pseudotriangulation (not necessarily pointed).

[Orden, Santos, B. Servatius, H. Servatius 2003]
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Henneberg constructions

Type I Type II
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Self-stresses

Assign a stress ωij = ωji ∈ R to each edge.

Equilibrium of forces in every vertex i:∑
j

ωij(pj − pi) = 0
pi

pj

ωij(pj − pi)

MTω = 0

exp = Mv
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2B. RIGIDITY AND KINEMATICS
Unfolding of polygons — expansive motions

Theorem. Every polygonal arc in the plane can be brought

into straight position, without self-overlap.

Every polygon in the plane can be unfolded into convex

position. [Connelly, Demaine, Rote 2000], [Streinu 2000]
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2B. RIGIDITY AND KINEMATICS
Unfolding of polygons — expansive motions

Theorem. Every polygonal arc in the plane can be brought

into straight position, without self-overlap.

Every polygon in the plane can be unfolded into convex

position. [Connelly, Demaine, Rote 2000], [Streinu 2000]

Proof outline:

1. Find an expansive infinitesimal motion.

2. Find a global motion.
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Expansive Motions

No distance between any pair of vertices decreases.

Expansive motions cannot overlap.
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Expansive motions

expij = 0 for all bars ij

(preservation of length)

expij ≥ 0 for all other pairs (struts) ij

(expansiveness)
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Expansive motions

expij = 0 for all bars ij

(preservation of length)

expij ≥ 0 for all other pairs (struts) ij

(expansiveness)

. . . need to show that an expansive motion exists . . .
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Every Polygon has an Expansive Motion

Proof I: (Outline)

Existence of an expansive motion

m (duality)

Self-stresses (rigidity)

Self-stresses on planar frameworks

m (Maxwell-Cremona correspondence)

polyhedral terrains

[ Connelly, Demaine, Rote 2000 ]
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Every Polygon has an Expansive Motion

Proof I: (Outline)

Existence of an expansive motion

m (duality)

Self-stresses (rigidity)

Self-stresses on planar frameworks

m (Maxwell-Cremona correspondence)

polyhedral terrains

[ Connelly, Demaine, Rote 2000 ]

Proof II: via pseudotriangulations and the Pseudotriangulation

Polytope

[ Streinu 2000 ] [ Rote, Santos, Streinu 2003 ]
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3. A polyhedron for pointed
pseudotriangulations

Theorem. For every set S of points in general position, there

is a convex (2n−3)-dimensional polyhedron X whose vertices

correspond to the pointed pseudotriangulations of S.

[Rote, Santos, Streinu 2003]

There is one inequality for each pair of points.

At a vertex of X:

tight inequalities ↔ edges of a pointed pseudotriangulation.
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Cones and polytopes

[Rote, Santos, Streinu 2002]

• The expansion cone

X̄0 = { expij ≥ 0 }

• The perturbed expansion cone

= the PPT polyhedron

X̄f = { expij ≥ fij }

• The PPT polytope

Xf = { expij ≥ fij,

expij = fij for ij on boundary }
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Extreme rays of the expansion cone

Pseudotriangulations with one convex hull edge removed yield

expansive mechanisms. [Streinu 2000]

Rigid substructures can be identified.
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The Dimension of the Polyhedra:
Pinning of Vertices

Trivial Motions: Motions of the point set as a whole

(translations, rotations).

Normalization: Pin a vertex and a direction. (“tie-down”)

v1 = 0

v2 ‖ p2 − p1

This eliminates 3 degrees of freedom.

The polyhedra “live in” 2n− 3 dimensions.

(plus a 3-dimensional lineality space).
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A polyhedron for pseudotriangulations

With a suitable perturbation of the constraints “expij ≥ 0” to

“expij ≥ fij”, the vertices are in 1-1 correspondence with the

pointed pseudotriangulations.

→ the PPT-polyhedron

X̄f = { (v1, . . . , vn) | expij ≥ fij }

→ an independent proof that expansive motions exist
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Tight edges

For v = (v1, . . . , vn) ∈ X̄f ,

E(v) := { ij | expij = fij }

is the set of tight edges at v.

Maximal sets of tight edges ≡ vertices of X̄f .
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What are good values of fij?

Which configurations of edges can occur in a set of tight

edges?

We want:

• no crossing edges

• no 3-star with all angles ≤ 180◦
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The PPT-polyhedron

→ For every vertex v, E(v) is non-crossing and pointed.

→ |E(v)| ≤ 2n− 3

→ |E(v)| = 2n− 3 and X̄f is a simple polyhedron.

Every vertex is incident to 2n− 3 edges.

Edge ≡ removing a segment from E(v).

Removing an interior segment leads to an adjacent

pseudotriangulation (flip).

Removing a hull segment is an extreme ray. 2
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Increasing the distances

dij := ‖pi − pj‖
Find new locations p̄i such that

‖p̄i − p̄j‖ ≥ dij + εδij

for very small (infinitesimal) ε and appropriate numbers δij.

dij

pi

pj

p̄i

p̄j

dij + εδij

If the new distances dij + εδij are generic, the maximal sets of

tight inequalities will correspond to minimally rigid graphs.
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Heating up the bars

∆T = |x|2

Length increase ≥
∫

x∈pipj

|x|2 ds
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Heating up the bars

∆T = |x|2

Length increase ≥
∫

x∈pipj

|x|2 ds

δij =
∫

x∈pipj

|x|2 ds

δij = |pi − pj| · (|pi|2 + 〈pi, pj〉+ |pj|2) · 1
3
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Heating up the bars — points in convex
position

⇒
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The PPT polyhedron

X̄f = { (v1, . . . , vn) | expij ≥ fij }

• fij := |pi − pj|2 · (|pi|2 + 〈pi, pj〉+ |pj|2)
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The PPT polyhedron

X̄f = { (v1, . . . , vn) | expij ≥ fij }

• fij := |pi − pj|2 · (|pi|2 + 〈pi, pj〉+ |pj|2)

• Alternative definition that leads to an equivalent polytope.

f ′ij := [a, pi, pj] · [b, pi, pj]

[x, y, z] = signed area of the triangle xyz

a, b: two arbitrary points.
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Good values fij for 4 points

In a set of tight edges, we want:

• no crossing edges

• no 3-star with all angles ≤ 180◦

It is sufficient to look at 4-point subsets.
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Good values fij for 4 points

fij is given on six edges.

Any five values expij determine the

last one.

Check if the resulting value expij of

the last edge is feasible (expij ≥ fij)

→ checking the sign of an expression.
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Good Values fij for 4 points

A 4-tuple p1, p2, p3, p4 has a unique self-stress (up to a scalar

factor).

ωij =
1

[pi, pj, pk] · [pi, pj, pl]
, for all 1 ≤ i < j ≤ 4

i

j

k

l

ωij > 0 for boundary edges.

ωij < 0 for interior edges.
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Why the stress?

If the equation ∑
1≤i<j≤4

ωijfij = 0

holds, then fij are the expansion values expij of a motion

(v1, v2, v3, v4).

Actually, “if and only if”.
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Why the stress?

If the equation ∑
1≤i<j≤4

ωijfij = 0

holds, then fij are the expansion values expij of a motion

(v1, v2, v3, v4).

Actually, “if and only if”.

[ MTω = 0, f = exp = Mv ]
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Good perturbations

We need

ω12f12 + ω13f13 + ω14f14 + ω23f23 + ω24f24 + ω34f34 > 0

for all 4-tuples of points p1, p2, p3, p4, with

ωij =
1

[pi, pj, pk] · [pi, pj, pl]
, fij = [a, pi, pj][b, pi, pj]
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Good perturbations

We need

ω12f12 + ω13f13 + ω14f14 + ω23f23 + ω24f24 + ω34f34 > 0

for all 4-tuples of points p1, p2, p3, p4, with

ωij =
1

[pi, pj, pk] · [pi, pj, pl]
, fij = [a, pi, pj][b, pi, pj]

ω12f12 + ω13f13 + ω14f14 + ω23f23 + ω24f24 + ω34f34 = 1
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Good perturbations

We need

ω12f12 + ω13f13 + ω14f14 + ω23f23 + ω24f24 + ω34f34 > 0

for all 4-tuples of points p1, p2, p3, p4, with

ωij =
1

[pi, pj, pk] · [pi, pj, pl]
, fij = [a, pi, pj][b, pi, pj]

ω12f12 + ω13f13 + ω14f14 + ω23f23 + ω24f24 + ω34f34 = 1 > 0
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What is the meaning of
∑

1≤i<j≤4 ωijfij = 1?

“I believe there is some underlying homology in this situation.

Given the fact that motions and stresses also fit into a setting

of cohomology and homology as well, the authors might, at

least, mention possible homology descriptions.”

[a referee, about the definition of ωij]
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What is the meaning of
∑

1≤i<j≤4 ωijfij = 1?

“I believe there is some underlying homology in this situation.

Given the fact that motions and stresses also fit into a setting

of cohomology and homology as well, the authors might, at

least, mention possible homology descriptions.”

[a referee, about the definition of ωij]

One can define a similar formula for ω for the k-wheel.



52∑
ij∈E ωijfij = 1 for the k-wheel

ωi,i+1 =
1

[pi, pi+1, p0] · [p1, p2, . . . , pk]

ω0i =
1

[pi−1, pi, p0] · [pi, pi+1, p0]
· [pi−1, pi, pi+1]
[p1, p2, . . . , pk]
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Cones and polytopes

• The expansion cone

X̄0 = { expij ≥ 0 }

• The perturbed expansion cone

= the PPT polyhedron

X̄f = { expij ≥ fij }

• The PPT polytope

Xf = { expij ≥ fij,

expij = fij for ij on boundary }
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The PPT polytope

Cut out all rays:

Change expij ≥ fij to expij = fij for hull edges.

Theorem. For every set S of points in general position,

there is a convex (2n−3)-dimensional polytope whose vertices

correspond to the pointed pseudotriangulations of S.
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Cones and polytopes

• The expansion cone

X̄0 = { expij ≥ 0 }

• The perturbed expansion cone

= the PPT polyhedron

X̄f = { expij ≥ fij }

• The PPT polytope

Xf = { expij ≥ fij,

expij = fij for ij on boundary }
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Extreme rays of the expansion cone

The Expansion Cone X̄0:

collapse parallel rays into one ray. → pseudotriangulations

minus one hull edge. Rigid subcomponents are identified.

Pseudotriangulations with one convex hull edge removed yield

expansive mechanisms. [Streinu 2000]
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Expansive motions for a chain
(or a polygon)

• Add edges to form a pseudotriangulation

• Remove a convex hull edge

• → expansive mechanism 2

Theorem. Every polygonal arc in the plane can be brought

into straight position, without self-overlap.

Every polygon in the plane can be unfolded into convex

position.

[Connelly, Demaine, Rote 2000], [Streinu 2000]
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The PT polytope

Vertices correspond to all pseudotriangulations, pointed or

not.

Change inequalities expij ≥ fij to

expij +(si + sj)‖pj − pi‖ ≥ fij

with a “slack variable” si for every vertex.

si = 0 indicates that vertex i is pointed.

A “flip” may insert an edge, changing a vertex from pointed

to non-pointed, or vice versa.

Faces are in one-to-one correspondence with all non-crossing

graphs.

[Orden, Santos 2002]
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Canonical pseudotriangulations

Maximize/minimize
∑n

i=1 ci · vi over the PPT-polytope.

ci := pi:

(a) (b) (c)

Delaunay triangulation Max/Min
∑

pi · vi

(not affinely invariant)

(Can be constructed as the lower/upper convex hull of lifted

points.) [André Schulz 2005]
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Two pseudotriangulations for 100 random
points
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Which fij to choose?

• fij := |pi − pj|2 · (|pi|2 + 〈pi, pj〉+ |pj|2)

• f ′ij := [a, pi, pj] · [b, pi, pj]

Go to the space of the (expij) variables instead of the (vi)
variables.

exp = Mv
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Characterization of the space (expij)i,j

A set of values (expij)1≤i<j≤n forms the expansion vector of a

motion (v1, . . . , vn): exp = Mv

if and only if the vector (expij)1≤i<j≤n is orthogonal to all

self-stresses (ωij)1≤i<j≤n:

ω · exp = 0 for all ω with MTω = 0
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Characterization of the space (expij)i,j

A set of values (expij)1≤i<j≤n forms the expansion vector of a

motion (v1, . . . , vn): exp = Mv

if and only if the vector (expij)1≤i<j≤n is orthogonal to all

self-stresses (ωij)1≤i<j≤n:

ω · exp = 0 for all ω with MTω = 0

if and only if the equation∑
1≤i<j≤4

ωij expij = 0

holds for all 4-tuples.

SKIP
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A canonical representation

∑
1≤i<j≤4

ωij expij = 0, for all 4-tuples

expij ≥ fij, for all pairs i, j
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A canonical representation

∑
1≤i<j≤4

ωij expij = 0, for all 4-tuples

expij ≥ fij, for all pairs i, j

∑
1≤i<j≤4

ωijfij = 1, for all 4-tuples

Substitute dij := expij −fij:∑
1≤i<j≤4 ωijdij = −1, for all 4-tuples (1)

dij ≥ 0, for all i, j (2)



40

The associahedron
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Catalan structures

• Triangulations of a convex polygon / edge flip

• Binary trees / rotation

• (a ∗ (b ∗ (c ∗ d))) ∗ e / ((a ∗ b) ∗ (c ∗ d)) ∗ e

• . . . . . . . . . . . . . . . . . . . . .
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The secondary polytope

Triangulation T of a point set {p1, . . . , pn}:
T 7→ (a1, . . . , an).

ai := total area of all triangles incident to pi

The secondary polytope :=

conv{ (a1, . . . , an)(T ) | T is a triangulation }

vertices ≡ regular triangulations of (p1, . . . , pn)

(p1, . . . , pn) in convex position:

pseudotriangulations≡ triangulations≡ regular triangulations.

→ two realizations of the associahedron.

These two associahedra are affinely equivalent.
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Expansive motions in one dimension

{ (vi) ∈ Rn | vj − vi ≥ fij for 1 ≤ i < j ≤ n }

fil + fjk > fik + fjl, for all i < j < k < l.

fil > fik + fkl, for all i < k < l.

For example, fij := (i− j)2

related to the Monge Property.

→ gives rise to different realizations of the associahedron.
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Non-crossing alternating trees

non-crossing: no two edges ik, jl with i < j < k < l.

alternating: no two edges ij, jk with i < j < k.

[Gelfand, Graev, and Postnikov 1997], in a dual setting.

[Postnikov 1997], [Zelevinsky ?], [Stasheff 1997]
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The associahedron
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OPEN: Pseudotriangulations in 3-space?

Rigid graphs are not well-understood in 3-space.

Alternative approach: Pseudotriangulation of the interior of a

polygon via locally convex functions

[Aichholzer, Aurenhammer, Braß, Krasser 2003]

This can be extended to 3-polytopes.

[Aurenhammer, Krasser 2005]
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TNPUT A NO TNPUT
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