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0. BASIC PROPERTIES. Pointed Vertices

A pointed vertex is incident to an angle > 180◦.

A straight-line graph is pointed if all vertices are pointed.
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0. BASIC PROPERTIES. Pointed Vertices

A pointed vertex is incident to an angle > 180◦.

A straight-line graph is pointed if all vertices are pointed.

Where do pointed vertices arise?
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Visibility among convex obstacles

Equivalence classes of visibility segments. Extreme segments

are bitangents of convex obstacles.

[Pocchiola and Vegter 1996]
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Geodesic shortest paths

Shortest path (with given homotopy) turns only at pointed

vertices. Addition of shortest path edges leaves intermediate

vertices pointed.

→ geodesic triangulations of a simple polygon

[Chazelle,Edelsbrunner, Grigni, Guibas, Hershberger, Sharir, Snoeyink 1994]



5

Pseudotriangulations

Given: A set V of vertices, a subset Vp ⊆ V of pointed vertices.

A pseudotriangulation is a maximal (with respect to ⊆) set of

non-crossing edges with all vertices in Vp pointed.
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Given: A set V of vertices, a subset Vp ⊆ V of pointed vertices.

A pseudotriangulation is a maximal (with respect to ⊆) set of

non-crossing edges with all vertices in Vp pointed.
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Pseudotriangles

A pseudotriangle has three convex corners and an arbitrary

number of reflex vertices (> 180◦).
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Pseudotriangulations

Given: A set V of vertices, a subset Vp ⊆ V of pointed vertices.

(1) A pseudotriangulation is a maximal (w.r.t. ⊆) set E of

non-crossing edges with all vertices in Vp pointed.

(2) A pseudotriangulation is a partition of a convex polygon

into pseudotriangles.

Proof. (2) =⇒ (1) No edge can be added inside a pseudotri-

angle without creating a nonpointed vertex.

Proof. (1) =⇒ (2) All convex hull edges are in E.

→ decomposition of the polygon into faces.

Need to show: If a face is not a pseudotriangle, then one can

add an edge without creating a nonpointed vertex.
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Characterization of pseudotriangulations

Lemma. If a face is not a pseudotriangle, then one can add

an edge without creating a nonpointed vertex.
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Go from a convex vertex along the boundary to the third

convex vertex. Take the shortest path.



8

Characterization of pseudotriangulations

Lemma. If a face is not a pseudotriangle, then one can add

an edge without creating a nonpointed vertex.

Go from a convex vertex along the boundary to the third

convex vertex. Take the shortest path.
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Characterization of pseudotriangulations

Lemma. If a face is not a pseudotriangle, then one can add

an edge without creating a nonpointed vertex.

Go from a convex vertex along the boundary to the third

convex vertex. Take the shortest path.
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Characterization of pseudotriangulations,
continued

A new edge is always added, unless the face is already a

pseudotriangle (without inner obstacles).

[Rote, C. A. Wang, L. Wang, Xu 2003]
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Vertex and face counts

A pseudotriangulation with x nonpointed and y pointed verti-

ces has e = 3x+2y− 3 edges and 2x+ y− 2 pseudotriangles.

A pointed pseudotriangulation with n vertices has e = 2n− 3
edges and n− 2 pseudotriangles.

Proof. A k-gon pseudotriangle has k − 3 large angles.∑
t∈T

(kt − 3) + kouter = y
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Vertex and face counts

A pseudotriangulation with x nonpointed and y pointed verti-

ces has e = 3x+2y− 3 edges and 2x+ y− 2 pseudotriangles.

A pointed pseudotriangulation with n vertices has e = 2n− 3
edges and n− 2 pseudotriangles.

Proof. A k-gon pseudotriangle has k − 3 large angles.∑
t∈T

(kt − 3) + kouter = y∑
t
kt + kouter︸ ︷︷ ︸
2e

−3|T | = y

e + 2 = (|T |+ 1) + (x + y) (Euler)
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Tangents of pseudotriangles

“Proof. (2) =⇒ (1) No edge can be added inside a pseudo-

triangle without creating a nonpointed vertex.”

For every direction, there is a unique line which is “tangent”

at a reflex vertex or “cuts through” a corner.
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Flipping of Edges

Any interior edge can be flipped against another edge. That

edge is unique.

before after
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Flipping of Edges

Any interior edge can be flipped against another edge. That

edge is unique.

before after

The flip graph is connected.

Its diameter is O(n log n). [Bespamyatnikh 2003]
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1. RIGIDITY, PLANAR LAMAN GRAPHS
Infinitesimal motions — rigid frameworks

n vertices p1, . . . , pn.

1. (global) motion pi = pi(t), t ≥ 0
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1. RIGIDITY, PLANAR LAMAN GRAPHS
Infinitesimal motions — rigid frameworks

n vertices p1, . . . , pn.

1. (global) motion pi = pi(t), t ≥ 0

2. infinitesimal motion (local motion)

vi =
d

dt
pi(t) = ṗi(0)

Velocity vectors v1, . . . , vn.
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Expansion

1
2 ·

d

dt
|pi(t)− pj(t)|2 = 〈vi − vj, pi − pj〉 =: expij

vi · (pj − pi) vj · (pj − pi)

pj − pi

vi

pjpi

vj

expansion (or strain) expij of the segment ij
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The rigidity map

of a framework ((V,E), (p1, . . . , pn)):

M : (v1, . . . , vn) 7→ (expij)ij∈E
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The rigidity map

of a framework ((V,E), (p1, . . . , pn)):

M : (v1, . . . , vn) 7→ (expij)ij∈E

The rigidity matrix:

M =

 the

rigidity

matrix


︸ ︷︷ ︸

2|V |

 E
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Infinitesimally rigid frameworks

A framework is infinitesimally rigid if

M(v) = 0

has only the trivial solutions: translations and rotations of the

framework as a whole.
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Rigid frameworks

An infinitesimally rigid framework is rigid.

This framework is rigid, but not infinitesimally rigid:
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Generically rigid frameworks

A given graph can be rigid in most embeddings, but it may

have special non-rigid embeddings:

A graph is generically rigid if it is infinitesimally rigid in almost

all embeddings.

This is a combinatorial property of the graph.
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Minimally rigid frameworks

A graph with n vertices is minimally rigid in the plane (with

respect to ⊆) iff it has the Laman property :

• It has 2n− 3 edges.

• Every subset of k ≥ 2 vertices spans at most 2k − 3 edges.

n = 10, e = 17n = 6, e = 9

[Laman 1961]
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A pointed pseudotriangulation is a Laman
graph

Proof: Every subset of k ≥ 2 vertices is pointed and has

therefore at most 2k − 3 edges.

[Streinu 2001]
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Every planar Laman graph is a pointed
pseudotriangulation

Theorem. Every planar Laman graph has a realization as a

pointed pseudotriangulation. The outer face can be chosen

arbitrarily.

Proof I: Induction, using Henneberg constructions

Proof II: via Tutte embeddings for directed graphs

[Haas, Rote, Santos, B. Servatius, H. Servatius, Streinu, Whiteley 2003]

Theorem. Every rigid planar graph has a realization as a

pseudotriangulation.

[Orden, Santos, B. Servatius, H. Servatius 2003]
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Henneberg constructions

Type I Type II
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Proof I: Henneberg constructions
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Proof II: embedding Laman graphs via
directed Tutte embeddings

Step 1: Find a combinatorial pseudotriangulation (CPT):

Mark every angle of the embedding either as small or big.

• Every interior face has 3 small angles.

• The outer face has no small angles.

• Every vertex is incident to one big angle.

Step 2: Find a geometric realization of the CPT.
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Combinatorial pseudotriangulations
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Step 2—Tutte’s barycenter method

Fix the vertices of the outer face in convex position. Every

interior vertex pi should lie at the barycenter of its neighbors.∑
(i,j)∈E

ωij(pj − pi) = 0, for every vertex i

ωij ≥ 0, but ω need not be symmetric.

Theorem. If every interior vertex has three vertex disjoint

paths to the outer boundary, using arcs with ωij > 0, the

solution is a planar embedding.

[Tutte 1961], [Floater and Gotsman 1999],

[Colin de Verdière, Pocchiola, Vegter 2003]

→ animation of spider-web embedding (requires Cinderella 2.0 software)

http://page.inf.fu-berlin.de/~rote/Papers/slides/Pseudotriangulations-Fall-school-2003/Tutte.cdy
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Selection of outgoing arcs

3 outgoing arcs for every interior vertex:

Triangulate each pseudotriangle arbitrarily.

For each reflex vertex, select

• the two incident boundary edges

• an interior edge of the pseudotriangulation
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3-connectedness

Lemma. Every induced subgraph of a planar Laman graph

with a CPT has at least 3 outside “corners”.
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Specifying the shape of pseudotriangles

The shape of every pseudotriangle (and the outer face) can

be arbitrarily specified up to affine transformations.
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2. THE PPT-POLYTOPE
Unfolding of polygons — expansive motions

Theorem. Every polygonal arc in the plane can be brought

into straight position, without self-overlap.

Every polygon in the plane can be unfolded into convex

position.

[Connelly, Demaine, Rote 2001], [Streinu 2001]
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Unfolding polygons—proof outline

Existence of an expansive motion

m (duality)

Self-stresses (rigidity)

Self-stresses on planar frameworks

m (Maxwell-Cremona correspondence)

polyhedral terrains

[Connelly, Demaine, Rote 2001]



32

Expansive motions

expij = 0 for all bars ij

(preservation of length)

expij ≥ 0 for all other pairs (struts) ij

(expansiveness)
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The expansion cone

The set of expansive motions forms a convex polyhedral cone

X̄0 in R2n, defined by homogeneous linear equations and

inequalities of the form

〈vi − vj, pi − pj〉
{

=
≥

}
0
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Cones and polytopes

[Rote, Santos, Streinu 2002]

• The expansion cone

X̄0 = { expij ≥ 0 }

• The perturbed expansion cone

= the PPT polyhedron

X̄f = { expij ≥ fij }

• The PPT polytope

Xf = { expij ≥ fij,

expij = fij for ij on boundary }
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Pinning of Vertices

Trivial Motions: Motions of the point set as a whole (transla-

tions, rotations).

Pin a vertex and a direction. (“tie-down”)

v1 = 0

v2 ‖ p2 − p1

This eliminates 3 degrees of freedom.

→ a 2n− 3-dimensional polyhedron.
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Extreme rays of the expansion cone

Pseudotriangulations with one convex hull edge removed yield

expansive mechanisms. [Streinu 2000]

Rigid substructures can be identified.
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A Polyhedron for Pseudotriangulations

Wanted:

A perturbation of the constraints “expij ≥ 0” such that the

vertices are in 1-1 correspondence with pseudotriangulations.
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Heating up the bars

∆T = |x|2

Length increase ≥
∫

x∈pipj

|x|2 ds
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Heating up the Bars

∆T = |x|2

Length increase ≥
∫

x∈pipj

|x|2 ds

expij ≥ |pi − pj| ·
∫
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Heating up the Bars

∆T = |x|2

Length increase ≥
∫

x∈pipj

|x|2 ds

expij ≥ |pi − pj| ·
∫

x∈pipj

|x|2 ds

expij ≥ |pi − pj|2 · (|pi|2 + 〈pi, pj〉+ |pj|2) · 1
3
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Heating up the Bars — Points in Convex
Position

⇒
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The Perturbed Expansion Cone
= PPT Polyhedron

X̄f = { (v1, . . . , vn) | expij ≥ fij }

• fij := |pi − pj|2 · (|pi|2 + 〈pi, pj〉+ |pj|2)

• f ′ij := [a, pi, pj] · [b, pi, pj]

[x, y, z] = signed area of the triangle xyz

a, b: two arbitrary points.
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Tight Edges

For v = (v1, . . . , vn) ∈ X̄f ,

E(v) := { ij | expij = fij }

is the set of tight edges at v.

Maximal sets of tight edges ≡ vertices of X̄f .
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What are good values of fij?

Which configurations of edges can occur in a set of tight

edges?

We want:

• no crossing edges

• no 3-star with all angles ≤ 180◦

It is sufficient to look at 4-point subsets.
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Good Values fij for 4 points

fij is given on six edges.

Any five values expij determine the

last one.

Check if the resulting value expij of

the last edge is feasible (expij ≥ fij)

→ checking the sign of an expression.

2
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The PPT-polyhedron

Every vertex is incident to 2n− 3 edges.

Edge ≡ removing a segment from E(v).

Removing an interior segment leads to an adjacent pseudotri-

angulation (flip).

Removing a hull segment is an extreme ray. 2



46

The PPT polytope

Cut out all rays:

Change expij ≥ fij to expij = fij for hull edges.
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The PPT polytope

Cut out all rays:

Change expij ≥ fij to expij = fij for hull edges.

The Expansion Cone X̄0:

collapse parallel rays into one ray. → pseudotriangulations

minus one hull edge. Rigid subcomponents are identified.
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The PT polytope

Vertices correspond to all pseudotriangulations, pointed or

not.

Change inequalities expij ≥ fij to

expij +(si + sj)‖pj − pi‖ ≥ fij

with a “slack variable” si for every vertex.

si = 0 indicates that vertex i is pointed.

Faces are in one-to-one correspondence with all non-crossing

graphs.

[Orden, Santos 2002]
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The associahedron

9

11

13

15

4
6

8
10

12

1

3

5

7

v4

v2

v3
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Catalan structures

• Triangulations of a convex polygon / edge flip

• Binary trees / rotation

• (a ∗ (b ∗ (c ∗ d))) ∗ e / ((a ∗ b) ∗ (c ∗ d)) ∗ e

• . . . . . . . . . . . . . . . . . . . . .
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Canonical pseudotriangulations

Maximize/minimize
∑n

i=1 ci · vi over the PPT-polytope.

ci := pi:

(a) (b) (c)

Delaunay triangulation Max/Min
∑

pi · vi

(not affinely invariant)

(Can be constructed as the lower/upper convex hull of lifted

points.)
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Edge flipping criterion for canonical
pseudotriangulations of 4 points in convex

position

Maximize/minimize the product of the areas.

Invariant under affine transformations.
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The “Delone pseudotriangulation” for 100
random points
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The “Anti-Delone pseudotriangulation” for
100 random points
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3. STRESSES AND RECIPROCALS
Reciprocal frameworks

Given: A plane graph G and its planar dual G∗.

A framework (G, p) is reciprocal to (G∗, p∗) if corresponding

edges are parallel.

5
8

8
5

3
2

3
2

1
2

8
3

2

2

4

-

-
8
3

-

3
8

-
3
8

-

2
3

-

1
4

-

1
2

-

3
2

-

-

a) b)

→ dynamic animation of reciprocal diagrams with Cinderella

http://page.inf.fu-berlin.de/~rote/Papers/slides/Pseudotriangulations-Fall-school-2003/reciprocal.cdy
http://www.cinderella.de
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Self-stresses

A self-stress in a framework is given by a set of internal forces

(compressions and tensions) on the edges in equilibrium at

every vertex i:∑
j:(i,j)∈E

ωij(pj − pi) = 0
pi

pj

ωij(pj − pi)

The force of edge (i, j) on vertex i is

ωij(pj − pi).
The force of edge (i, j) on vertex j is

ωji(pi − pj) = −ωij(pj − pi). (ωij = ωji)
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Self-stresses and reciprocal frameworks

An equilibrium at a vertex gives rise to a polygon of forces:

a) b)

3

4

1-

-

-

These polygons can be assembled to the reciprocal diagram.
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Assembling the reciprocal framework

3

4

1

1
2

1
4

1
41-

1

-

-
-

a) b) c)

ω∗
ij := 1/ωij defines a self-stress on the reciprocal.
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The Maxwell-Cremona Correspondence
[1864/1872]

self-stresses on a

planar framework

m one-to-one correspondence

reciprocal diagram



58

The Maxwell-Cremona Correspondence
[1864/1872]

self-stresses on a

planar framework

m one-to-one correspondence

reciprocal diagram

m one-to-one correspondence

3-d lifting (polyhedral terrain)
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Minimally dependent graphs (rigidity circuits)

A Laman graph plus one edge has a unique self-stress (up to

scalar multiplication).

→ It has a unique reciprocal (up to scaling).
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Planar frameworks with planar reciprocals

Theorem. Let G be a pseudotriangulation with 2n− 2 edges

(and hence with a single nonpointed vertex). Then G∗ is non-

crossing.

Moreover, if the stress on G is nonzero on all edges, G∗ is also

a pseudotriangulation with 2n− 2 edges.

[Orden, Rote, Santos, B. Servatius, H. Servatius, Whiteley 2003]
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Possible sign patterns around vertices

pointed, with two sign changes

(none at the big angle)
a

a

b

b

c

c

d

d e

e

f

f

g

g

pointed, with four sign changes

(including one at the big angle)

a

ab

b

c

c
d

de ef
f

g

g

nonpointed, with four sign changes

a

a

b

b

c

c

d

d e ef
f

g

g

i
i

h

h

nonpointed, with no sign changes
a

a

b
b

c

c
d

d

e

e

f

f
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Vertex-proper and Face-proper angles

A face-proper angle is a big angle with equal signs or a small

angle with a sign change.

A vertex-proper angle is a small angle with equal signs or a

big angle with a sign change.
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Counting angles

Lemma. At every pointed vertex, there are at least 3 face-

proper angles in a self-stress.
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Counting angles

Lemma. At every pointed vertex, there are at least 3 face-

proper angles in a self-stress.

Lemma. In every pseudotriangle, there is at least 1 vertex-

proper angle.
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Counting angles

Lemma. At every pointed vertex, there are at least 3 face-

proper angles in a self-stress.

Lemma. In every pseudotriangle, there is at least 1 vertex-

proper angle.

2e = #angles ≥ 3(n− 1) + (n− 1) = 2(2n− 2) = 2e

→ equality throughout!
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Counting angles—conclusion

Every pointed vertex has exactly 3 face-proper angles.

→ reciprocal face is a pseudotriangle.

The non-pointed vertex has no face-proper angles.

→ reciprocal face is convex = the outer face.

Every pseudotriangle has exactly 1 vertex-proper angle.

→ reciprocal vertex is pointed.

The outer face has no vertex-proper angles.

→ reciprocal vertex is nonpointed.
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Counting angles—conclusion

Every pointed vertex has exactly 3 face-proper angles.

→ reciprocal face is a pseudotriangle.

The non-pointed vertex has no face-proper angles.

→ reciprocal face is convex = the outer face.

Every pseudotriangle has exactly 1 vertex-proper angle.

→ reciprocal vertex is pointed.

The outer face has no vertex-proper angles.

→ reciprocal vertex is nonpointed.

If some edges have zero stress, the reciprocal can have more

than one non-pointed vertex.
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General pairs of non-crossing reciprocal
frameworks

G and G∗ can have more than one non-pointed vertex and

can contain pseudoquadrangles.

Necessary conditions:

• Vertices must be as above, with a unique non-pointed vertex

that has no sign changes.

• All other non-pointed vertices must have 4 sign changes.

• Analogous face conditions.
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General pairs of non-crossing reciprocals

These combinatorial vertex conditions are also sufficient for

a non-crossing reciprocal, except possibly for “self-crossing”

pseudoquadrangles.

E
D

C

F
G

ae

d

c

f g

b

A B

E
D

C

F
G

ae

d

c

f
g

b

A B

a) b) d)c)



67

4. LIFTINGS AND SURFACES

4a. Liftings of non-crossing reciprocals

4b. Locally convex liftings



68

4a. Liftings of non-crossing reciprocals

Theorem. If G and G∗ are non-crossing reciprocals, the lifting

has a unique maximum. There are no other critical points.

Every other point p is a “twisted saddle”: Its neighborhood is

cut into four pieces by some plane through v (but not more).

“Negative curvature” everywhere except at the peak!
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Liftings of non-crossing reciprocals

http://page.inf.fu-berlin.de/~rote/Papers/slides/Pseudotriangulations-JGA2003/Lifted-pseudotriangulation-grid100.vrml
http://page.inf.fu-berlin.de/~rote/Papers/slides/Pseudotriangulations-JGA2003/Lifted-pseudotriangulation-grid100-without-light.vrml
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Liftings of non-crossing reciprocals

[ → VRML model of a different

pseudotriangulation (with

non-convex faces, too!) ]

[ → same model without light ]

http://page.inf.fu-berlin.de/~rote/Papers/slides/Pseudotriangulations-JGA2003/Lifted-pseudotriangulation-grid100.vrml
http://page.inf.fu-berlin.de/~rote/Papers/slides/Pseudotriangulations-JGA2003/Lifted-pseudotriangulation-grid100-without-light.vrml
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Tangent planes of lifted pseudotriangulations

For every plane which touches the peak from above, there is

a unique parallel plane which cuts a vertex like a saddle (a

“tangent plane”).

Remember: In a pseudotriangle, for every direction, there is

a unique line which is “tangent” at a reflex vertex or “cuts

through” a corner.
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Valley and Mountain Folds

ωij > 0 ωij < 0

valley mountain
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4b. LOCALLY CONVEX LIFTINGS
The reflex-free hull

flat

nearly reflex

reflex

saddle
nearly convex

convex

an approach for recognizing pockets in biomolecules

[Ahn, Cheng, Cheong, Snoeyink 2002]
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Locally convex surfaces

A function over a polygonal domain P is locally convex if it is

convex on every segment in P .



73

Locally convex surfaces

A function over a polygonal domain P is locally convex if it is

convex on every segment in P .
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Locally convex functions on a poipogon

A poipogon (P, S) is a simple polygon P with some additional

vertices inside.

Given a poipogon and a height value hi for each pi ∈ S, find

the highest locally convex function f : P → R with f(pi) ≤ hi.

If P is convex, this is the lower convex hull of the three-

dimensional point set (pi, hi).

In general, the result is a piecewise linear function defined

on a pseudotriangulation of (P, S). (Interior vertices may be

missing.)

→ regular pseudotriangulations

[Aichholzer, Aurenhammer, Braß, Krasser 2003]
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The surface theorem

In a pseudotriangulation T of (P, S), a vertex is complete if

it is a corner in all pseudotriangulations to which it belongs.

Theorem. For any given set of heights hi for the complete

vertices, there is a unique piecewise linear function on the

pseudotriangulation with the complete vertices. The function

depends monotonically on the given heights.

In a triangulation, all vertices are complete.
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Proof of the surface theorem

Each incomplete vertex pi is a convex combination of the three

corners of the pseudotriangle in which its large angle lies:

pi = αpj + βpk + γpl, with α + β + γ = 1, α, β, γ > 0.

→ hi = αhj + βhk + γhl

The coefficient matrix of this mapping F : (h1, . . . , hn) 7→
(h′1, . . . , h

′
n) is a stochastic matrix. F is a monotone function,

and F (n) is a contraction.

→ there is always a unique solution.
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Flipping to optimality

Find an edge where convexity is violated, and flip it.

convexifying flips a planarizing flip

A flip has a non-local effect on the whole surface.

The surface moves down monotonically.
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Realization as a polytope

There exists a convex polytope whose vertices are in one-to-

one correspondence with the regular pseudotriangulations of a

poipogon, and whose edges represent flips.

For a simple polygon (without interior points), all pseudotri-

angulations are regular.
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5. Minimal pseudotriangulations

Minimal pseudotriangulations (w.r.t. ⊆) are not necessarily

minimum-cardinality pseudotriangulations.

A minimal pseudotrian-

gulation has at most

3n− 8 edges, and this is

tight for infinitely many

values of n.

[Rote, C. A. Wang, L. Wang, Xu 2003]
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Pseudotriangulations/
Geodesic Triangulations

Other applications:

• data structures for ray shooting [Chazelle, Edelsbrunner, Grigni,

Guibas, Hershberger, Sharir, and Snoeyink 1994] and visibility [Poc-

chiola and Vegter 1996]

• kinetic collision detection [Agarwal, Basch, Erickson, Guibas, Hersh-

berger, Zhang 1999–2001] [Kirkpatrick, Snoeyink, and Speckmann

2000] [Kirkpatrick & Speckmann 2002]

• art gallery problems [Pocchiola and Vegter 1996b], [Speck-

mann and Tóth 2001]
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Open Questions

1. Pseudotriangulations on a small grid. O(n)×O(n)?

2. Pseudotriangulations in 3-space

(a) locally convex functions

(b) the expansion cone
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