Polytopes and Plane Graphs with no Long Monotone Paths

Günter Rote
Freie Universität Berlin

joint work with

Adrian Dumitrescu and Csaba D. Tóth
Monotone Paths on Polytopes

Conjecture: Every 3D convex polytope with \(n \) vertices has a monotone path of length \(\Omega(\sqrt{n}) \) in some direction.

[Monotone Paths on Polytopes: Every 3D convex polytope with \(n \) vertices has a monotone path of length \(\Omega(\sqrt{n}) \) in some direction.]

\[\langle \mathbf{u}, p_1 \rangle < \langle \mathbf{u}, p_2 \rangle < \langle \mathbf{u}, p_3 \rangle < \cdots \]

THEOREM (2012-02-28). There is a family of triangulated polytopes with \(n \) vertices, where the longest monotone path has length \(O(\log n) \).

(Motivation: Partial least-squares matching of point sets.)
Results on Polytopes

THEOREM (2012-02-28). There is a family of triangulated polytopes with n vertices, where the longest monotone path has length $O(\log n)$. (L.B.: $\Omega(\log n / \log \log n)$)

THEOREM (2011). There is a family of triangulated polytopes with n vertices and bounded degree d, where the longest monotone path has length $O(\log^2 n)$. (L.B.: $\Omega(\log n)$)

THEOREM (Chazelle, Edelsbrunner, Guibas 1989). Every polyhedral subdivision of the plane with n vertices and degree $\leq d$ contains a monotone path with $\geq \Omega(\log_d n + \log n / \log \log n)$ edges. This is tight.
The characteristic region of a path

\[\chi(P) = \text{the set of directions } (u, v, 1) \text{ for which } P \text{ or its inverse is a monotone path.} \]

= two intersections of half-planes
The $O(\log^2 n)$ construction

a hierarchical structure:
The basic building block Δ

<table>
<thead>
<tr>
<th>point</th>
<th>(x, y, z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>(0, 0, 0)</td>
</tr>
<tr>
<td>B, B'</td>
<td>(± 1, 1.5, 0)</td>
</tr>
<tr>
<td>C</td>
<td>(0, 1.4, 1)</td>
</tr>
<tr>
<td>U, U'</td>
<td>(± 0.1, 0.8, 0.55)</td>
</tr>
<tr>
<td>V, V'</td>
<td>(± 0.25, 0.6, 0.25)</td>
</tr>
<tr>
<td>W, W'</td>
<td>(± 0.25, 0.8, 0.39)</td>
</tr>
</tbody>
</table>
The characteristic region of Δ

- start in A, B, or B'
- visit at least two vertices of UVW and at least two vertices of $U'V'W'$ (in either order)
- end in A, B, or B'
Placing the subcells
Placing the subcells
Inductive construction

Characteristic regions: • lie in $|v| \leq 2|u| + 1/2$
• have no triple intersections
• pairwise intersections lie within $\leq R = 2.5$ of the origin
Affine Transformations

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} \varepsilon \cdot x \\ y \\ \varepsilon \cdot z \end{pmatrix}$$

squeeze

$$\begin{pmatrix} u \\ v \end{pmatrix} \mapsto \begin{pmatrix} u \\ \varepsilon \cdot v \end{pmatrix}$$

scale

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \varepsilon \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

turn
Affine Transformations

\[
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \mapsto \begin{pmatrix}
x \\
y \\
\varepsilon \cdot z
\end{pmatrix}
\]

\[
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} \mapsto \begin{pmatrix}
x \\
y \\
z + ax + by
\end{pmatrix}
\]

\text{turn}

\text{squash}

\text{tilt}

\text{push}
Affine Transformations

\begin{align*}
\begin{pmatrix} x \\ y \\ z \end{pmatrix} & \mapsto \begin{pmatrix} x \\ y \\ \varepsilon \cdot z \end{pmatrix} \\
\begin{pmatrix} x \\ y \\ z \end{pmatrix} & \mapsto \begin{pmatrix} x \\ y \\ z + ax + by \end{pmatrix}
\end{align*}

squash

tilt

push
The visited nodes

A monotone path P in direction c can visit both children of a node Δ only if

- c lies in $\chi(\Delta)$, or
- P starts or ends inside Δ.

- start in A, B, or B'
- visit at least two vertices of UVW and at least two vertices of $U'V'W'$ (in either order)
- end in A, B, or B'
The visited nodes

A monotone path P in direction c can visit both children of a node Δ only if

- c lies in $\chi(\Delta)$, or
- P starts or ends inside Δ.

c can lie in at most two characteristic regions.
The visited nodes

A monotone path P in direction c can visit both children of a node Δ only if

- c lies in $\chi(\Delta)$, or
- P starts or ends inside Δ.

c can lie in at most two characteristic regions.
The visited nodes

A monotone path P in direction c can visit both children of a node Δ only if

- c lies in $\chi(\Delta)$, or
- P starts or ends inside Δ.

c can lie in at most two characteristic regions.

$2k$ paths of length k
The visited nodes

A monotone path P in direction c can visit both children of a node Δ only if

- c lies in $\chi(\Delta)$, or
- P starts or ends inside Δ.

c can lie in at most two characteristic regions.

$2k$ paths of length k

$\rightarrow O(k^2)$ nodes

$\rightarrow O(k^2) = O(\log^2 n)$ vertices
The Construction for $O(\log n)$
Results on Convex Planar Subdivisions

THEOREM. Let v be a vertex in a convex subdivision of the plane with n vertices and degree $\leq d$. There is path starting in v with $\geq \Omega(\log_d n)$ edges that is monotone in some direction. (This is best possible; Chazelle, Edelsbrunner, Guibas 1989.)

THEOREM. Let G be a convex subdivision of the plane with n vertices and k unbounded faces. Then G contains a path with $\geq \Omega(\log \frac{n}{k} / \log \log \frac{n}{k})$ edges that is monotone in some direction. This bound is best possible.

THEOREM (Chazelle, Edelsbrunner, Guibas 1989). Every polyhedral subdivision of the plane with n vertices and degree $\leq d$ contains a monotone path with $\geq \Omega(\log_d n + \log n / \log \log n)$ edges. This is tight.
Polyhedral Subdivisions

A *polyhedral subdivision* is a projection of a convex piecewise linear surface.
Polyhedral Subdivisions

A *polyhedral subdivision* is a projection of a convex piecewise linear surface.
Polyhedral Subdivisions

A *polyhedral subdivision* is a projection of a convex piecewise linear surface.
Polyhedral Subdivisions

A *polyhedral subdivision* is a projection of a convex piecewise linear surface.
THEOREM. Let v be a vertex in a convex subdivision of the plane with n vertices and degree $\leq d$. There is path starting in v with $\geq \Omega(\log_d n)$ edges that is monotone in some direction.
THEOREM. Let \(v \) be a vertex in a convex subdivision of the plane with \(n \) vertices and degree \(\leq d \). There is a path starting in \(v \) with \(\Omega(\log_d n) \) edges that is monotone in some direction.

\[
R(\varphi) := \text{the rightmost monotone path in direction } \varphi
\]
THEOREM. Let v be a vertex in a convex subdivision of the plane with n vertices and degree $\leq d$. There is path starting in v with $\geq \Omega(\log_d n)$ edges that is monotone in some direction.

$R(\varphi) :=$ the rightmost monotone path in direction φ
THEOREM. Let v be a vertex in a convex subdivision of the plane with n vertices and degree $\leq d$. There is a path starting in v with $\geq \Omega(\log_d n)$ edges that is monotone in some direction.

$R(\varphi) :=$ the rightmost monotone path in direction φ.
THEOREM. Let v be a vertex in a convex subdivision of the plane with n vertices and degree $\leq d$. There is path starting in v with $\geq \Omega(\log_d n)$ edges that is monotone in some direction.

$R(\varphi) :=$ the rightmost monotone path in direction φ.

- $R(\varphi)$ is still monotone in direction φ'.
THEOREM. Let \(v \) be a vertex in a convex subdivision of the plane with \(n \) vertices and degree \(\leq d \). There is a path starting in \(v \) with \(\geq \Omega(\log_d n) \) edges that is monotone in some direction.

\[R(\varphi) := \text{the rightmost monotone path in direction } \varphi \]

- \(R(\varphi) \) is still monotone in direction \(\varphi' \).

- The region between \(R(\varphi) \) and \(R(\varphi') \) can be connected to \(v \) by monotone paths (in direction \(\varphi' \)).
Monotone Paths in Convex Subdivisions

THEOREM. Let v be a vertex in a convex subdivision of the plane with n vertices and degree $\leq d$. There is path starting in v with $\Omega(\log_d n)$ edges that is monotone in some direction.

- $R(\varphi)$ is the rightmost monotone path in direction φ.
- $R(\varphi)$ is still monotone in direction φ'.
- The region between $R(\varphi)$ and $R(\varphi')$ can be connected to v by monotone paths (in direction φ').

THEOREM. Let v be a vertex in a convex subdivision of the plane with n vertices and degree $\leq d$. There is path starting in v with $\Omega(\log_d n)$ edges that is monotone in some direction.
THEOREM. Let v be a vertex in a convex subdivision of the plane with n vertices and degree $\leq d$. There is path starting in v with $\geq \Omega(\log_d n)$ edges that is monotone in some direction.

$R(\varphi) :=$ the rightmost monotone path in direction φ

- $R(\varphi)$ is still monotone in direction φ'.

- The region between $R(\varphi)$ and $R(\varphi')$ can be connected to v by monotone paths (in direction φ').
THEOREM. Let \(v \) be a vertex in a convex subdivision of the plane with \(n \) vertices and degree \(\leq d \). There is path starting in \(v \) with \(\geq \Omega(\log_d n) \) edges that is monotone in some direction.

\(R(\varphi) := \) the rightmost monotone path in direction \(\varphi \)

- \(R(\varphi) \) is still monotone in direction \(\varphi' \).

- The region between \(R(\varphi) \) and \(R(\varphi') \) can be connected to \(v \) by monotone paths (in direction \(\varphi' \)).
Monotone Paths in Convex Subdivisions

- The region between \(R(\varphi) \) and \(R(\varphi') \) can be connected to \(v \) by monotone paths (in direction \(\varphi' \)).

\[
R(\varphi) := \text{the rightmost monotone path in direction } \varphi
\]

\(\rightarrow \) a directed graph in which \(v \) can reach every vertex by a monotone path.

\(R(\varphi') \)

\(R(\varphi'') \)

\(R(\varphi''') \)
Monotone Paths in Convex Subdivisions

$R(\varphi) :=$ the rightmost monotone path in direction φ

- $R(\varphi)$ is still monotone in direction φ'.

- The region between $R(\varphi)$ and $R(\varphi')$ can be connected to v by monotone paths (in direction φ').
 → a directed graph in which v can reach every vertex by a monotone path.

- $\text{degree} \leq d \implies \text{longest path} \geq \log_d n$. QED
Degenerate Situations

Faces are not strictly convex.

Not every vertex can be reached by a strictly monotone path.
Degenerate Situations

Faces are not strictly convex.

Not every vertex can be reached by a strictly monotone path.

Weakly monotone paths work.
Tightness

THEOREM. Every convex subdivision of the plane with n vertices and degree $\leq d$ contains a monotone path with $\geq \Omega(\log_d n)$ edges.

For $d \approx n$, this is tight, even for triangulations.
(The longest monotone path is bounded by a constant.)
Tightness

THEOREM. Every convex subdivision of the plane with \(n \) vertices and degree \(\leq d \) contains a monotone path with \(\geq \Omega(\log_d n) \) edges.

For \(d \approx n \), this is tight, even for triangulations.

(The longest monotone path is bounded by a constant.)
Tightness

THEOREM. Every convex subdivision of the plane with \(n \) vertices and degree \(\leq d \) contains a monotone path with \(\geq \Omega(\log_d n) \) edges.

For \(d \approx n \), this is tight, even for triangulations.

(The longest monotone path is bounded by a constant.)

8 edges.

What happens if the number of unbounded edges is bounded by a constant (say, 3)?
Few Unbounded Faces

THEOREM. Let G be a convex subdivision of the plane with n vertices and k unbounded faces. Then G contains a path with $\geq \Omega(\log \frac{n}{k} / \log \log \frac{n}{k})$ edges that is monotone in some direction. This bound is best possible.
Few Unbounded Faces

THEOREM. Let G be a convex subdivision of the plane with n vertices and k unbounded faces. Then G contains a path with $\geq \Omega(\log \frac{n}{k} / \log \log \frac{n}{k})$ edges that is monotone in some direction.

This bound is best possible.

Upper-bound construction for k constant. $m \colon= 2 \log n / \log \log n$, $m^m > n$.

Characteristic region χ: can follow the zigzag
Few Unbounded Faces

THEOREM. Let G be a convex subdivision of the plane with n vertices and k unbounded faces. Then G contains a path with $\geq \Omega(\log \frac{n}{k} / \log \log \frac{n}{k})$ edges that is monotone in *some* direction.

This bound is best possible.

Upper-bound construction for k constant.

$m := 2 \log n / \log \log n$, $m^m > n$.

Characteristic region χ: can follow the zigzag m levels of fanout m.

Longest path $\leq m + m$.
Monotone Face Chains

THEOREM (Chazelle, Edelsbrunner, Guibas 1989). Every polyhedral subdivision of the plane with n vertices and degree $\leq d$ contains a monotone path with $\geq \Omega(\log_d n + \log n / \log \log n)$ edges. This is tight.

(by duality)

THEOREM. Every polyhedral subdivision of the plane with n vertices and face degree $\leq d$ contains a monotone face sequence with $\geq \Omega(\log_d n + \log n / \log \log n)$ faces. This is tight. The bound holds even for convex subdivisions.
Monotone Face Chains

THEOREM (Chazelle, Edelsbrunner, Guibas 1989). Every polyhedral subdivision of the plane with \(n \) vertices and degree \(\leq d \) contains a monotone path with \(\geq \Omega(\log_d n + \log n / \log \log n) \) edges. This is tight.

(by duality)

THEOREM. Every polyhedral subdivision of the plane with \(n \) vertices and face degree \(\leq d \) contains a monotone face sequence with \(\geq \Omega(\log_d n + \log n / \log \log n) \) faces. This is tight. The bound holds even for convex subdivisions.
Monotone Face Chains