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Freie Universität Berlin

Lattice Polygons: Optimization and Counting
Günter Rote

k = 75Minimum-area lattice k-gon [OEIS, A070911]

Bárány and Tokushige (2003):

area ∼ Ck3 as k → ∞, C algebraic.
C = 0.0185067 . . . (conjectured)

area = 7307.5

107

90

(unique up to unimodular transformations)

area = 14

k=10
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Unimodular transformations

x 7→ Mx+ t, t ∈ Zd, M ∈ Zd×d, detM = ±1. =⇒ M−1 ∈ Zd×d

Lattice-preserving affine transformation, bijection on Zd×d

M =

(
d f
e g

)
=

(
1 −1
−1 2

)
(
f
g

)
(
d
e

)
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Lattice-preserving affine transformation, bijection on Zd×d

M =

(
d f
e g

)
=

(
1 −1
−1 2

)

M =

(
1 0
1 −1

)
, detM = −1(

f
g

)
(
d
e
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Smooth polygons

(a, b) =


(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (1,9)

(2,2), (2,3), (2,4), (2,5), (2,6), (2,7), (2,8)
(3,3), (3,4), (3,5), (3,6), (3,7)

(4,4), (4,5), (4,6)
(5,5)

There are 41 equivalence classes of smooth lattice polygons with at most 12 lattice points.

k = #vertices 3 4 5 6 7 8
polygons 3 30 3 4 0 1

a

b

9 12 9 12 12

3
10

8 11 116

8 10 12
10

12

[ Tristram Bogart, Christian Haase, Milena Hering,
Benjamin Lorenz, Benjamin Nill, Andreas Paffenholz,
Günter Rote, Francisco Santos, Hal Schenck 2015 ]

“Finitely many smooth d-polytopes with n lattice points” (2015)
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Smooth

smooth polygons: Consecutive edge directions span a
parallelogram of unit area.

[smooth d-polytopes: All normal cones are unimodular:
They are spanned (using nonnegative combinations) by
d integer vectors (extreme rays) that generate
(through integer combinations) all integer vectors.]
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Smooth

smooth polygons: Consecutive edge directions span a
parallelogram of unit area.

[smooth d-polytopes: All normal cones are unimodular:
They are spanned (using nonnegative combinations) by
d integer vectors (extreme rays) that generate
(through integer combinations) all integer vectors.]

not smooth
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Census of lattice polygons

V A366409 A187015
1 1 1
2 1 2
3 1 3
4 3 7
5 2 6
6 4 13
7 4 13
8 6 27
9 5 26
10 7 44
...

...
...

196 66290 3413697413
197 65105 3595811439
198 69682 3791477384
199 76718 3992454863
200 78918 4208020815

...
...

297 1687247
298 1779013
299 1833242
300 1842802

entries in the On-Line Encyclopedia of Integer Sequences (OEIS)

Gabriele Balletti. Enumeration of lattice polytopes by their volume. (2021).

For fixed d and V, there are finitely many d-dimensional
lattice polytopes with volume V, up to unimodular equivalence.

[Jeff Lagarias, Günter Ziegler 1991]

all
# lattice polytopes with area V/2 [Balletti 2021 up to V = 50; Rote 2023]

# smooth lattice polygons with area V/2 [Rote 2023]

https://oeis.org/A187015
https://oeis.org/A366409


Günter Rote, Freie Universität Berlin Lattice polygons: Optimization and counting Workshop on Computational Polyhedral Geometry @ CG Week 2025, Kanazawa, Japan, June 26, 2025

What to measure

k = 6 vertices

B = 2 additional points on the boundary

I = 2 interior lattice points

n = k +B + I = 10 lattice points in total

V/2 = (k +B)/2 + I − 1 = 5 = area/“volume” (Pick’s formula)

lattice width, lösbar?`
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What to measure

k = 6 vertices

B = 2 additional points on the boundary

I = 2 interior lattice points

n = k +B + I = 10 lattice points in total

V/2 = (k +B)/2 + I − 1 = 5 = area/“volume” (Pick’s formula)

OEIS A322343: “Number of equivalence classes of convex lattice polygons of genus n.”

“genus” = I = number of interior points

https://oeis.org/A322343
lattice width, lösbar?`
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What to measure

k = 6 vertices

B = 2 additional points on the boundary

I = 2 interior lattice points

n = k +B + I = 10 lattice points in total

V/2 = (k +B)/2 + I − 1 = 5 = area/“volume” (Pick’s formula)

OEIS A322343: “Number of equivalence classes of convex lattice polygons of genus n.”

“genus” = I = number of interior points

# Every row contains five numbers

# V, k, B, I, N

# where N is the number of lattice polygons with

# k vertices,

# B lattice points on edges,

# I interior lattice points,

# and area V/2

# among all lattice polygons with area at most 200/2.

1 3 0 0 1

2 3 1 0 1

2 4 0 0 1

3 3 0 1 1

3 3 2 0 1

3 4 1 0 1
...

200 16 8 89 43

200 17 1 92 4088

200 17 3 91 646

200 17 5 90 11

200 18 0 92 26

200 18 2 91 2

https://oeis.org/A322343
lattice width, lösbar?`
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Quantitative (polygonal) Helly numbers for the integer lattice Z2

m g(Z2,m)
0 4
1 6
2 6
3 6
4 8
5 7
6 8
7 9
8 8
9 8

m g(Z2,m)
10 10
11 9
12 9
13 10
14 10
15 10
16 10
17 11
18 11
19 12

m g(Z2,m)
20 12
21 12
22 11
23 11
24 12
25 12
26 12
27 13
28 12
29 12

· · ·

m g(Z2,m)
191 23
192 23
193 23
194 23
195 23
196 23
197 23
198 23
199 24
200 23

m = B + I

OEIS A298562: g(Z2,m) = the maximum k such that there exists a lattice polygon with k vertices
containing exactly m+ k lattice points (in its interior or on the boundary)

G. Averkov, B. González Merino, I. Paschke, M. Schymura, and S. Weltge,
Tight bounds on discrete quantitative Helly numbers (2017). for m ≤ 30.

https://oeis.org/A298562
https://doi.org/10.1016/j.aam.2017.04.003
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Dynamic programming in two dimensions

Counting convex polygons in planar point sets.
Joseph Mitchell, Günter Rote, Gopalakrishnan Sundaram, and Gerhard Woeginger (1995)

lowest point
(
0
0

)

P

P+

O

Finding minimum area k-gons. David Eppstein, Mark Overmars, Günter Rote, and Gerhard Woeginger (1992)

O(kN3) time, O(kN2) space
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Dynamic programming in two dimensions

Counting convex polygons in planar point sets.
Joseph Mitchell, Günter Rote, Gopalakrishnan Sundaram, and Gerhard Woeginger (1995)

lowest point
(
0
0

)

P

P+

For each PP+, consider all lattice polygons ending in PP+.
Store statistics about the quantities that you care for:

• For each k, the smallest area
of a convex k-gon O . . . PP+

• For each V , the number of convex
polygons O . . . PP+ of area V

O

Finding minimum area k-gons. David Eppstein, Mark Overmars, Günter Rote, and Gerhard Woeginger (1992)

O(kN3) time, O(kN2) space
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Dynamic programming in two dimensions

Counting convex polygons in planar point sets.
Joseph Mitchell, Günter Rote, Gopalakrishnan Sundaram, and Gerhard Woeginger (1995)

lowest point
(
0
0

)

P

P+

For each PP+, consider all lattice polygons ending in PP+.
Store statistics about the quantities that you care for:

• For each k, the smallest area
of a convex k-gon O . . . PP+

• For each V , the number of convex
polygons O . . . PP+ of area V

P−

O

Finding minimum area k-gons. David Eppstein, Mark Overmars, Günter Rote, and Gerhard Woeginger (1992)

O(kN3) time, O(kN2) space

. . .. . .
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Normalize by horizontal shearings

P

P+

(
x

y

)
7→

(
x± y

y

)

x

y
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Normalize by horizontal shearings

P

P+

(
x

y

)
7→

(
x± y

y

)

x

y
0 ≤ x < y
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Upper bound for the height of smallest k-gons

Lemma:
• A convex lattice polygon P of lattice width w has area at least w2/3.
• [ If k is even, P can be assumed to be centrally symmetric, and then it has area at least w2/2. ]

Lattice width w → A unimodular transformation brings P into the strip 0 ≤ y ≤ w.

If a k-gon of area V is found:
→ terminate as soon as y >

√
3V

w

x

y
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Upper bound for the height of smallest k-gons

Lemma:
• A convex lattice polygon P of lattice width w has area at least w2/3.
• [ If k is even, P can be assumed to be centrally symmetric, and then it has area at least w2/2. ]

Lattice width w → A unimodular transformation brings P into the strip 0 ≤ y ≤ w.

If a k-gon of area V is found:
→ terminate as soon as y >

√
3V

w

x

y not true for optimal 5-gons,
7-gons, and 11-gons
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Putting together the solution

kL kR

OPEN QUESTION:
Can we assume that |kL − kR| ≤ 1?
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Overcounting and Symmetries

1
2

3

45

6

7

1

2

34

5

6

7

1

23

4

5

6

7

12

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

67

1

2
3

4

56

7

1
7

6

54

3

2

1

7

65

4

3

2

1

76

5

4

3

2

17

6

5

4

3

2

1

7

6

5

4

3

2

1

7

6

5

4

32

1

7
6

5

43

2

Dihedral group D2k of order 2k: k “rotations” and k “reflections” g ∈ D2k

Burnside’s lemma:

#orbits =
1

|D2k|
∑

g∈D2k

#(polygons fixed by g)
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Overcounting and Symmetries

1
2

3

45

6

7

1

2

34

5

6

7

1

23

4

5

6

7

12

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

67

1

2
3

4

56

7

1
7

6

54

3

2

1

7

65

4

3

2

1

76

5

4

3

2

17

6

5

4

3

2

1

7

6

5

4

3

2

1

7

6

5

4

32

1

7
6

5

43

2

“Rotations” of order r:

M = S

(
cosα − sinα
sinα cosα

)
S−1

order r α tr M = 2 cosα ∈ Z
1 2π · 1 2

2 2π · 1
2 −2

3 2π · 1
3 , 2π · 2

3 −1

4 2π · 1
4 , 2π · 3

4 0

6 2π · 1
6 , 2π · 5

6 1

(
x
y

)
7→ M

(
x
y

)
+ t, M ∈ Z2×2, detM = +1, Mr = I

(cf. the crystallographic restriction)

1
6

1
4

1
3
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Overcounting and Symmetries

1
2

3

45

6

7

1

2

34

5

6

7

1

23

4

5

6

7

12

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

67

1

2
3

4

56

7

1
7

6

54

3

2

1

7

65

4

3

2

1

76

5

4

3

2

17

6

5

4

3

2

1

7

6

5

4

3

2

1

7

6

5

4

32

1

7
6

5

43

2

“Rotations” of order r:

M = S

(
cosα − sinα
sinα cosα

)
S−1

order r α tr M = 2 cosα ∈ Z
1 2π · 1 2

2 2π · 1
2 −2

3 2π · 1
3 , 2π · 2

3 −1

4 2π · 1
4 , 2π · 3

4 0

6 2π · 1
6 , 2π · 5

6 1

(
x
y

)
7→ M

(
x
y

)
+ t, M ∈ Z2×2, detM = +1, Mr = I

(cf. the crystallographic restriction)

identity

half-turn
(−1 0

0 −1

)
1
6

1
4

1
3
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Overcounting and Symmetries

order r α tr M = 2 cosα ∈ Z
1 2π · 1 2

2 2π · 1
2 −2

3 2π · 1
3 , 2π · 2

3 −1

4 2π · 1
4 , 2π · 3

4 0

6 2π · 1
6 , 2π · 5

6 1

identity

half-turn
(−1 0

0 −1

)
(
1
0

)

(
f
g

)

M
(
1
0

)
=

(
f
g

)
Can this map be iterated so that Mr = I?

M
P

P+
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Overcounting and Symmetries

order r α tr M = 2 cosα ∈ Z
1 2π · 1 2

2 2π · 1
2 −2

3 2π · 1
3 , 2π · 2

3 −1

4 2π · 1
4 , 2π · 3

4 0

6 2π · 1
6 , 2π · 5

6 1

identity

half-turn
(−1 0

0 −1

)
(
1
0

)

(
f
g

)

M
(
1
0

)
=

(
f
g

)
Can this map be iterated so that Mr = I?

M

M

P

P+
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Overcounting and Symmetries

order r α tr M = 2 cosα ∈ Z
1 2π · 1 2

2 2π · 1
2 −2

3 2π · 1
3 , 2π · 2

3 −1

4 2π · 1
4 , 2π · 3

4 0

6 2π · 1
6 , 2π · 5

6 1

identity

half-turn
(−1 0

0 −1

)
(
1
0

)

(
f
g

)

M
(
1
0

)
=

(
f
g

)
Can this map be iterated so that Mr = I?

M

M
M

P

P+
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Overcounting and Symmetries

order r α tr M = 2 cosα ∈ Z
1 2π · 1 2

2 2π · 1
2 −2

3 2π · 1
3 , 2π · 2

3 −1

4 2π · 1
4 , 2π · 3

4 0

6 2π · 1
6 , 2π · 5

6 1

identity

half-turn
(−1 0

0 −1

)
(
1
0

)

(
f
g

)

M
(
1
0

)
=

(
f
g

)
Can this map be iterated so that Mr = I?

M

M
M

M =

(
f ·
g ·

)
P

P+



Günter Rote, Freie Universität Berlin Lattice polygons: Optimization and counting Workshop on Computational Polyhedral Geometry @ CG Week 2025, Kanazawa, Japan, June 26, 2025

Overcounting and Symmetries

order r α tr M = 2 cosα ∈ Z
1 2π · 1 2

2 2π · 1
2 −2

3 2π · 1
3 , 2π · 2

3 −1

4 2π · 1
4 , 2π · 3

4 0

6 2π · 1
6 , 2π · 5

6 1

identity

half-turn
(−1 0

0 −1

)
(
1
0

)

(
f
g

)

M
(
1
0

)
=

(
f
g

)
Can this map be iterated so that Mr = I?

M

M
M

M =

(
f ·
g ·

)
tr M = −1, 0,+1 (three possibilities)

P

P+
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Overcounting and Symmetries

order r α tr M = 2 cosα ∈ Z
1 2π · 1 2

2 2π · 1
2 −2

3 2π · 1
3 , 2π · 2

3 −1

4 2π · 1
4 , 2π · 3

4 0

6 2π · 1
6 , 2π · 5

6 1

identity

half-turn
(−1 0

0 −1

)
(
1
0

)

(
f
g

)

M
(
1
0

)
=

(
f
g

)
Can this map be iterated so that Mr = I?

M

M
M

M =

(
f ·
g ·

)
tr M = −1, 0,+1 (three possibilities)

detM = 1, M ∈ Z2×2!

P

P+
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Overcounting and Symmetries

“Reflections”:
(
x
y

)
7→

(−x
y

)
or

(
x
y

)
7→

(
y−x
y

)
mirror: vertical or slope 2
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Overcounting and Symmetries

“Reflections”:
(
x
y

)
7→

(−x
y

)
or

(
x
y

)
7→

(
y−x
y

)
mirror: vertical or slope 2
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Generate a RANDOM lattice polygon with given parameters

1

1 1
1

11
2 3

43

3
4

5

98

24

nodes ≡ subproblems ≡ edges PP+

source-sink paths ≡ solutions ≡ polygons

Abstract model as a directed acyclic graph:
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Generate a RANDOM lattice polygon with given parameters

1

1 1
1

11
2 3

43

3
4

5

98

24

nodes ≡ subproblems ≡ edges PP+

source-sink paths ≡ solutions ≡ polygons

Pick a random number r between 1 and 24 and find the r-th solution.

Abstract model as a directed acyclic graph:



Günter Rote, Freie Universität Berlin Lattice polygons: Optimization and counting Workshop on Computational Polyhedral Geometry @ CG Week 2025, Kanazawa, Japan, June 26, 2025

Generate a RANDOM lattice polygon with given parameters
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24

nodes ≡ subproblems ≡ edges PP+

source-sink paths ≡ solutions ≡ polygons

Pick a random number r between 1 and 24 and find the r-th solution.

r = 16

Abstract model as a directed acyclic graph:
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Generate a RANDOM lattice polygon with given parameters

1
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43

3
4

5

98

24

nodes ≡ subproblems ≡ edges PP+

source-sink paths ≡ solutions ≡ polygons

Pick a random number r between 1 and 24 and find the r-th solution.

r = 16 = 3 + 8 + 5

Abstract model as a directed acyclic graph:
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Generate a RANDOM lattice polygon with given parameters

1

1 1
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11
2 3

43

3
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98

24

nodes ≡ subproblems ≡ edges PP+

source-sink paths ≡ solutions ≡ polygons

Pick a random number r between 1 and 24 and find the r-th solution.

r = 16 = 3 + 8 + 5

Find the 5-th solution leading to this node.

Abstract model as a directed acyclic graph:
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Taking the lattice width into account?

OEIS A322348: Maximal lattice width of a convex lattice polygon containing I lattice points in its
interior (“of genus I”).

P+

Q+

https://oeis.org/A322348
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