Lattice Polygons: Optimization and Counting Günter Rote Freie Universität Berlin

Minimum-area lattice k-gon [OEIS, A070911]

Bárány and Tokushige (2003): area $\sim Ck^3$ as $k \to \infty$, C algebraic. C = 0.0185067... (conjectured)

Unimodular transformations

$x \vdash$	\rightarrow ,	M:	<i>x</i> -	+t	' 1	t	\in	\mathbb{Z}^d ,	Λ	$I \in$	\mathbb{Z}	$d \times$	d,	det	M		: ±	1.		\Rightarrow	M	-1	\in	\mathbb{Z}^{a}	$l \times d$		
																	La	tti	ce-	pre	eser	rvir	ŋg	affi	ne	tra	ans
• •			•	•	•	•	•	٠		•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•
• •			•	•	•	•	Q	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •			•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •			0	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •				•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
• •				•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•				0		-0	•	•			•	•		•	•		•		•	•	•	•			•		
		<u> </u>				_	-0	•	•		9			•	•	•	•	•	•	•	•	•	•	•	•	•	
•			•	•	•	•	•	•	•						•		•	•	•	•	•						
• •	∖		•	•	•	•	•	•	• ($\binom{f}{a}$		•	Q		•	•	•	•	•	•	•						
• •			•	•	•	•	•	•	•	.' '			•		•	•	•	•	•	•	•						
• •			•	•	•	•	•	•		• ($\begin{pmatrix} a \\ e \end{pmatrix}$				•	•	•	٠	٠	•	•						
• •				•	•	•		•	•	•	•	•	•		9	•	•	٠	٠	•	•						
• •			•	•	•	•	•	٠	•	•	•	•	•	•		•	•	•	•	•	•		7	π	(d	J
• •			•	•	•	•	•	•	•	•	•	•	•	•	•	6	•	•	•	•	•		Λ	/1 =	= (e	, (
• •			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•					\	Ē
• •				• F Rod	•	•	•	•	•	•	•				•			•	•	•	•				\A/orleak	00.00	Composi

nsformation, bijection on $\mathbb{Z}^{d imes d}$

Unimodular transformations

Smooth polygons

"Finitely many smooth d-polytopes with n lattice points" (2015)

There are 41 equivalence classes of smooth lattice polygons with at most 12 lattice points.

$$k = \#$$
vert
polyg

[Tristram Bogart, Christian Haase, Milena Hering, Benjamin Lorenz, Benjamin Nill, Andreas Paffenholz, Günter Rote, Francisco Santos, Hal Schenck 2015]

 $\frac{a}{b} \qquad (a,b) = \begin{cases} (1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (1,9) \\ (2,2), (2,3), (2,4), (2,5), (2,6), (2,7), (2,8) \\ (3,3), (3,4), (3,5), (3,6), (3,7) \\ (4,4), (4,5), (4,6) \end{cases}$ b(5,5)

tices	3	4	5	6	7	8	
gons	3	30	3	4	0	1	-

smooth polygons: Consecutive edge directions span a parallelogram of unit area.

smooth polygons: Consecutive edge directions span a parallelogram of unit area.

smooth polygons: Consecutive edge directions span a parallelogram of unit area.

smooth polygons: Consecutive edge directions span a parallelogram of unit area.

smooth polygons: Consecutive edge directions span a parallelogram of unit area.

smooth polygons: Consecutive edge directions span a parallelogram of unit area.

smooth polygons: Consecutive edge directions span a parallelogram of unit area.

smooth polygons: Consecutive edge directions span a parallelogram of unit area.

smooth polygons: Consecutive edge directions span a parallelogram of unit area.

[*smooth d*-polytopes: All normal cones are unimodular: They are spanned (using nonnegative combinations) by d integer vectors (extreme rays) that generate (through integer combinations) all integer vectors.]

not smooth

Census of lattice polygons

V	A366409	A187015 ┥	entries in the On-Line Encyclopedia of Integ
1	1	1	
2	1	2	
3	1	3	
4	3	7	
5	2	6	
6	4	13	
7	4	13	
8	6	27	For fixed d and V there are finitely m
9	5	26	TO INCLUE and v , there are <u>initially in</u>
10	7	44	lattice polytopes with volume V , up t
:			[Jeff
196	66290	3413697413	
197	65105	3595811439	
198	69682	3791477384	
199	76718	3992454863	
200	78918	4208020815 (all
÷			Hattice polytones with area $V/2$ [Ralletti 20]
297	1687247	π	
298	1779013	G	abriele Balletti. Enumeration of lattice polyto
299	1833242		
300	1842802 •) lattice polygons with area $V/2$ [Rote 2023]
	I		

Lattice polygons: Optimization and counting

ger Sequences (OEIS)

<u>many</u> d-dimensional to unimodular equivalence. Lagarias, Günter Ziegler 1991]

21 up to V = 50; Rote 2023] opes by their volume. (2021).

What to measure

- k = 6 vertices
- B = 2 additional points on the *boundary*
- I = 2 interior lattice points
- n = k + B + I = 10 lattice points in total
- V/2 = (k+B)/2 + I 1 = 5 = area/"volume" (Pick's formula)

What to measure

k=6 vertices

B = 2 additional points on the *boundary*

I = 2 interior lattice points

n = k + B + I = 10 lattice points in total

V/2 = (k+B)/2 + I - 1 = 5 = area/``volume'' (Pick's formula)

OEIS A322343: "Number of equivalence classes of convex lattice polygons of genus n." "genus" = I = number of interior points

What to measure

\wedge	# Every row contains five nu
	# V, k, B, I, N
$\kappa = 0$	# where N is the number of l
B =	# k vertices,
	# B lattice points on edge
I = 2	# I interior lattice point
	# and area V/2
n = k	# among all lattice polygons
	1 3 0 0 1
V/2 =	23101
	24001
	3 3 0 1 1
OEIS A322343: "Number of equivalence c	3 3 2 0 1
""" genus" $= I =$ number of interior points	34101
	:
	200 16 8 89 43
	200 17 1 92 4088
	200 17 3 91 646
	200 17 5 91 040 200 17 5 90 11
	200 18 0 92 26

Günter Rote, Freie Universität Berlin

Lattice polygons: Optimizatio

umbers

attice polygons with

- es,
- ,s,

with area at most 200/2.

Quantitative (polygonal) Helly numbers for the integer lattice \mathbb{Z}^2

OEIS A298562: $g(\mathbb{Z}^2, m) =$ the maximum k such that there exists a lattice polygon with k vertices containing exactly m + k lattice points (in its interior or on the boundary)

G. Averkov, B. González Merino, I. Paschke, M. Schymura, and S. Weltge, Tight bounds on discrete quantitative Helly numbers (2017). for $m \leq 30$.

m = B + I	m	$g(\mathbb{Z}^2,m)$	m	$g(\mathbb{Z}^2,m)$	m	$g(\mathbb{Z}^2,m)$
	0	4	10	10	20	12
	1	6	11	9	21	12
	2	6	12	9	22	11
	3	6	13	10	23	11
	4	8	14	10	24	12
	5	7	15	10	25	12
	6	8	16	10	26	12
	7	9	17	11	27	13
	8	8	18	11	28	12
	9	8	19	12	29	12

• • •

m	$g(\mathbb{Z}^2,m)$
191	23
192	23
193	23
194	23
195	23
196	23
197	23
198	23
199	24
200	23

Dynamic programming in two dimensions

Finding *minimum* area k-gons. David Eppstein, Mark Overmars, Günter Rote, and Gerhard Woeginger (1992) *Counting* convex polygons in planar point sets. Joseph Mitchell, Günter Rote, Gopalakrishnan Sundaram, and Gerhard Woeginger (1995)

Günter Rote, Freie Universität Berlin

Lattice polygons: Optimization and counting

$O(kN^3)$ time, $O(kN^2)$ space

Dynamic programming in two dimensions

Finding *minimum* area k-gons. David Eppstein, Mark Overmars, Günter Rote, and Gerhard Woeginger (1992)

Counting convex polygons in planar point sets.

Joseph Mitchell, Günter Rote, Gopalakrishnan Sundaram, and Gerhard Woeginger (1995)

Günter Rote, Freie Universität Berlin

Lattice polygons: Optimization and counting

$O(kN^3)$ time, $O(kN^2)$ space

Dynamic programming in two dimensions

Finding *minimum* area k-gons. David Eppstein, Mark Overmars, Günter Rote, and Gerhard Woeginger (1992) *Counting* convex polygons in planar point sets.

Joseph Mitchell, Günter Rote, Gopalakrishnan Sundaram, and Gerhard Woeginger (1995)

Günter Rote, Freie Universität Berlin

Lattice polygons: Optimization and counting

$O(kN^3)$ time, $O(kN^2)$ space

Normalize by horizontal shearings

Normalize by horizontal shearings

Upper bound for the height of smallest k-gons

Lemma:

- A convex lattice polygon P of lattice width w has area at least $w^2/3$.
- [If k is even, P can be assumed to be centrally symmetric, and then it has area at least $w^2/2$.]

Lattice width $w \to A$ unimodular transformation brings P into the strip $0 \le y \le w$.

If a k-gon of area V is found: \rightarrow terminate as soon as $y > \sqrt{3V}$

Upper bound for the height of smallest k-gons

Lemma:

- A convex lattice polygon P of lattice width w has area at least $w^2/3$.
- [If k is even, P can be assumed to be centrally symmetric, and then it has area at least $w^2/2$.]

Lattice width $w \to A$ unimodular transformation brings P into the strip $0 \le y \le w$.

If a k-gon of area V is found: \rightarrow terminate as soon as $y > \sqrt{3V}$

Putting together the solution

OPEN QUESTION: Can we assume that $|k_L - k_R| \leq 1$?

Dihedral group D_{2k} of order 2k: k "rotations" and k "reflections" $g \in D_{2k}$ Burnside's lemma:

$$\#\text{orbits} = \frac{1}{|D_{2k}|} \sum_{g \in D_{2k}} \#(\text{polygons fixed by } g)$$

Günter Rote, Freie Universität Berlin

Lattice polygons: Optimization and counting

	$\operatorname{tr} M = 2\cos\alpha \in \mathbb{Z}$
	2
	-2
$2\pi \cdot \frac{2}{3}$	—1
$2\pi \cdot \frac{3}{4}$	0
$2\pi \cdot \frac{5}{6}$	1

Günter Rote, Freie Universität Berlin

Lattice polygons: Optimization and counting

	$\operatorname{tr} M = 2\cos\alpha \in \mathbb{Z}$
	2 identity
	-2 half-turn $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
$2\pi \cdot \frac{2}{3}$	-1
$2\pi \cdot \frac{3}{4}$	0
$2\pi \cdot \frac{5}{6}$	1

$$M {1 \choose 0} = {f \choose g}$$
 Can this map be iterated so that $M^r = I$?

order r	α	$\operatorname{tr} M = 2\cos\alpha \in \mathbb{Z}$
1	$2\pi \cdot 1$	2 identity
2	$2\pi \cdot \frac{1}{2}$	-2 half-turn $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
3	$2\pi \cdot \frac{1}{3}, \ 2\pi \cdot \frac{2}{3}$	-1
4	$2\pi \cdot \frac{1}{4}, \ 2\pi \cdot \frac{3}{4}$	0
6	$2\pi \cdot \frac{1}{6}, \ 2\pi \cdot \frac{5}{6}$	1

$$M\binom{1}{0} = \binom{f}{g}$$

Can this map be iterated so that $M^r = I$?

order r	α	$\operatorname{tr} M = 2\cos\alpha \in \mathbb{Z}$
1	$2\pi \cdot 1$	2 identity
2	$2\pi \cdot \frac{1}{2}$	-2 half-turn $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
3	$2\pi \cdot \frac{1}{3}, \ 2\pi \cdot \frac{2}{3}$	-1
4	$2\pi \cdot \frac{1}{4}, \ 2\pi \cdot \frac{3}{4}$	0
6	$2\pi \cdot \frac{1}{6}, \ 2\pi \cdot \frac{5}{6}$	1

$$M\binom{1}{0} = \binom{f}{g}$$

Can this map be iterated so that $M^r = I$?

order r	α	$\operatorname{tr} M = 2\cos\alpha \in \mathbb{Z}$
1	$2\pi \cdot 1$	2 identity
2	$2\pi \cdot \frac{1}{2}$	-2 half-turn $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
3	$2\pi \cdot \frac{1}{3}, \ 2\pi \cdot \frac{2}{3}$	-1
4	$2\pi \cdot \frac{1}{4}, \ 2\pi \cdot \frac{3}{4}$	0
6	$2\pi \cdot \frac{1}{6}, \ 2\pi \cdot \frac{5}{6}$	1

$$M\binom{1}{0} = \binom{f}{g}$$

Can this map be iterated so that $M^r = I$?

$$M = \begin{pmatrix} f & \cdot \\ g & \cdot \end{pmatrix}$$

order r	α	$\operatorname{tr} M = 2\cos\alpha \in \mathbb{Z}$
1	$2\pi \cdot 1$	2 identity
2	$2\pi \cdot \frac{1}{2}$	-2 half-turn $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
3	$2\pi \cdot \frac{1}{3}, \ 2\pi \cdot \frac{2}{3}$	-1
4	$2\pi \cdot \frac{1}{4}, \ 2\pi \cdot \frac{3}{4}$	0
6	$2\pi \cdot \frac{1}{6}, \ 2\pi \cdot \frac{5}{6}$	1

$$M\binom{1}{0} = \binom{f}{g}$$

Can this map be iterated so that $M^r = I$?

$$M = \begin{pmatrix} f \\ g \end{pmatrix} \quad \text{tr } M = -1, 0,$$

order r	α	$\operatorname{tr} M = 2\cos\alpha \in \mathbb{Z}$
1	$2\pi \cdot 1$	2 identity
2	$2\pi \cdot \frac{1}{2}$	-2 half-turn $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
3	$2\pi \cdot \frac{1}{3}, \ 2\pi \cdot \frac{2}{3}$	-1
4	$2\pi \cdot rac{1}{4}, \ 2\pi \cdot rac{3}{4}$	0
6	$2\pi \cdot \frac{1}{6}, \ 2\pi \cdot \frac{5}{6}$	1

,+1 (three possibilities)

$$M\binom{1}{0} = \binom{f}{g}$$

Can this map be iterated so that $M^r = I$?

$$M = \begin{pmatrix} f \\ g \\ g \end{pmatrix} \quad \text{tr } M = -1, 0,$$

order r	α	$\operatorname{tr} M = 2\cos\alpha \in \mathbb{Z}$
1	$2\pi \cdot 1$	2 identity
2	$2\pi \cdot \frac{1}{2}$	-2 half-turn $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$
3	$2\pi \cdot \frac{1}{3}, \ 2\pi \cdot \frac{2}{3}$	—1
4	$2\pi \cdot \frac{1}{4}, \ 2\pi \cdot \frac{3}{4}$	0
6	$2\pi \cdot \frac{1}{6}, \ 2\pi \cdot \frac{5}{6}$	1

$M \in \mathbb{Z}^{2 \times 2}!$

+1 (three possibilities)

Abstract model as a directed acyclic graph: nodes \equiv subproblems \equiv edges PP^+ source-sink paths \equiv solutions \equiv polygons

Abstract model as a directed acyclic graph: nodes \equiv subproblems \equiv edges PP^+ source-sink paths \equiv solutions \equiv polygons

Abstract model as a directed acyclic graph: nodes \equiv subproblems \equiv edges PP^+ source-sink paths \equiv solutions \equiv polygons

Abstract model as a directed acyclic graph: nodes \equiv subproblems \equiv edges PP^+ source-sink paths \equiv solutions \equiv polygons

Abstract model as a directed acyclic graph: nodes \equiv subproblems \equiv edges PP^+ source-sink paths \equiv solutions \equiv polygons

Taking the lattice width into account?

OEIS A322348: Maximal lattice width of a convex lattice polygon containing I lattice points in its interior ("of genus I").

