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Abstract

The subject of this paper are algorithms for measuring the similarity of patterns of line seg
in the plane, a standard problem in, e.g., computer vision, geographic information systems, et
precisely, we define feasible distance measures that reflect how close a given patternH is to some
part of a larger patternG. These distance measures are generalizations of the well-known F
distance for curves. We first give an efficient algorithm for the case thatH is a polygonal curve
andG is a geometric graph. Then, slightly relaxing the definition of distance measure, we g
algorithm for the general case where both,H andG, are geometric graphs.
 2003 Elsevier Inc. All rights reserved.

1. Introduction

Patterns consisting of line segments occur in many applications of a geometric n
like computer vision, geographic information systems, CAGD, etc. In many case
problem occurs to determine whether some given patternH is equal to or similar to som
part of a larger patternG. Here, for the case of patterns consisting of straight line segm
we will give feasible distance measures reflecting this similarity and being compati
paths on the pattern. Also, we will give efficient algorithms for computing these dista

As a first task we consider a given polygonal curve, and an embedded grap
line segment edges, and we wish to find a path in the graph (which then corres

✩ Preliminary versions of this paper was presented at the 14th Annual ACM–SIAM Symposium in Balt
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to a polygonal curve) such that the Fréchet distance between the curve and the
minimized. This is a partial matching variant. The problem in this form already has m
applications. The following one, for example, looked particularly appealing to us:
Global Positioning System (GPS) is a collection of satellites that provides world
positioning information. A specific position can be determined by using a GPS rec
Now consider a given roadmap, and a person travelling on some of the roads,
recording its positioning information using a GPS receiver. The roadmap can be mo
by a planar embedded graph, and the path the person travelled is represented by a s
of GPS positionsrecorded by the GPS receiver, which we connect by straight line segm
to form a polygonal curve. Since the GPS receiver usually introduces noise, the ca
curve will not exactly lie on the roadmap. The task is to identify those roads which
actually been travelled. This is a prerequisite for incrementally constructing roadmap
such GPS curves, which is especially interesting for roads such as hiking trails in a
which are not visible on aerial pictures. We present an algorithm solving this pro
in Section 2. It has been implemented, and even without specific optimizations i
surprisingly fast. In Section 3 we consider the case of two geometric graphs.

Our distance measures are based on the Fréchet distance for curves which h
investigated before in [1].

Definition 1 (Fréchet distance). Let f : I = [lI , rI ] → R
2, g :J = [lJ , rJ ] → R

2 be two
planar curves, and let‖ · ‖ denote the Euclidean norm. Then theFréchet distanceδF(f, g)

is defined as

δF(f, g) := inf
α : [0,1]→I
β : [0,1]→J

max
t∈[0,1]

∥∥f
(
α(t)

) − g
(
β(t)

)∥∥,

whereα andβ range over continuous and non-decreasing reparametrizations withα(0) =
lI , α(1) = rI , β(0) = lJ , β(1) = rJ .

If we drop the requirement onα andβ to be non-decreasing, we obtain a dista
measure that is called theweak Fréchet distancebetweenf andg.

A popular illustration of the Fréchet distance is the following: Suppose a pers
walking a dog, the person is walking on the one curve and the dog on the other, a
person is holding the dog at a leash. Both are allowed to control their speeds but th
not allowed to go backwards. Then the Fréchet distance of the curves is the minimal
of a leash that is necessary for both to walk the curves from beginning to end.

2. Matching a curve in a graph

Let G = (V ,E) be an undirected connected planar graph with a given straigh
embedding inR2, |V | = q , |E| = O(q), such thatV = {1, . . . , q} corresponds to point
{v1, . . . , vq} ⊆ R

2. We assume, althoughG is an undirected graph, that each undirec
edge between verticesi, j ∈ V is represented by the two directed edges(i, j), (j, i) ∈ E.
ThusE consists of directed edges, but still represents an undirected graph. Eac
(i, j) ∈ E is embedded as an oriented straight line segmentsi,j from vi to vj . sj,i
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is obtained fromsi,j by reversing the orientation. Furthermore letα : [0,p] → R
2 be

a polygonal curve inR2, which consists ofp line segmentsαi := α|[i,i+1] for i ∈
{0,1, . . . , p − 1}. We consider each line segmentαi to be parameterized by itsnatural
parametrization, i.e.,α(i + λ) = (1 − λ)α(i) + λα(i + 1) for all λ ∈ [0,1]. For a vertex
i ∈ V we denote by Adj(i) ⊆ V the set of vertices adjacent toi. We identify a pathπ in G

with the polygonal curve that is formed by its edges. Givenα andG we wish to find a path
π in G which minimizesδF(α,π). Note that this definition allows a pathπ in G to travel
the same edges inG multiple times.

We attack this minimization problem by first solving the decision problem for w
we fix ε > 0 and wish to find a path (if it exists) inG such that the Fréchet distance is
mostε. Afterwards we apply parametric search, in a manner similar to that of [1], to fi
solve the minimization problem. As a subproblem we consider the task of only dec
whether there exists a path inG with the desired properties. The algorithm for the decis
problem then can be used to design one for the computation of such a path.

2.1. Basic concepts and algorithm outline

If not stated otherwise letε > 0 be given. We employ the notion of thefree spaceFε

and the free space diagram FDε of two curves, which was introduced in [1]:

Definition 2 [1]. Let f : I → R
2, g :J → R

2 be two curves;I, J ⊆ R. The set Fε(f, g) :=
{(s, t) ∈ I ×J | ‖f (s)−g(t)‖ � ε} denotes thefree spaceof f andg. We call the partition
of I × J into regions belonging or not belonging to Fε(f, g) the free space diagram
FDε(f, g).

We call points in Fε whiteor feasibleand points in FDε \ Fε blackor infeasible. See Fig. 1
for an illustration.

In [1] it has been shown thatδF(f, g) � ε if and only if there exists a curve withi
Fε(f, g) from the lower left corner to the upper right corner, which is monotone in
coordinates. We call a curve within Fε(f, g) feasible. We thus concentrate on finding
monotone feasible path in certain free space diagrams. Figure 1 shows polygonal
f,g, a distanceε, and the corresponding free space diagram with the free spacε .

Fig. 1. Free space diagram for two polygonal curvesf andg. A monotone curve from the lower left corner to th
upper right corner is drawn in the free space. This illustration is taken from [1].
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Fig. 2. Free space diagram FDi,j for a segmentsi,j andα.

Fig. 3. Example of a free space surface: Free space diagrams glued together according to the a
information ofG. An example pathπ in the free space surface is highlighted in grey.

Observe that the monotone curve in Fε(f, g) from the lower left corner to the upper rig
corner as a continuous mapping from[0,1] to I × J directly gives continuous increasin
reparametrizationsα andβ .

For all (i, j) ∈ E let si,j be continuously parameterized by values in[0,1] according
to its natural parametrization, thussi,j : [0,1] → R

2. For every edge(i, j) ∈ E consider
the free space Fi,j := Fε(α, si,j ) ⊆ [0,p] × [0,1]. The free space diagram FDi,j :=
FDε(α, si,j ) is the subdivision of[0,p] × [0,1] into thewhitepoints of Fi,j and into the
blackpoints of[0,p] × [0,1] \ Fi,j . See Fig. 2 for an illustration.

As shown in [1], FDi,j consists of a row ofp cells. Each such cell corresponds to
line segment ofα, and the free space in each cell is the intersection of an elliptical
with that cell. For a vertexj ∈ V let FDj := FDε(α, vj ), which is a one-dimensional fre
space diagram consisting of at most 2p + 1 black or white intervals. Let Fj := Fε(α, vj )

be the corresponding one-dimensional free space, which consists of a collection o
intervals. Furthermore, letLj be the left endpoint andRj be the right endpoint of FDj .

For eachi ∈ V the free space diagrams FDi,j and FDj,i for all j ∈ Adj(i) have the one
dimensional free space diagram FDi in common—as the bottom of FDi,j and as the top
of FDj,i . Thus we can glue together the two-dimensional free space diagrams alo
one-dimensional free space they have in common, according to the adjacency infor
of G. In this manner we obtain a topological structure which we call thefree space surfac
of G andα; see Fig. 3 for an example.

The algorithm in [1] computes a monotone feasible path in the free space diagr
two polygonal curves in a dynamic programming fashion. We apply a related appro
our more general setting: We search for a feasible path in the free space surface. Th
has to start at some white left cornerLk and has to end at some white right cornerRj , for
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two verticesj, k ∈ V , since the corresponding pathπ in G has to start and end in a vert
of G. Any pathπ in G selects a sequence of free space diagrams in the free space s
whose concatenation yields FDε(α,π). Thus let us consider the following reachabil
information.

For every vertexj ∈ V let R(j) be the set of all pointsu ∈ Fj for which there exists a
k ∈ V and a pathπ from k to j in G such that there is a monotone feasible path fromLk

to u in Fε(α,π). We call points inR(j) reachable. We call an interval of points inR(j)

reachableif every point in it is reachable. We thus know that there is a pathπ in G with
δF(α,π) � ε iff there is a vertexj ∈ V such thatRj ∈R(j).

Similar to [1] we first decide whether there exists a feasible path in the free s
surface by computingR(j) for all j ∈ V in a dynamic programming manner. In fa
we will not store the wholeR(j) but only parts of it which allow us to arrive at th
correct decision. The algorithm solving the decision problem consists of three s
The preprocessing stage, see Section 2.2, which computes the free space diagramsi,j

together with some additional reachability information; thedynamic programming stage,
see Section 2.3, which decides if there exists a feasible path in the free space surfa
the path reconstruction stage, see Section 2.4, which constructs the pathπ in G along
with feasible reparametrizations ofπ andα that witness the fact thatδF(α,π) � ε. In
Section 2.6 we show how to apply parametric search to solve the minimization prob

In the following we make use of a property of FDi,j for each(i, j) ∈ E, which we call
thesimplicity propertyof FDi,j : Each FDi,j is a row of cells, and each white region in su
a cell is the intersection of an elliptical disk with the cell boundary. Thus there is no ve
line at any position in FDi,j which contains white, black, and white points alternating
Or in other words, the white points on a vertical line always form an interval. From th
obtain the following insight:

Lemma 1. Let (i, j) ∈ E, andu ∈ Fi , v ∈ Fj be white points withu � v for which exists
a feasible monotone path inFDi,j from u to v. Then for everyu′ ∈ Fi and v′ ∈ Fj ,
u � u′ � v′ � v, there exists a feasible monotone path inFDi,j fromu′ to v′.

Proof. Consider the feasible monotone path fromu to v. Then due to the simplicity
property of FDi,j it is possible to go straight up fromu′ until hitting this path, and similarly
to go straight down fromv′ until hitting this path, and stay inside the free space all the ti
Stitching those pieces of paths together we obtain the desired feasible monotone
FDi,j from u′ to v′. ✷
2.2. Preprocessing

We compute all one-dimensional free space diagrams FDi for all i ∈ V . Conceptually
we continue to consider the FDi,j for all (i, j) ∈ E, but we do not need to compute the
explicitly, for we capture the reachability information in the additional pointers we
compute. Let(i, j) ∈ E be fixed, then FDi,j ⊆ [0,p] × [0,1] consists ofp cells, one
for each segment inα. Let ζk be the cell in FDi,j corresponding to thekth segmentαk

of α, 0 � k � p − 1. Let Lk = [ak, bk] be the white interval on the left boundary ofζk ,
let Bk = [k + ck, k + dk] be the white interval on the bottom boundary ofζk, and let
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Fig. 4. Intervals of the free space on the boundary of a cell.

Preprocessing:
1. For alli ∈ V compute the one-dimensional free space diagrams FDi .
2. For everyi ∈ V and every white intervalI of FDi compute for allj ∈ Adj(i) the pointersli,j (I ) andri,j (I ),

and store them in an array each, indexed byj . See Lemma 3.

Fig. 5. Preprocessing steps.

B ′
k = [k + c′

k, k + d ′
k] be the white interval on the top boundary ofζk . See Fig. 4 for an

illustration. If Lk = ∅ then we setak := 1 andbk := 0. Similarly if Bk = ∅ we setck := 1
anddk := 0, and ifB ′

k = ∅ we setc′
k := 1 andd ′

k := 0. Note that the left boundary ofζk is
part of the vertical line segment{k} × [0,1] with respect to the free space diagram FDi,j .
We call {k} × R the vertical line atk. We call the black parts inζk , of which there are
at most four,spikes. In particular we call the spikes bounded from above byak or ak+1
lower spikes, and the spikes bounded from below bybk or bk+1 upper spikes. We call
ak, ak+1, bk, bk+1 theheightsof the corresponding spikes. Similarly, we callck, c

′
k, dk, d

′
k

widthsof left andright spikes. We callk the indexof the two spikes boundingLk . Note
that the interval endpoints correspond to heights or widths of spikes.

For each(i, j) ∈ E we compute for each white intervalI of FDi the leftmost point
li,j (I ) (left pointeror l-pointer) on FDj and the rightmost pointri,j (I ) (right pointer or
r-pointer) on FDj which can be reached from some point inI by a monotone feasible pa
in FDi,j . This can be done in linear time for all intervals on FDj , see Lemma 3. Note tha
li,j (I ) either equals the left endpoint ofI or equalsk + c′

k for some 0� k � p − 1. For
the right pointer holdsri,j (I ) = k + d ′

k for some other 0� k � p − 1. Note that similar
reachability pointers have been used in [1] for attacking the case of closed curves.
call l(I ) the left endpoint ofI , andr(I) the right endpoint ofI .

For notation purposes we identify in the following a white intervalI on FDi with aBk

for some 0� k � p − 1. If a white interval on FDi spans several cells we consider it to
composed of one white interval per cell.

For each white intervalI of FDi we store the left pointers and right pointers in tw
arrays that are indexed by thej ∈ Adj(i). Thus each white intervalI on FDi has|Adj(i)|
l-pointers andr-pointers attached to it. See Fig. 5 for an overview of the preproce
steps.

The following lemma gives a characterization when points on FDj can be reached from
points on FDi by a monotone feasible path in FDi,j .
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Lemma 2. Let (i, j) ∈ E be fixed. Let0 � k < k′ � p − 1, and assume thatBk,B
′
k′ �= ∅.

Then there is a monotone feasible path inFDi,j from some point onBk to a point onB ′
k′ if

and only if

max
i=k+1,...,l

ai � min
i=l,...,k′ bi for all k < l � k′. (1)

Proof. Assume there is a monotone pathπ in Fi,j from a point onBk to a point onB ′
k′ . For

eachk < l � k′ consider the point whereπ passes the vertical line atl. π has to pass abov
all ai for i = k + 1, . . . , l and below allbj for j = l, . . . , k′, otherwise it would not be
monotone feasible path. For the other direction, assume that (1) holds for allk < l � k′.
Let ai1, . . . , aim be the sequence of different indices that form the partial maxima o
sequencea1, . . . , ap−1, when considering its prefixes obtained by reading it from lef
right. We constructπ to start in an arbitrary point onBk , go vertically upwards unti
the heightai1, go horizontally until we hit the lower spike ini1, then visit the points
ai1, . . . , aim , and then pass horizontally until it ends under some point onB ′

k′ , which it
then connects to by going vertically straight up. Two pointsaiν andaiν+1 are connected
in π by a path that starts horizontally at heightaiν until it hits the lower spike iniν+1.
It then follows the boundary of this spike (which is monotonically increasing) until
heightaiν+1. Since (1) holds forl = i1, . . . , im, every described piece in the path is inde
feasible, andπ is monotone. ✷
Lemma 3. Let (i, j) ∈ E. Then all pointersli,j (Bk) andri,j (Bk) for all white intervalsBk

on FDi , 1 � k � p − 1, can be computed inO(p) time.

Proof. The left pointersli,j (Bk) for all 0 � k � p − 1 are easily computed by a sc
for increasingk = 0, . . . , p − 1: Let k be fixed. If ck � d ′

k then we setli,j (Bk) :=
k + max(ck, c′

k). Otherwise we greedily search for the first cellζk′ , k′ > k, which contains
a white point on its upper boundary, and such that (1) holds. If such a cell does no
then we setli,j (Bk) := NIL. Otherwise we setli,j (Bk) := k′ + c′

k′ . For the next iteration
i.e., for k increased by one, we only have to consider cells to the right ofζk′ , such that in
total we visit every cell at most once.

The computation of the right pointers is slightly more complicated. We pro
incrementally fork = 0, . . . , p − 1 as follows: For eachk, if Bk �= ∅, we compute the
largest valuek′ for which (1) holds. In order to do this we maintain a stackS := {i1, . . . , im}
of indicesk < i1 < i2 < · · · < im � k′ which are the indices of those lower spikes t
are horizontally visible from the vertical line atk′. In other words,S is the sequenc
of different indices that form the partial maxima of the sequenceak+1, . . . , ak′ , when
reading it from left to right. Thus each indexis ∈ S is characterized by the property th
ais > al for all is < l � k′. We call S the partial maxima stack, with top elementim,
andbottomelementi1. Note that forS = {i1, i2, . . . , im} we havei1 < i2 < · · · < im and
ai1 > ai2 > · · · > aim . See Fig. 6 for an illustration. The significance of these values
follows: Let is < is+1 ∈ S be two successive indices, and letis < i � is+1. Then the lowes
point on the vertical line atk′ that can be reached fromBi (if Bi �= ∅) by a monotone
feasible path in FDi,j is ais+1.
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Fig. 6. An example of lower spikes and their partial maxima stackS .

Fig. 7. Shortcut pointers on FDi .

We initialize S = {0} and k′ = 1. Let k = 0, . . . , p − 1 be the current value of th
iteration. We maintain the invariant that (1) holds for the current values ofk and k′
throughout the algorithm. This is trivially true for the initialization case. And if we kn
that (1) holds fork − 1 andk′, then it immediately holds fork and k′. For fixedk we
now search for the maximalk′ that fulfills (1). (We always denote the top element ofS by
aim and the bottom element byai1, although the indices and the value ofm change during
the algorithm.) Ifai1 > bk′+1, thenk′ + 1 violates (1), thusk′ is the maximal value we
searched for. Ifai1 � bk′+1, then we have max{ai1, ak′+1} = maxi=k+1,...,k′+1 ai � bk′+1,
thus (1) holds fork′ + 1 and we can safely increasek′ by one. Now we have to maintainS
to represent the partial maxima of lower spikes betweenk and the increased valuek′. For
this we pop the topmost values fromS until aim > ak′ . Finally we pushk′ on top. Then we
start with a new iteration onk′.

Once we have found the maximalk′ that fulfills (1), we know that there is no monoto
feasible path in FDi,j from any point onBk (assuming thatBk �= ∅) to B ′

k′+1. Thus the
rightmost point on FDj that can be reached by a monotone feasible path fromBk is the
first d ′

w which bounds a white interval on FDj to the left of the vertical line atk′ + 1.
In order to obtain alld ′

w efficiently during the run of the algorithm we storeO(p)

shortcut pointers, for each FDi : At thekth cell boundary of FDi , for integer 0� k � p−1,
we store a pointer to the rightmost white point on FDi that lies to the left ofk. If there is
no such white point we set the shortcut pointer to NIL. See Fig. 7 for an illustration
construct this pointer structure on the fly by computing a pointer value from the sh
pointer to its left. Now we findd ′

w by greedily searching for the next white point on Fj
to the left ofk′ + 1. If possible we follow the next shortcut pointer; otherwise we gree
search for the first white point and compute the shortcut pointers on the way un
either hit an already computed shortcut pointer or the beginning of FDj . If k < w then we
setri,j (Bk) := w + d ′

w. If k > w then we setri,j (Bk) := NIL. If k = w then if ck � d ′
k we

setri,j (Bk) := k + d ′
k , otherwise we setri,j (Bk) := NIL.

Finally, if i1 = k + 1 then we removei1, i.e., the bottommost element, fromS. Then we
start the next iteration onk with its value increased by one.

For the runtime analysis, note thatk andk′ are always increased, and never decrea
In each such increasing step we perform only constant time operations without co
the stack operations and the location of thed ′

w. Once a value is removed from the sta
(either by popping from the top, or by removing from the bottom) it is never inserte
S again. Thus every integer between 1 andp − 1 is at most once inserted in the sta
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and removed from the stack. With respect to the shortcut pointers we charge eve
boundary for computing its shortcut pointer. Thus the total time to compute allri,j (I ) is
indeedO(p). ✷
2.3. Dynamic programming

In this stage we decide whether there exists a feasible monotone path in the free
surface. Note that such a path traverses a sequence of free space diagrams FDi,j . We call
the part of a path that traverses one such free space diagram asegmentof the path.

Conceptually we sweep all FDi,j at once with a vertical sweep line from left to righ
Let 0 � x � p denote the position of the sweep line. For eachi ∈ V we store a se
Ci ⊆ R(i) ⊆ Fi of white points, which we compute in a dynamic programming man
Throughout the algorithm we maintain the following invariant:

Definition 3 (Ci ). Let i ∈ V andx be the current position of the sweep line. ThenCi

consists of all reachable pointsu ∈ R(i) ⊆ FDi , such thatu � x, and for which the las
segment of their associated feasible monotone path crosses or ends at the sweep li

Thus we are able to decide whetherRi ∈ R(i) by checking ifRi ∈ Ci for an advanced
enough positionx of the sweep line. Let us call a sequence of consecutive white and
intervals of FDi a consecutive chainof intervals. For a consecutive chain, as well as fo
single interval,C let l(C) be its left andr(C) be its right endpoint. For two consecuti
chainsC′ ⊆ C we callC′ a consecutive subchainof C.

Lemma 4. EveryCi , for i ∈ V , is a consecutive chain, for every value ofx.

Proof. Let x and leti ∈ V be fixed. Letw ∈ Ci be the largest point inCi . By definition
of Ci there is aj ∈ Adj(i) and a white pointu ∈ Fj with u � x � w, such thatu is reachable
and there exists a monotone feasible path in FDj,i from u to w. For any white pointv ∈ Fi

with x � v � w there exists by Lemma 1 a monotone feasible path fromu to v in FDj,i ,
which makesv in particular also reachable by the same path that reachesu, concatenated
with the monotone feasible path fromu to v. Thusv ∈ Ci , andCi is a consecutive chain
See Fig. 8 for an illustration.✷

The algorithm we present is a mixture of a sweep (since we are sweeping w
sweep line), dynamic programming (on theCi we incrementally build up), and Dijkstra

Fig. 8. A consecutive chainCi .
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algorithm for shortest paths (since we are computing paths using a priority que
augment the path in a similar fashion to Dijkstra’s algorithm). We maintain a priority q
Q of white intervals of FDi which are known to be reachable. More precisely, for e
i ∈ V the first white interval ofCi (if Ci �= ∅) is stored inQ. The priority of an interval is
its left endpoint. The events for the sweep line, i.e., the different values ofx, are the left
endpoints of the intervals inQ. Every interval inQ is part of a consecutive chain to whic
we store a pointer together with the interval. SinceCi = [l(Ci), r(Ci)] ∩ FDi we store the
Ci implicitly in constant space by storing onlyl(Ci) andr(Ci).

We initializeQ with all white Li (which are degenerate intervals). For alli ∈ V if Li

is white we setCi := Li , otherwiseCi := ∅. Then we process these intervals in increas
order as follows:

1. Extract and delete the leftmost intervalI fromQ; if there are several intervals with th
same priority pick an arbitrary one. Advancex to l(I ).

2. Let Ci be the consecutive chain that containsI . Insert the next white interval ofCi

which lies to the right ofI , intoQ.
3. For eachj ∈ Adj(i) updateCj to comply with the new value ofx: [li,j (I ), ri,j (I )]

defines a consecutive chain on FDj , whose white intervals are white intervals
FDj which have now been identified to be reachable. Thus we need to m
[li,j (I ), ri,j (I )] into Cj . Knowing thatCj is a consecutive chain for every value ofx,
we can merge both chains together by simply considering the interval endpoi
li,j (I ) > r(Cj ) then we discard the oldCj and replace it with[li,j (I ), ri,j (I )]. If the
left endpoint has changed then we delete the old first interval ofCj in Q and insert
the new one. Assuming an appropriate implementation of the priority queue,
operation onQ takesO(logp) time.

4. Store for each white intervalJ that has been newly added toCj (or that has been
enlarged) apath pointerto the intervalI (from which it can be reached by a monoto
feasible path in FDi,j ).

We process all intervals inQ until we either find aj ∈ V such thatRj ∈ Cj , or until Q
is empty. In the latter case there is no pathπ in G with δF(α,π) � ε. In the first case we
know that such a path exists, and we reconstruct it using the path pointers in the
stage of the algorithm, which is described in Section 2.4.

2.4. Path reconstruction

We assume that in the dynamic programming stage we found aj ∈ V with Rj ∈ J ,
whereJ is a white interval inCj for some positionx of the sweep line. In this stage w
use the path pointers to construct a pathπ in G together with a feasible monotone path
FDε(α,π) which witnesses the fact thatδF(α,π) � ε.

By construction the intervalJ has a path pointer attached to it. We follow this p
pointer to the right endpoint of an intervalI , which is a suffix of an interval of FDi for
an i ∈ Adj(j). We repeat following the path pointers until we end at anLk . This way we
obtain a sequence of pairs(i, r) wherei ∈ V and r is the right endpoint of the visite
interval on FDi . We call this sequence thepath sequence. Note that it starts with(k,Lk)
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for a k ∈ V . When we extract the first component of each pair, we obtain a sequen
i ∈ V that represents the desired pathπ in G. The corresponding feasible monotone path
FDε(α,π) can be constructed in an incremental way by following the path sequenc
assuring monotonicity by using again a partial maxima stack of indices of lower sp
such as in Lemma 3.

2.5. Time analysis

Theorem 1. The described algorithm decides whether there is a pathπ in G such that
δF(α,π) � ε in O(pq logq) time andO(pq) space, wherep is the number of line segmen
ofα andq is the complexity ofG. If such a pathπ exists the algorithm computesπ together
with a monotone feasible path in the free space surface, inO(pq logq) time andO(pq)

space.

Proof. Each FDi has complexityO(p) and can be constructed inO(p) time. Each interva
I on FDi has|Adj(i)| l- andr-pointers attached to it. The number of alll- andr-pointers
for all FDi sums up toO(p|E|) = O(pq), and can by Lemma 3 also be constructed in
time. Thus we needO(pq) time and space for the preprocessing.

In the dynamic programming stage we insert and delete a suffix of every white in
of any FDi , i ∈ V , at most once inQ. Also the left endpoint of a white interval of any FDi

might be changed|Adj(i)| times. Each priority queue operation needsO(logq) time, thus
O(pq logq) altogether. For each interval inQ we consider eachj in the adjacency list o
its consecutive chain and spend constant time to merge consecutive chains and c
path pointers for each suchj . Altogether this sums up toO(p|E|) = O(pq) time, which
together with the priority queue operations isO(pq logq) time for the whole dynamic
programming stage. We store only one consecutive chain per vertex, andQ contains at
most one interval per vertex, which adds up toO(q) space. Additionally we store one pa
pointer per interval in FDi , thus the space complexity for the path pointers isO(pq).

By construction of the path pointers there is no cycle in the graph of path pointers
every path pointer can be contained in a monotone feasible path in the free space
at most once. We reconstruct a feasible path using a graph traversal inO(pq) time (since
there areO(pq) path pointers). Clearly the construction ofπ in G then also needsO(pq)

time. ✷
The program has been implemented in C with a graphical user interface using Op

It allows to edit the graph and the curve, to solve the decision problem, to perform b
search onε, and it visualizes the computed feasible parametrizations in a walk-thr
animation. See Fig. 9 for a screenshot of an example input; the found pathπ in G is marked
in bold. The decision algorithm runs remarkably fast without specific optimizations
example, for graphs withq = 700 edges and a curve of lengthp = 420 it runs in 5 s, for
q = 1170 andp = 1000 in 35 s, and forq = 1170 andp = 100 in less than 2 s, on
Pentium 4 processor. The implementation and the algorithm are shown in a video [5

Observe that in practice one would prefer to run the algorithm on a pruned graG′
which consists of those edges ofG which are in theε-neighborhood ofα. Those edges ca
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Fig. 9. Screenshot of the program. The curveα is drawn in light grey, and the edges ofπ are marked in bold.

easily be found with a line sweep onG and theε-neighborhood ofα. Notice however tha
this does not yield a speed-up of the asymptotic runtime.

2.6. Parametric search

In order to find the optimalε we apply parametric search—analogously to [1]—to
algorithm we presented to solve the decision problem. The outcome of this algo
depends solely on the relative positions of all possible widths and heights of spi
all free space diagrams in the free space surface. For varyingε all those values depen
onε, and for the parametric search anε is critical if it makes two of these widths or heigh
coincide. There areO(pq) different widths or heights of spikes. As in [1] we now appl
parallel sorting algorithm on thoseO(pq) values which depend onε, and generate in tha
way a superset of the critical values ofε we need. By utilizing Cole’s trick [2] we obtain
running time ofO(pq log(pq) logq), at no extra storage.

Theorem 2. There is an algorithm that finds a pathπ in G which minimizesδF(α,π), in
O(pq log(pq) logq) time andO(pq) space.

2.7. Variants

There are several variants of the problem setting and of the basic algorithm.
First, observe that the algorithm works in the same way for arbitrary (stron

connected but possibly non-planar or directed graphs with straight-line embeddin
well as for embeddings of the graph and the curve in higher-dimensional spaces. Si
algorithm to compute the Fréchet distance does not depend on the dimension of th
in which the curves are embedded, the runtime of the algorithm remains the sameq
denoting the number of edges and vertices ofG.

Another straight-forward variant is to allow a pathπ in G to start and end not only a
vertices ofG but also in the middle of segmentssi,j for edges(i, j) ∈ E. In fact this can
be easily integrated into our algorithm by letting a path begin (or end) at any white
on the left (or right) boundary of any FDi,j .
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Another variant is to ask for more monotonicity in the pathπ that is found in the graph
In our current problem setting we allow a pathπ in G to travel the same edges inG
multiple times. It seems to be hard to avoid these cases without increasing the r
immensely. However we can modify our algorithm to avoid “U-turns,” i.e., to forbid a
π in G to travel the edge(i, j) and immediately afterwards the edge(j, i). We incorporate
this feature by storing, at every reachable white intervalI on FDi , a path pointer toeach
reachable interval on FDj from which I can be reached;j ∈ Adj(i). Performing a depth
first traversal in this graph of path pointers we can locally exclude the option to trave
the edge from which we arrived in a vertex, and thus altogether obtain the same res
before.

The last variant is a time–space tradeoff, which we sketch in Section 2.8 and de
in detail in Appendix A.

2.8. Time–space tradeoff

In every step of the dynamic programming stage in Section 2.3 we need mostly
reachability information concerning the current interval, such as itsl-pointer, itsr-pointer,
the closest shortcut pointer, and the next white interval to the right in its consecutive
We can generate this information on the fly by conducting the former preprocess
an incremental way during the algorithm. I.e., we integrate the computation of thel- and
r-pointers into the algorithm, such that we compute those pointers only when we n
access them. If we did this in a straight-forward way, we would maintain at each ed
partial maxima stack and at each vertex all shortcut pointers (compare Lemma 3), w
all information we need to construct thel- andr-pointers on the fly. This however wou
result in a total storage ofO(pq). In order to decrease the storage we still follow t
approach but do not store the full partial maxima stacks and all shortcut pointers, b
store only equidistant samples of each. Since during the algorithm we need to reco
the missing information between two sample points, thespacingof this sampling is then
reflected in the runtime. In the path reconstruction stage we apply a standard dy
programming trick for saving space, see [3,4], which in our case introduces a logar
factor in the runtime. We refer the interested reader to Appendix A for the det
description of this approach. The obtained results are summarized below.

Theorem 3. For any1 � t � p there is an algorithm that decides if there is a pathπ in G

such thatδF(α,βπ ) � ε in O(pq(t + logq)) time andO(pq/t) space.
If such a pathπ exists it can be computed together with a feasible monotone pa

the free space surface inO(pq(t + logq) logp) time andO(pq/t) space. Fort = 1 the
runtime isO(pq logq).

Theorem 4. For any1 � t � p there is an algorithm which computes a pathπ in G which
minimizesδF(α,βπ) in O(pq(t + logq) log(pq)) runtime andO(pq/t) space.

Note that the time–space tradeoff from this section together with the variant to
U-turns can be used to compute the Fréchet distance for two polygonal curves w
same time–space tradeoff. Thus, at the cost of a logarithmic factor inq compared to the
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algorithm of [1], our algorithms also yields a time–space tradeoff for computing the Fr
distance of curves.

3. Graph-to-graph distance

In this section we generalize the Fréchet distance to pairs ofgeometric graphs,
i.e., embedded, connected graphsH = (VH ,EH ) and G = (VG,EG) with straight
edges. Observe, that ifH is not a curve there is, in general, no injective continu
parameterizationf : [0,1] → H , so that we have to relax this condition. In the pers
dog paradigm we would like to define the distance fromH to G as the shortest lengt
of a leash necessary so that the dog visits each point of the edges ofH while the person
traverses some part ofG.

More formally, identifyingH andG with the points lying on their edges we will call
mappingf : [0,1] → H which is continuous and surjective, atraversalof H . A continuous
(but not necessarily surjective) mappingg : [0,1] → G will be called apartial traversal
of G. Thetraversal distancefrom H to G is defined as

δT (H,G) = inf
f,g

max
t∈[0,1]

∥∥f (t) − g(t)
∥∥,

wheref ranges over all traversals ofH andg over all partial traversals ofG. Observe,
that if H andG are polygonal chains this definition corresponds to the weak Fré
distance, see [1]. Also observe that the traversal distance is not a generalization
Fréchet distance between a curve and a graph as defined in Section 2. Figures 10a
show examples, where the traversal distance fromH toG is small, in Figs. 10b and 10c it i
large. Let us first consider the decision problem, i.e., determining for givenH,G, andε > 0
whetherδT (H,G) � ε. In order to find an algorithm for the decision problem, we cons
for all edgese ∈ EH andf ∈ EG the cellsCe,f of the free space diagram, which can
identified with the two-dimensional unit interval[0,1]2 within which, as was mentione
before, the freespace is obtained by the intersection with an elliptical disk. Ife = (u, v) and
f = (x, y), we name the right, left, upper and lower sides ofCe,f asCv,f , Cu,f , Ce,y , and
Ce,x , respectively (see Fig. 11). Then we identify sides with the same name, i.e., we
together” cells of the formCe,f andCe,f ′ (Ce,f andCe′,f ) if f andf ′ (e ande′) have a
common endpointx (u) at the sides namedCe,x (Cu,f ). Thus we obtain a generalizatio
of the free space surface from Section 2.1 which is a two-dimensional cell complexS in
three dimensions, whose facets are the cellsCe,f , whose edges are the sidesCu,f andCe,x ,

(a) (b) (c) (d)

Fig. 10. (a), (d) small traversal distance; (b), (c) large traversal distance.
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Fig. 11. Edges of the traversal graph.

and whose vertices are the pointsCu,x , with e ∈ EH , f ∈ EG, u ∈ VH , x ∈ VG. Please note
that we use a slightly different notation in this section than in Section 2.

S contains the combined “white” freespace of all its cells and is a generalization
freespace diagram of two curves. A continuous path onS which completely lies inside
the free space corresponds to a simultaneous motion onG andH keeping a distance of a
mostε. Let us call these pathsfeasible.

If a feasible pathπ traverses some cellCe,f then letIπ,e,f be the set of those points o
e that are traversed by the corresponding motion on the graphs. The edgee ∈ EH is called
satisfiedby π if

⋃

f∈EG

Iπ,e,f = e.

It means that all points ofe are eventually traversed by the motion on the gra
corresponding toπ . Therefore, we can conclude:

Lemma 5. δT (H,G) � ε, if and only if there exists a feasible pathπ satisfying all edges
e ∈ EH .

In order to obtain an algorithm to test the condition of Lemma 5 we introduce
traversal graphT . The vertices ofT are the one-dimensional facetsCu,f andCe,x of
the cell complexS, with e ∈ EH , f ∈ EG, u ∈ VH , x ∈ VG. Two such facets are connect
by an edge ofT if and only if they are both incident to some cellCe,f and if there is
a connection between both by a curve through the free space ofCe,f , see Fig. 11. Thus
to each edge ofT we can assign a cell of the free space. On the other hand, each
assigned to at most six edges. It follows thatT hasO(pq) edges wherep = |EG| and
q = |EH |.

For e ∈ EH,f ∈ EG let Je,f be the set of all points one that have distance at mostε

from f , i.e., the projection of the freespace inCe,f to e. Any pathπ with the properties
described in Lemma 5 yields a path in the traversal graphT whose edges are assigned to
cellsCe,f traversed byπ . Since any edgee ∈ EH is satisfied byπ it must be

⋃
f Je,f = e

wheref ranges over all cellsCe,f traversed byπ . Consequently, the equation is true iff

ranges over all edges inEG such thatCe,f is an edge in the connected componentC of
T containingπ . Our algorithm for the decision problem is based on the fact that als
converse is true:
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Fig. 12. Motion ofπ within Ce,f .

Lemma 6. δT (H,G) � ε, if and only if there exists a connected componentC = (VC,EC)
of the traversal graphT such that for alle ∈ EH

⋃

f

Je,f = e,

wheref ranges over all edges inEG whereCe,f is assigned to an edge inEC .

To see the converse suppose thatC is a connected component ofT with this property.
Then we construct a pathπ onS as follows:π traverses all vertices ofC by, say, breadth
first-search. For each cellCe,f visited, π makes sure thatIπ,e,f = Je,f by visiting the
leftmost and the rightmost point of the freespace (see Fig. 12).

Then for alle ∈ EH⋃

f

Ie,f,π =
⋃

f

Je,f ,

wheref ranges over all edges inEG such thatCe,f is a cell visited byπ . Thereforeπ
satisfies all edgese ∈ EH andδT (H,G) � ε by Lemma 5.

Lemma 6 enables us to give a quite simplealgorithmfor solving the decision problem
In fact, given geometric graphsG andH andε > 0, we first determine all freespace ce
Ce,f , e ∈ EH,f ∈ EG, and the traversal graphT . By breadth-first-search we determi
all connected components ofT and we check for each of them whether the condi
of Lemma 6 holds for each edgee ∈ EH . If this is the case for at least one connec
component, the algorithm answers “yes,” otherwise “no.”

In order to determine the runtime of this algorithm, we observe that the breadth
search in total visitsO(pq) cellsCe,f since there areO(pq) edges inT . For each cell we
have to add the intervalJe,f to the portion ofe covered so far which takes timeO(logpq).

In order to solve theoptimization problemobserve that for the smallestε for which the
decision problem has a positive answer, there are two possibilities. On the one h
could be that the left endpoint of some intervalJe,f equals the right endpoint of anoth
oneJe,f ′ , so that edgee gets satisfied at that point. On the other hand, it could be tha
free space in some cellCe,f touches one of the sides of the cell, i.e., the traversal g
T changes. Therefore, in order to solve the optimization problem we perform a para
search using Cole’s approach [2] with a fast parallel sorting algorithm for the endp
of the intervalsJe,f , including the values 0 and 1 to take care of the critical values o
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second type. Since there areO(pq) such endpoints and the decision problem can be so
in timeO(pq logpq) we obtain anO(pq log2pq) algorithm for the computation problem
We summarize.

Theorem 5. Given two geometric graphsG andH andε > 0, it can be decided whethe
δT (H,G) � ε in timeO(pq logpq) by the algorithm given above, wherep andq are the
numbers of edges ofG andH , respectively. The traversal distance fromH to G can be
computed in timeO(pq log2pq).
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Appendix A. Time–space tradeoff

This section presents a detailed description of the time–space tradeoff whic
sketched in Section 2.8.

A.1. Dynamic programming

Observe that in every step of the dynamic programming stage we need mostly
reachability information concerning the current interval, such as itsl-pointer, itsr-pointer,
the closest shortcut pointer, and the next white interval to the right in its consecutive
In this section we skip the preprocessing completely, and present a variant of the dy
programming algorithm of Section 2.3 that integrates the preprocessing into the alg
in such a way that it incorporates a time–space tradeoff.

We store and maintain the following items during the algorithm:

• As in Section 2.3 we store at each vertexi ∈ V exactly one consecutive chainCi which
is represented by its endpoints.

• In order to compute thed ′
w efficiently (see proof of Lemma 3) we store for each ver

i ∈ V a set of shortcut pointers, which we will describe in more detail below.
• For each edge(i, j) ∈ E we maintain a stackS ′(i, j) of indices of lower spikes, whic

we will describe in more detail below.
• For each edge(i, j) ∈ E we store a currentl-pointerli,j and a currentr-pointerri,j .

These are the pointers with respect to FDi,j , j ∈ Adj(i), that have been computed f
the last processed interval on FDi . We update those pointers with every new inter
that we process on FDi .

We integrate the computation of thel- andr-pointers into the algorithm, such that w
compute those pointers only when we need to access them. If we did this in a st
forward way, we would maintain at each edge its partial maxima stack and at each
all shortcut pointers (compare Lemma 3), which is all information we need to con
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the l- andr-pointers on the fly. This however would result in a total storage ofO(pq). In
order to decrease the storage we still follow this approach but do not store the full
maxima stacks and all shortcut pointers, but we store only equidistant samples o
Since during the algorithm we need to recompute the missing information betwee
sample points, thespacingof this sampling is then reflected in the runtime. We will fi
use a spacing of

√
p, and will later generalize it to an arbitrary parameter 1� t � p.

Let us now go into the details of this approach. The processing of intervals from
priority queueQ is adapted as follows: For step 2 of the dynamic programming stag
need to find the leftmost white interval inCi which lies to the right of the current intervalI .
For this we scan the one-dimensional cells to the right ofI and directly compute eac
interval partition until we find the first white interval.

It remains to show how we adjust step 3 of the dynamic programming stage, si
this stage thel- and r-pointers are needed. For this we follow the lines of the proo
Lemma 3. We have to show how we maintain the currentl- andr-pointers efficiently. For
this we store and maintain compressed versions of the partial maxima stack at eac
(i, j) ∈ E, and of the shortcut pointers at each vertexi ∈ V .

For each(i, j) ∈ E we use the notion of the partial maxima stackS(i, j), however we do
not storeS(i, j) directly, but only a subset ofO(

√
p) indices. Let the stackS ′(i, j) contain

this subset of indices.S(i, j) is defined as in Lemma 3 to be the sequence of indices o
partial maxima of the sequence of lower spikes between two indicesk andk′. We letk be
the right endpoint of the last interval processed on FDi , andk′ as in Lemma 3 be the large
k′ > k for which (1) holds. In the beginningS ′(i, j) is initialized to be empty. After that w
directly compute it or update it from the previously stored stack, and we then extra
currentri,j from it. However,S(i, j) could contain up toO(p) indices, which we canno
afford to store. Thus we defineS ′(i, j) to store every�√p�th index ofS(i, j). More
precisely,S ′(i, j) contains the first (i.e., bottommost) index ofS(i, j), and additionally
every�√p�th index, and finally the last index ofS(i, j), in the same order as inS(i, j).

In order to obtain alld ′
w efficiently during the run of the algorithm we store on

O(
√
p) shortcut pointersfor each FDi (as opposed toO(p) pointers as in Lemma 3

For every integer 1� k � √
p we store at each position�k√p� (which corresponds to th

left boundary of the�k√p�th cell of FDi ) a pointer to the rightmost white point on FDi

which lies to the left of�k√p�. If there is no such white point we set the shortcut poin
to NIL. We build up this pointer structure on the fly by computing a pointer value from
next shortcut pointer to its left.

In the following we show that we can process the next intervalI from the priority queue
Q in O(

√
p) time.

Lemma A.1. Let x be the current position of the sweep line, and letI ∈ Ci be the next
interval inQ. Then allS ′(i, j), ri,j , andli,j can be updated to comply with the new posit
l(I ) of the sweep line in total timeO(

√
p).

Proof. In the beginning of the algorithm allli,j and ri,j are initialized with NIL. For
an intervalI that has been picked fromQ we update those pointers as follows: Assu
I ∈ Ci and j ∈ Adj(i). If li,j � l(I ) then it remains unchanged. This is because it
been the leftmost reachable point of the previous interval, which due to the simplic
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FDi,j , see Lemma 1, implies that it is also reachable from the current interval and can
further to the left. If howeverli,j < l(I), thenli,j cannot be reached by a feasible monot
increasing path fromI anymore. Thus in this case we greedily scan the cells of FDi,j to the
right of l(I ) just as in the proof of Lemma 3 until we find the newli,j . The only difference
is that we compute the free space in each cell on the fly. Note that, once we have co
the pointers, we free the storage required for the free space.

Again it is more challenging to update theri,j : Note that by construction hold
that al′ � bk′ and al′ > bk′+1 for l′ = bottom(S ′(i, j)) and k′ = top(S ′(i, j)). First let
r(I) � k′. We locater(I) in S ′(i, j). If r(I) � l′ thenri,j remains the same. Otherwi
we remove all entries from the bottom ofS ′(i, j) that are smaller thanr(I). Now, in
order to maintain the property that bottom(S ′(i, j)) = bottom(S(i, j)), we find thatk with
r(I) � k � bottom(S ′(i, j)) which maximizesak. We appendk to the bottom ofS ′(i, j).

By definition of top(S ′(i, j)) we know that the largestk′ � k for which (1) holds has to
be greater or equal to top(S ′(i, j)). We greedily search for this new value ofk′ exactly as
in Lemma 3 and construct, on the fly, the full partial maxima stack starting at top(S ′(i, j))
and ending ink′. We then pop top(S ′(i, j)) and push the spikes of this new stack at spac√
p ontoS ′(i, j), taking care that at the transition between the two stacks the spac

correct, and make sure to pushk′ ontoS ′(i, j). We setri,j to be the firstd ′
w which bounds

a white interval on FDj to the left ofk′ + 1. We find thisd ′
w by greedily searching for th

next white point on FDj to the left ofk′ + 1, following shortcut pointers when we me
them. Now consider the special case that the value ofk′ remains the same. Ifl(I ) � ri,j ,
thenri,j remains the same. Otherwise there is no point on FDj which can be reached by
monotone feasible path fromI , henceri,j := NIL.

If r(I) > k′, then we discardS ′(i, j). We directly construct the full partial maxima sta
starting atr(I) and ending ink′, and store the indices at

√
p-spacing inS ′(i, j) as before.

Note that the size of eachS ′(i, j) is onlyO(
√
p) during the whole course of the alg

rithm. Also the number of shortcut pointers stored per vertexi ∈ V is O(
√
p). Thus the

total storage is indeed at mostO(q
√
p). For the analysis of the runtime consider a fix

(i, j) ∈ E. During the whole course of the algorithm bottom(S ′(i, j)) increases monoton
cally, and every integer between 1 andp−1 is touched at most a constant number of tim
and is at most once inserted in or removed fromS ′(i, j). The argument is similar to th
proof of Lemma 3. Thus all changes ofS ′(i, j) takeO(p) time in total. However the step
of locatingr(I) in S ′(i, j) and findingd ′

w takeO(
√
p) time per white interval in FDi . ✷

From Lemma A.1 we know that all data structures can be updated inO(
√
p) time for

one processed interval ofQ. Thus the processing of all intervals takesO(pq
√
p) time in

total. The computation of all shortcut pointers takesO(p) time. The handling of insertions
deletions, and changes of intervals inQ takesO(pq logq) as before. Hence we obtaine
the following result:

Lemma A.2. There is an algorithm that decides if there is a pathπ in G such that
δF(α,βπ) � ε in O(pq(

√
p + logq)) time andO(q

√
p) space.

Now let 1� t � p be a given tradeoff parameter. We space the spikes inS ′(i, j) at
distancet instead of

√
p. Similarly we store shortcut pointers at each cell boundary�kt�
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instead of�k√p� for every integer 1� k � p/t . This way the storage becomesO(pq/t),
and the runtime isO(pq(t + logq)) since in both cases the time to process an interv
Q is linear in the spacing of the spikes and the shortcut pointers.

Corollary A.1. For any1 � t � p there is an algorithm that decides if there is a pathπ in
G such thatδF(α,βπ) � ε in O(pq(t + logq)) time andO(pq/t) space.

A.2. Path reconstruction

Above we only handled the decision problem without any attached path point
support the path reconstruction. However we clearly do not want to store allO(pq) path
pointers. We overcome this problem by applying a standard dynamic programming
for saving space, see [3,4]. However we will not be able to exploit it to its full extent,
that it will introduce a logarithmic factor in the runtime. We breakα up into several smalle
pieces and compute the solution for those subparts ofα while keeping certain path pointe
information for these subparts.

For i, j ∈ {0,1, . . . , p} with i � j let α[i, j ] := α|[i,j ] be the polygonal sub-curve o
α starting in theith and ending in thej th vertex ofα. We start with applying the abov
algorithm to the whole curveα = α[0,p].

Lemma A.3. Let j ∈ V . Then in each step of the algorithm,Cj contains at most on
consecutive subchain of intervals that can be reached by a monotone feasible p
FDi,j from points onFDi , for eachi ∈ Adj(j). Each consecutive subchain ofCj equals
[li,j (I ), ri,j (I )] ∩ FDj for some white intervalI on FDi .

Proof. Assume that there are two disjoint consecutive subchainsC andC′ of Cj , that
can be reached by a monotone feasible path in FDi,j from two disjoint intervalsI andI ′,
respectively, on FDi . Let C lie to the left ofC′, andI lie to the left ofI ′. Since the left
endpoints of processed intervals ofQ always lie to the left of the consecutive chains,
know thatl(I ) � l(Cj ) � l(C) and alsol(I ′) � l(Cj ) � l(C). But from Lemma 1 then
follows thatC can be reached by a monotone feasible path in FDi,j from I ′, and thusC
andC′ are not disjoint. IfI ′ lies to the left ofI then every feasible monotone path fromI to
C crosses every feasible monotone path fromI ′ to C′, thusC andC′ are also not disjoint

For the second part, letC be a consecutive subchain ofCj and assume tha
[li,j (I ), ri,j (I )] ∩ FDj , [li,j (I ′), ri,j (I ′)] ∩ FDj ⊆ C with [li,j (I ), ri,j (I )] ∩ [li,j (I ′),
ri,j (I

′)] = ∅, for two disjoint intervalsI, I ′ on FDi . Let I lie to the left of I ′. Then
l(I ), l(I ′) � l(C), such that by Lemma 1 every feasible monotone path fromI to C

crosses every feasible monotone path fromI ′ to C, such thatli,j (I ) = li,j (I
′) and

ri,j (I ) = ri,j (I
′). ✷

We maintain a variant of the path pointers that we had in step 4 of the algorith
Section 2.3: For eachj ∈ V we maintain a partition ofCj into consecutive subchains th
can be reached by a monotone feasible path in FDi,j from intervals on FDi for i ∈ Adj(j).
From Lemma A.3 we know that there is one interval on FDi from which the correspondin
consecutive subchain on FDj can be reached. Thus we can associate to each conse
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subchain exactly one feasible monotone path in the free space surface to someLk . In fact,
for each consecutive subchain we maintain adirect pointerthat points directly to the poin
Lk that can be reached from points on this consecutive subchain by a feasible mo
path in a concatenation of free space diagrams of the free space surface. These
can be maintained by constructing the path pointers as in Section 2.3, but instead of
them we follow them to the pointers of the consecutive subchain they can be reache
and then we store those direct pointers.

In order to be able to reconstruct one actual feasible path from the direct p
information, we compute different direct pointers for different parts of the free s
surface. For an edge(i, j) ∈ E, let µi,j be the number of the cell in FDi,j which contains
the right endpoint of the currentCj . Note thatµi,j changes during the course of t

algorithm. LetV i,j
µi,j

:= FDε(α(µi,j + 1), si,j ) be the vertical right boundary of the part

free space diagram FD′i,j := FDε(α[0,µi,j + 1], si,j ). Note thatV i,j
µi,j contains at most on

white interval.
Note that in the regular algorithm we consider one-dimensional free space dia

only at the upper and lower boundaries of FDi,j for (i, j) ∈ E. However we now have t
construct one-dimensional sub free space diagrams at certain vertical cell bounda
FDi,j . We wish to compute for each white interval on aV

i,j
�p/2� a direct pointer to anLk

that can be reached by a monotone path from this interval. During the algorithm, on
arrived atµi,j � �p/2�, the stored partial maxima stack provides the information wh

interval can be reached from the white interval (if it exists at all) onV
i,j

�p/2�, which in turn
yields the direct pointer we want to store.

Furthermore we wish to compute for each whiteRl a direct pointer to a white interva
on aV

i,j

�p/2�. For this we maintain for each consecutive subchain whose right endpo

larger or equal to�p/2� a direct pointer to a white interval on aV i,j

�p/2�. Note that these
direct pointers can be maintained in the same way as the other direct pointers. Th
consecutive subchain lies completely to the left of�p/2� it stores a direct pointer to aLk ,
if it lies completely to the right it stores a direct pointer to a white interval on aV

i,j
�p/2�, and

if it contains�p/2� it stores both pointers. This needsO(pq(t + logq)) time andO(pq/t)

storage for the dynamic programming. Since every consecutive chainCj contains at mos
|Adj(j)| subchains due to Lemma A.3, all direct pointers can be maintained durin
dynamic programming withO(q) extra space.

Concatenating the direct pointer information of both subproblems we can ident
mostO(q) paths that start at someLk , end at someRl , and pass a white interval on
V

i,j

�p/2� at a known point each. Note that the only information we have for these

are their starting point, the point where they pass the white interval onV
i,j
�p/2� in the free

space diagram FDi,j , and their endpoint. We only consider exactly one of these paths
store its starting pointLk∗ , its endpointRl∗ , and the indicesi∗, j∗ and the pointa∗, where
FDi∗,j∗ is the free space diagram where the path crosses the white interval onV

i∗,j∗
�p/2� in the

pointa∗.
In a recursive manner we now solve the subproblem in a second level forα[0, �p/2�],

maintaining direct pointers as above with respect to�p/4�, and with the only start verte
k∗ and the end pointa∗. Note that this requires a very slight modification of the algorit
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in that the endpoint is now not in a vertex of the graph, but on a fixed point on the
(i∗, j∗), which is similar to one of the variants discussed in Section 2.7. Similarly
solve the subproblem forα[�p/2�,p], with respect to�3p/4�, and with the start poin
a∗ and the end vertexl∗. Concatenating the direct pointers for both subproblems we
extract four pointers representing one feasible monotone path in the free space surfa
can be performed inO(pq(t + logq)) time, O(pq/t) storage, andO(q) extra storage
for the new pointers. We keep repeating this recursive process for logp levels until we
end at single segments ofα. We keep concatenating the computed pointers, and obt
desired feasible path from someLk to someRl in the end. The whole recursive procedu
needsO(pq(t + logq) logp) time,O(pq/t) storage, andO(q) extra storage for the pat
representation. Altogether this yields the following result:

Theorem 3. For any1 � t � p there is an algorithm that decides if there is a pathπ in G

such thatδF(α,βπ ) � ε in O(pq(t + logq)) time andO(pq/t) space.
If such a pathπ exists it can be computed together with a feasible monotone pa

the free space surface inO(pq(t + logq) logp) time andO(pq/t) space. Fort = 1 the
runtime isO(pq logq).

A.3. Parametric search

In order to find the optimalε we can apply parametric search in the same w
as before. We simply plug the time–space tradeoff variant into the parametric s
paradigm and arrive, using the same argumentation as in Section 2.6, at a runt
O(pq(t + logq) log(pq)) and space complexityO(pq/t). Now in order to actually find
the path we first run this variant of the parametric search, which determines the optiε∗
for which there exists a pathπ in G such thatδF(α,βπ ) � ε∗. With this value forε we run
the algorithm that computes the path inO(pq(t + logq) logp) time andO(pq/t) space.
Thus we can actually compute the optimal path inG in O(pq(t + logq) log(pq)) time and
O(pq/t) space.

Theorem 4. For any1 � t � p there is an algorithm which computes a pathπ in G which
minimizesδF(α,βπ) in O(pq(t + logq) log(pq)) runtime andO(pq/t) space.
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