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AbstractD5

We classify the finite groups of orthogonal transformations in 4-space, and we study theseD6

groups from the viewpoint of their geometric action, using polar orbit polytopes. For oneD7

type of groups (the toroidal groups), we develop a new classification based on their actionD8

on an invariant torus, while we rely on classic results for the remaining groups.D9

As a tool, we develop a convenient parameterization of the oriented great circles on theD10

3-sphere, which leads to (oriented) Hopf fibrations in a natural way.D11
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1 Introduction and ResultsD151

A d-dimensional point group is a finite group of orthogonal transformations in Rd, or in otherD152

words, a finite subgroup of O(d). We propose the following classification for the 4-dimensionalD153

point groups.D154

Theorem 1.1. The 4-dimensional point groups can be classified intoD155

• 25 polyhedral groups (Table 10),D156

• 21 axial groups (7 pyramidal groups, 7 prismatic groups, and 7 hybrid groups, Table 15),D157

• 22 one-parameter families of tubical groups (11 left tubical groups and 11 right tubicalD158

groups, Table 2), andD159

• 25 infinite families of toroidal groups (Table 6), among themD160

– 2 three-parameter families,D161

– 19 two-parameter families, andD162

– 4 one-parameter families.D163

In contrast to earlier classifications of these groups (notably by Du Val in 1962 [15] and byD164

Conway and Smith in 2003 [8], see Section 3.3), we emphasize a geometric viewpoint, trying to vi-D165

sualize and understand actions of these groups. Besides, we correct some omissions, duplications,D166

and mistakes in these classifications.D167

Overview of the groups. The 25 polyhedral groups are related to the regular polytopes.D168

The symmetries of the regular polytopes are well understood, because they are generated byD169

reflections, and the classification of such groups as Coxeter groups is classic. We will deal withD170

these groups only briefly, dwelling a little on just a few groups that come in enantiomorphic pairsD171

(i.e., groups that are not equal to their own mirror.)D172

The 21 axial groups are those that keep one axis fixed. Thus, they essentially operate in theD173

three dimensions perpendicular to this axis (possibly combined with a flip of the axis), and theyD174

are easy to handle, based on the well-known classification of the three-dimensional point groups.D175

The tubical groups are characterized as those that have (exactly) one Hopf bundle invariant.D176

They come in left and right versions (which are mirrors of each other) depending on the HopfD177

bundle they keep invariant. They are so named because they arise with a decomposition of theD178

3-sphere into tube-like structures (discrete Hopf fibrations).D179

The toroidal groups are characterized as having an invariant torus. This class of groups isD180

where our main contribution in terms of the completeness of the classification lies. We proposeD181

a new, geometric, classification of these groups. Essentially, it boils down to classifying theD182

isometry groups of the two-dimensional square flat torus.D183

We emphasize that, regarding the completeness of the classification, in particular concerningD184

the polyhedral and tubical groups, we rely on the classic approach (see Section 3.2). Only forD185

the toroidal and axial groups, we supplant the classic approach by our geometric approach.D186



2. Orbit Polytopes 5

Hopf fibrations. We give a self-contained presentation of Hopf fibrations (Section 4). InD187

many places in the literature, one particular Hopf map is introduced as “the Hopf map”, eitherD188

in terms of four real coordinates or two complex coordinates, leading to “the Hopf fibration”.D189

In some sense, this is justified, as all Hopf bundles are (mirror-)congruent. However, for ourD190

characterization, we require the full generality of Hopf bundles. As a tool for working withD191

Hopf fibrations, we introduce a parameterization for great circles in S3, which might be usefulD192

elsewhere.D193

Orbit polytope. Our main tool to understand tubical groups are polar orbit polytopes. (Sec-D194

tion 2). In particular, we study the symmetries of a cell of the polar orbit polytope for differentD195

starting points.D196

2 Orbit PolytopesD197

2.1 Geometric understanding through orbit polytopes: the pyritohe-D198

dral groupD199

One can try to visualize a point group G ⩽ O(d) by looking at the orbit of some point 0 ̸= v ∈ Rd
D200

and taking the convex hull. This is called the G-orbit polytope of v. For an in-depth study ofD201

orbit polytopes and their symmetries, refer to [17, 18].D202

The orbit polytope will usually depend on the choice of v, and it may have other symmetriesD203

in addition to those of G. For example, the Cn-orbit polytope in the plane is always a regularD204

n-gon, and this orbit polytope has the larger dihedral group D2n as its symmetry group.D205

We will illustrate the usefulness of orbit polytopes with a three-dimensional example. TheD206

pyritohedral group is perhaps the most interesting among the point groups in 3 dimensions.D207

It is generated by a cyclic rotation of the coordinates (x1, x2, x3) 7→ (x2, x3, x1) and by theD208

coordinate reflection (x1, x2, x3) 7→ (−x1, x2, x3). It has order 24. Figure 1 shows a few examplesD209

of orbit polytopes for this group, and their polars. The elements of the pyritohedral groupD210

are simultaneously symmetries of the octahedron (where it is an index-2 subgroup of the fullD211

symmetry group) and the icosahedron (an index-5 subgroup), and of course of their polars,D212

the cube and the dodecahedron. The group contains reflections, but it is not generated by itsD213

reflections.D214

The orbit of the points (1, 0, 0) and (1, 1, 1) generate the regular octahedron and the cube,D215

respectively. These are each other’s polars, but they don’t give any specific information aboutD216

the pyritohedral group.D217

Figure 1a shows the orbit polytope (in yellow) of a generic point ( 23 ,
1
2 , 1), and its polar (inD218

orange). The symmetries of these polytopes are exactly the pyritohedral group. That orbitD219

polytope has 6 rectangular faces (lying in planes of the faces of a cube), 8 equilateral trianglesD220

(lying in the faces of an octahedron), and 12 trapezoids (going through the edges of some cube,D221

but not of some regular octahedron). The polar has 24 quadrilateral faces, corresponding to theD222

24 group elements. For any pair of faces, there is a unique symmetry of the polytope that mapsD223

one face to the other.1D224

If we choose one coordinate of the starting point to be 0, the rectangles shrink to line seg-D225

ments, and the trapezoids become isosceles triangles. See Figure 1b. The orbit polytope is anD226

icosahedron with 20 triangular faces: 8 equilateral triangles and 12 isosceles triangles. The polarD227

polytope is a pyritohedron, that is, a dodecahedron with 12 equal but not necessarily regularD228

pentagons. For this choice, the orbit contains only 12 points, but the polytope gains no addi-D229

tional symmetries beyond the pyritohedral symmetries. However, for (0,
√
5−1
2 , 1), we get theD230

regular icosahedron and the regular dodecahedron. For the specific choice (0, 1
2 , 1), the polarD231

orbit polytope is one of the crystal forms of the mineral pyrite, which gave the polytope andD232

group its name, see Figure 1b. This polytope is also an alternahedron on 4 symbols [13]. AnD233

alternahedron can be constructed as the orbit of a generic point (x1, x2, x3, x4) ∈ R4 under allD234

even permutations. Since the points lie in a hyperplane x1 + x2 + x3 + x4 = const, this is aD235

three-dimensional polytope. For the starting point (0, 1, 2), we obtain the alternahedron thatD236

results from the canonical choice (x1, x2, x3, x4) = (1, 2, 3, 4), a scaled copy of Figure 1b.2D237

1In mineralogy, this shape is sometimes called a diploid, and diploidal symmetry is an alternative name for
pyritohedral symmetry. In our context, the term diploid will show up in a different sense.

2The illustration of this polytope in [13, Fig. 1] may make the wrong impression of consisting of equilateral
triangles only. However, its isosceles faces have base length 2 and two equal legs of length

√
6 ≈ 2.45.
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The pyritohedral group differs from the symmetries of the cube (or the octahedron) by allow-D238

ing only even permutations of the coordinates x1, x2, x3. When two coordinates are equal, thisD239

distinction plays no role, and the resulting polyhedron will have all symmetries of the cube, seeD240

Figure 1f. (We mention that some special starting points of this form lead to Archimedean poly-D241

topes: The starting point (1, 1,
√
2+1) generates a rhombicuboctahedron with 8 regular trianglesD242

and 18 squares; (0, 1, 1) generates the cuboctahedron with 8 regular triangles and 6 squares; withD243

( 1√
2+1

, 1, 1), we get the truncated cube with 8 regular triangles and 8 regular octagons, similarD244

to the yellow polytope in Figure 1f.)D245

For the purpose of visualizing the pyritohedral group, we will try to keep the three coordinatesD246

distinct. By choosing the point close to (1, 1, 1) or (0, 0, 1), we can emphasize the cube-like orD247

the octahedron-like appearance of the orbit polytope or its polar. For example, the polar orbitD248

polytope for (0, 1
10 , 1) resembles a cube whose squares are subdivided into rectangles, like theD249

orange polytope in Figure 1c. (Actually, the mineral pyrite has sometimes a cubic crystal formD250

in which the faces carry parallel thin grooves, so-called striations.3) See also Figure 1d forD251

( 2
10 ,

1
10 , 1). The orbit polytope in Figure 1c appears like an octahedron whose edges have beenD252

shaved off, but in an asymmetric way that provides a direction for the edges (see Figure 32a onD253

p. 71 in Section 8.6).D254

On the other hand, the polar orbit polytope for ( 8
10 ,

9
10 , 1) resembles an octahedron, carryingD255

a pinwheel-like structure on every face. See Figure 1e.D256

(a) ( 2
3
, 1
2
, 1) (b) (0, 1

2
, 1)

(c) (0, 1
10
, 1) (d) ( 2

10
, 1
10
, 1)

(e) ( 8
10
, 9
10
, 1) (f) ( 1

4
, 1, 1)

Figure 1: Orbit polytopes of the pyritohedral group (yellow, on the left) and their polar polytopes
(orange, on the right) for various starting points. The pictures are rescaled to uniform size; the
scale is not maintained between the pictures.

2.1.1 The pyritohedral group for flatlandersD257

We will be in the situation that we try to visualize 4-dimensional point groups through orbitD258

polytopes or their polars. So let us go one dimension lower and imagine that we, as ordinaryD259

three-dimensional people, would like to explain the pyritohedral group to flatlanders. We will seeD260

that different options have different merits, and there may be no unique best way of visualizingD261

a group.D262

3See http://www.mineralogische-sammlungen.de/Pyrit-gestreift-engl.html

http://www.mineralogische-sammlungen.de/Pyrit-gestreift-engl.html
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Assuming that flatlanders accept the notions of a cube or an octahedron, we could tell themD263

that we build a cube whose squares are striped in such a way that the patterns on adjacentD264

squares never abut, similar to the orange polytope in Figure 1c. It is allowed to map any squareD265

to any other square (6 possibilities) in such a way that the stripes match (the dihedral group D4D266

with 4 possibilities, for a total of 24 transformations).D267

Alternatively, we could tell them that the edges of an octahedron are oriented such that eachD268

triangle forms a directed cycle (Figure 32a on p. 71). It is allowed to map any triangle to anyD269

other triangle (8 possibilities) in such a way that edge directions are preserved (the cyclic groupD270

C3 with 3 possibilities, for a total of 24 transformations).D271

Another option is the polar of (c, 1, 1), where c ̸∈ {0, 1}, see the orange polytope in Figure 1f.D272

It has 24 isosceles triangles, one per group element, As c approaches 1 or 0, the polar orbitD273

polytope converges to an octahedron or to a rhombic dodecahedron. As a shape, the triangleD274

does not reveal much about the group, so we have to add the information that the base edgeD275

acts as a mirror, and the opposite vertex is a 3-fold gyration point, i.e., there are three rotatedD276

copies that fit together. (This is essentially what is expressed in the orbifold notation 3∗2.) WeD277

are not allowed to use the reflection that maps the triangle to itself, and we might indicate thisD278

by placing an arrow along the base edge.D279

In most cases, it was advantageous to describe the group in terms of the polar orbit polytope:D280

We have many copies of one shape, and any shape can be mapped to any other. It is notD281

necessarily the best option to insist that all points of the orbit are distinct. Sometimes it isD282

preferable to allow also symmetries within each face. In this case, the information, which of theseD283

symmetries are in the group must be conveyed as side information, for example by decorationsD284

or patterns that should be left invariant, such as the stripes in Figure 1c.D285

Which symmetries of a cell are in G?

none some all. . . . . .

Which mappings between cells are in G?

orbit ≡ cells

(free orbit)︸ ︷︷ ︸

. . . between adjacent cells
on the top and bottom?

. . . in different tubes?

Figure 2: Geometric understanding of a group G through is polar orbit polytope

Figure 2 summarizes the relation between a polar orbit polytope and its group G. All cellsD286

are equal, and the cells correspond to the points of the orbit. We know that between any twoD287

cells, there is at least one transformation in G that carries one cell to the other. However, itD288

is not directly apparent which transformations carry one cell to another cell, or to itself. If allD289

symmetries of a cell belong to the group, the answer is clear; otherwise we have to discuss thisD290

question and describe the answer separately.D291

The bottom row of Figure 2 splits this question into two subproblems that are relevant onlyD292

for tubical groups (Section 6), namely the relation between adjacent cells in a tube, and betweenD293

cells of different tubes.D294

2.1.2 Polar orbit polytopes and Voronoi diagramsD295

There is a well-known connection between polar orbit polytopes and spherical Voronoi diagrams,D296

or more generally, between polytopes whose facets are tangent to a sphere and spherical VoronoiD297

diagrams: The central projection of the polytope to the sphere gives the spherical VoronoiD298
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Figure 3: Spherical Voronoi diagrams of the orbits in Figure 1a and Figure 1e.

diagram of the tangency points (the orbit points). Figure 3 shows spherical Voronoi diagramsD299

for two orbits of Figure 1.D300

Thus, when we look at polar orbit polytopes, we may think about partitioning the sphereD301

according to the closest point from the orbit. The orbit polytope and the spherical VoronoiD302

diagram have the same combinatorial structure, but the faces of the orbit polytope are trueD303

Euclidean polytopes, whereas the faces of the Voronoi diagram are spherical polytopes. TheD304

closer the orbit points are together, the smaller the distortion will be, and the more the orbitD305

polytope will represent the true metric situation of the Voronoi diagram.D306

In our illustrations of 4-dimensional groups, we will prefer to show orbit polytopes, becauseD307

these are easier to compute.D308

2.2 Fundamental domains and orbifoldsD309

For comparison, we mention another way to characterize geometric groups, namely by showing aD310

fundamental domain of the group, possibly extended by additional information that characterizesD311

the type of rotations that fix an edge, such as in an orbifold. This is particularly appropriateD312

for Coxeter groups, which are generated by reflections and for which the choice of fundamentalD313

domain is canonical.D314

Dunbar [16] studied orientation-preserving 4-dimensional point groups. He constructed fun-D315

damental domains for 10 out of the 14 orientation-preserving polyhedral groups (omitting±[I×T ]D316

and ±[I ×O] and their mirrors). For each of the 21 orientation-preserving polyhedral and axialD317

groups, he showed the structure of the singular set (fixpoints of some group elements) of theD318

corresponding orbifold, which is a 3-valent graph where each edge is labeled with the order ofD319

the rotational symmetry around the edge.4D320

The fundamental domain, possibly enriched by additional information, is a concise way forD321

representing some groups, but it does not have the immediate visual appeal of polar orbit poly-D322

topes. For example, the fundamental domain of every Coxeter group is a simplex, and theD323

distinctions between different groups lies only in the dihedral angles at the edges.D324

2.3 Left or right orientation of projected images: view from outsideD325

We will illustrate many situations in 4-space by three-dimensional graphics that are derivedD326

through projection. Just as a plane in space has no preferred orientation, a 3-dimensionalD327

hyperplane in 4-space has no intrinsic orientation. It depends on the side from which we look atD328

it. Hence, it is important to establish a convention about the orientation, in order to distinguishD329

a situation from its mirror image.D330

Let us look at plane images of the familiar three-dimensional space “for orientation” in thisD331

matter. For a polytope or a sphere, we follow the convention that we want to look at it fromD332

outside, as for a map of some part of the Earth. Accordingly, when we interpret a plane pictureD333

with an x1, x2-coordinate system (with x2 counterclockwise from x1), the usual convention is toD334

think of the third coordinate x3 as the “vertical upward” direction that is facing us, leading toD335

a right-handed coordinate system x1, x2, x3.D336

Similarly, when we deal with a 4-polytope and want to show a picture of one of its facets, whichD337

is a three-dimensional polytope F , we use a right-handed orthonormal x1, x2, x3-coordinate sys-D338

4In the list of orientation-reversing polyhedral groups that are Coxeter groups [16, Figure 17], the 6th and 8th
entries, which are the Coxeter-Dynkin diagrams for the orientation-reversing extensions of T ×C3

T and J ×∗
J J1,

must be exchanged.
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tem in the space of F that can be extended to a positively oriented coordinate system x1, x2, x3, x4D339

of 4-space such that x4 points outward from the 4-polytope.D340

We use the same convention when drawing a cluster of adjacent facets, or when illustratingD341

situations in the 3-sphere, either through central projection or through parallel projection. ForD342

example, a small region in the 3-sphere can be visualized as 3-space, with some distortion, andD343

we will be careful to ensure that this corresponds to a view of the sphere “from outside”.D344

There are other contexts that favor the opposite convention. For example, stereographicD345

projection is often done from the North Pole (x1, x2, x3, x4) = (0, 0, 0, 1) of S3, and this yields aD346

view “from inside” in the (x1, x2, x3)-hyperplane. See for example [35, §7], or also [16, p. 123]D347

for a different ordering of the coordinates with the same effect.D348

3 Point groupsD349

The 2-dimensional point groups are the cyclic groups Cn and the dihedral groups D2n, for n ≥ 1.D350

For n ≥ 3, they can be visualized, respectively, as the n rotations of the regular n-gon, and theD351

2n symmetries (rotations and reflections) of the regular n-gon. See Figure 4.D352

C5 D10

Figure 4: The group C5 consisting of the rotational symmetries of the regular pentagon, and the
group D10 of all symmetries of the regular pentagon.

The 3-dimensional point groups are well-studied (see Section 3.6 below). In one sentence,D353

they can be characterized as the symmetry groups of the five Platonic solids and of the regularD354

n-side prisms, and their subgroups. This gives a frame for classifying these groups, but it doesD355

not give the full information. It remains to work out what the subgroups are, and moreover,D356

there are duplications, for example: certain Platonic solids are polar to each other; the verticesD357

of the cube are contained in the vertices of an icosahedron; and in turn, they contain the verticesD358

of a tetrahedron; a cube is a special quadrilateral prism.D359

3.1 The 4-dimensional orthogonal transformationsD360

3.1.1 Orientation-preserving transformationsD361

We call a 4-dimensional orientation-preserving transformation a rotation. In some appropriateD362

basis with coordinates x1, x2, x3, x4, every rotation has the formD363

Rα1,α2 =


cosα1 − sinα1 0 0
sinα1 cosα1 0 0
0 0 cosα2 − sinα2

0 0 sinα2 cosα2

 , or Rα1,α2 =

(
Rα1 0
0 Rα2

)
= diag(Rα1 , Rα2)

(1)
in block form, using the rotation matrices Rα =

(
cosα − sinα
sinα cosα

)
as building blocks [10, §12.1].D364

If α2 = 0, we have a simple rotation: a rotation in the x1x2-plane by the angle α1, leavingD365

the complementary x3x4-plane fixed. Thus, the general rotation is the product of two simpleD366

rotations in two orthogonal planes, and we call it more specifically a double rotation. If α2 ̸= ±α1D367

then the two planes are uniquely determined. Each plane is an invariant plane: as a set, it isD368

fixed by the operation.D369

If α1 = α2 = π, the matrix is the negative identity matrix, and we have the central inversion orD370

antipodal map, which we denote by −id. In R4, this is an orientation-preserving transformation.D371

3.1.2 Absolutely orthogonal planes and circlesD372

When we speak of orthogonal planes in 4-space, we always mean “absolutely” orthogonal, in theD373

sense that every vector in one plane is orthogonal to every vector in the other plane.D374
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We will mostly study the situation on the sphere. Here, an invariant plane becomes anD375

invariant great circle, and there are absolutely orthogonal great circles.D376

3.1.3 Left and right rotationsD377

The rotations with α2 = ±α1 play a special role: Every point is moved by the same angle |α1|,D378

and there is no unique pair of invariant planes. The rotations with α2 = α1 are left rotations, andD379

the rotations with α2 = −α1 are right rotations. It is easy to see that every rotation Rα1,α2
is theD380

product of a left and a right rotation (with angles (α1 ± α2)/2). This representation is unique,D381

up to a multiplication of both factors with −id. Left rotations commute with right rotations.D382

These facts are not straightforward, but they follow easily from the quaternion representationD383

that is discussed below. The product of a left rotation by βL and a right rotation by βR is aD384

rotation RβL+βR,βL−βR
.D385

3.1.4 Orientation-reversing transformationsD386

An orientation-reversing transformation has the following form, in some appropriate basis withD387

coordinates x1, x2, x3, x4:D388

R̄α =


cosα − sinα 0 0
sinα cosα 0 0
0 0 −1 0
0 0 0 1

 = diag(Rα,−1, 1) (2)

It operates in some three-dimensional subspace x1, x2, x3 and leaves one axis x4 fixed. The x3-D389

axis is inverted. For α = 0, we have a mirror reflection in a hyperplane, R̄0 = diag(1, 1,−1, 1).D390

For α = π, we have R̄π = diag(−1,−1,−1, 1), which could be interpreted as a reflection in theD391

x4-axis. In general, we have a rotary-reflection, which has two unique invariant planes: In oneD392

plane, it acts as a rotation by α; in the other plane, it has two opposite fixpoints in S3, and twoD393

other opposite points that are swapped. The square of an orientation-reversing transformationD394

R̄α is always a simple rotation.D395

3.1.5 Quaternion representationD396

The quaternions x1+x2i+x3j+x4k are naturally identified with the vectors x = (x1, x2, x3, x4) ∈D397

R4. We identify the set of unit quaternions with S3, the 3-sphere, and the set of pure unitD398

quaternions v1i+ v2j + v3k with the points (v1, v2, v3) on S2, the 2-sphere.D399

Every 4-dimensional rotation can be represented by a pair [l, r] of unit quaternions l, r ∈ S3.D400

See [8, §4.1]. The pair [l, r] operates on the vectors x ∈ R4, treated as quaternions, by the ruleD401

[l, r] : x 7→ l̄xr.

The representation of rotations by quaternion pairs is unique except that [l, r] = [−l,−r]. TheD402

rotations [l, 1] are the left rotations, and the rotations [1, r] are the right rotations: They cor-D403

respond to quaternion multiplication from the left and from the right. A left or right rotationD404

moves every point by the same angular distance α. In fact, as we shall see (Proportion 4.14(ii)),D405

a left or right rotation by an angle α other than 0 or π defines a Hopf bundle, a decompositionD406

of the 3-sphere S3 into great circles, each of which is rotated in itself by α. As transformationsD407

on S3, they operate as left screws and right screws, respectively. See Section 4.2.1.D408

We compose transformations by writing them from left to right, i.e. [l1, r1][l2, r2] denotes theD409

effect of first applying [l1, r1] and then [l2, r2].
5 Accordingly, composition can be carried out asD410

componentwise quaternion multiplication: [l1, r1][l2, r2] = [l1l2, r1r2].D411

Every orientation-reversing transformation can be represented asD412

∗[l, r] : x 7→ l̄x̄r.

See [8, §4.1]. The stand-alone symbol ∗ is alternate notation for quaternion conjugation ∗[1, 1] : x 7→D413

x̄. Then ∗[a, b] can be interpreted as a composition of the operations ∗ and [a, b]. Geometrically,D414

the transformation ∗ maps (x1, x2, x3, x4) to (x1,−x2,−x3,−x4), and it is a reflection in theD415

x1-axis. The transformation −∗ maps (x1, x2, x3, x4) to (−x1, x2, x3, x4), and it is a reflection inD416

the hyperplane x1 = 0.D417

5Du Val [15] used the opposite convention, and accordingly his notation [l, r] denotes the map x 7→ lxr̄.
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The inverse transformations are given by these formulas:D418

[l, r]−1 = [l̄, r̄]

(∗[l, r])−1 = ∗[r̄, l̄] = [l̄, r̄]∗ (3)

The last equation in (3) is also interesting: We may put the ∗ operation on the other side of aD419

transformation [l, r] after swapping the components l and r.D420

For l = r, it is easy to see that [l, l] maps the point 1 to itself, and thus operates onlyD421

on the pure quaternion part. Thus, the pairs [l, l] act as 3-dimensional rotations. For l =D422

cosα + sinα(ui + vj + wk), [l, l] performs a rotation by 2α around the axis with unit vectorD423

(u, v, w) ∈ R3. We will denote [l, l] by [l] : x 7→ l̄xl. When viewed as an operation on the unitD424

sphere S2, [l] is a clockwise rotation by 2α around the point (u, v, w).6 Note that, when theD425

quaternion l is used as a left rotation [l, 1] or a right rotation [1, l] in 4-space, every point isD426

rotated only by α, not by 2α.D427

3.2 The classic approach to the classificationD428

For a finite subgroup G ⩽ SO(4), we can consider the groupD429

A = { (l, r) ∈ S3 × S3 | [l, r] ∈ G },

which is a two-fold cover of G, as each rotation [l, r] ∈ G is represented by two quaternion pairsD430

(l, r) and (−l,−r) in A. The elements l and r of these pairs form the left and the right groupD431

of G:D432

L := { l | (l, r) ∈ A }, R := { r | (l, r) ∈ A }
These are finite groups of quaternions.D433

Proposition 3.1. There is a one-to-one correspondence betweenD434

1. The finite subgroups G of SO(4)D435

2. The subgroups A of L × R that contain the element (−1,−1), where L and R are finiteD436

groups of unit quaternions.D437

Since there are only five possibilities for finite groups of unit quaternions (including twoD438

infinite families, see Section 3.7), this makes it easy, in principle, to determine the finite subgroupsD439

of SO(4).D440

One task of this program, the enumeration of the subgroups A of a direct product L × R isD441

guided by Goursat’s Lemma, which was established by Goursat [20] in this very context: TheD442

groupsD443

L0 := { l | (l, 1) ∈ A }, R0 := { r | (1, r) ∈ A }
form normal subgroups of L and R, which we call the left and right kernel of G. The group A,D444

and hence G, is determined by L,R,L0, R0 and an isomorphism Φ : L/L0 → R/R0 between theD445

factor groups:D446

G = { [l, r] ∈ SO(4) | l ∈ L, r ∈ R, Φ(lL0) = rR0 }
The task reduces to the enumeration of all possibilities for the components L,R,L0, R0,Φ, andD447

to the less trivial task of determining which parameters lead to geometrically equal groups.D448

This approach underlies all classifications so far, and we call it the classic classification.D449

3.3 Previous classificationsD450

• Goursat [20], in 1889, classified the finite groups of motions of elliptic 3-space. EllipticD451

3-space can be interpreted as the 3-sphere S3 in which antipodal points are identified.D452

Hence, these groups can be equivalently described as those groups in O(4) that contain theD453

central inversion −id (the so-called diploid groups, see Section 3.8).D454

6Measuring the rotation angle clockwise is opposite to the usual convention of regarding the counterclockwise
direction as the mathematically positive direction. This is a consequence of writing the operation [l] as x 7→ l̄xl (as
opposed to the alternative x 7→ lxl̄, which was chosen, for example, by Du Val [15]) and regarding the quaternion
axes i, j, k as a right-handed coordinate frame of 3-space, see [12, Exercise 6.4 on p. 67, answer on pp. 189–190].
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• Threlfall and Seifert [35, 36], in a series of two papers in 1931 and 1933, extended thisD455

to the groups of Euclidean space, but they only concentrated on the chiral groups, i.e.,D456

the groups of SO(4). Their goal was to study the quotient spaces of the 3-sphere underD457

fixpoint-free group actions, because these lead to space forms, spaces of constant curvatureD458

without singularities.7D459

• Hurley [23], in 1951, independently of Threlfall and Seifert, built on Goursat’s classificationD460

and extended it to O(4). However, he considered only the crystallographic groups, seeD461

Appendix D.D462

• Du Val [15], independently of Hurley, in a small monograph from 1964, took up Goursat’sD463

classification and extended it to all groups. From a geometric viewpoint, he extensivelyD464

discussed the symmetries of the 4-dimensional regular polytopes.D465

• Conway and Smith [8] in a monograph from 2003, took up the classification task again,D466

correcting some omissions and duplications of the previous classifications. They gave geo-D467

metric descriptions for the polyhedral and axial groups in terms of Coxeter’s notation.D468

3.3.1 Related workD469

• De Medeiros and Figueroa-O’Farrill [14], in 2012, classified the groups of order pairs (l, r) ∈D470

S3 × S3 of unit quaternions under componentwise multiplication (using Goursat’s LemmaD471

again). These form the 4-dimensional spin group Spin(4). Since this is a double coverD472

of SO(4), the results should confirm the classification of the chiral point groups. Indeed,D473

Tables 16–18 in [14, Appendix B] give references to SO(4) and the classification of [8].8D474

• Marina Maerchik, in 1976 [29], investigated the groups that are generated by reflectionsD475

and simple rotations (also in higher dimensions), as reported in Lange and Mikhâılova [27],D476

(The term “pseudoreflections” in the title of [29] refers to simple rotations.)D477

• We mention that the approach of understanding the 4-dimensional groups through theirD478

orbits was pioneered by Robinson [32], who, in 1931, studied the orbits of the polyhedralD479

groups. He focused on the orbits themselves and their convex hulls (and not on the polarD480

orbit polytopes as we do).D481

3.4 Conjugacy, geometrically equal groupsD482

Conjugation with a rotation [a, b] transforms a group into a different group, which is geometricallyD483

the same, but expressed in a different coordinate system. Conjugation transforms an orientation-D484

preserving transformation [l, r] as follows:D485

[a, b]−1[l, r][a, b] = [a−1la, b−1rb]

Its effect is thus a conjugation of the left group by a and an independent conjugation of the rightD486

group by b. As a conclusion, we can represent the left group L and the right group R in anyD487

convenient coordinate system of our choice, and it is no loss of generality to choose a particularD488

representative for each finite group of quaternions. (Section 3.7 specifies the representatives thatD489

we use.)D490

7The term “Diskontuinuitätsbereich” in the title of [35, 36] is used like a well-established concept that does not
require a definition. In the contemporary literature, it means what we today call a fundamental domain. Seifert
and Threlfall were in particular interested in its topological properties, referring by “Diskontuinuitätsbereich” to
the quotient space under a group action, with a specification how the boundary faces of the fundamental domain
are to be pairwise identified. Du Val [15, § 30] also takes this interpretation and calls it a group-set space, where
group-set is his term for orbit.

In modern usage, “region of discontinuity” has other meanings, closer to the literal meaning of the words, where
discontinuity plays a role.

8However, besides noticing a few typographical errors, we found some discrepancies in these tables: (i) The
6th entry in Table 18 lists a group ±[C2k+1 × D̄4m]. We cannot match this with anything in the Conway–Smith
classification, even allowing for one typo. (ii) The last entry in Table 4.2 of [8] is + 1

f
[Cmf × Cnf ]. This group

does not appear in the tables of [14]. We don’t know whether these discrepancies arose in the translation from
the classification in [14] to the notions of SO(4) or they indicate problems in the classification itself.
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3.5 Obtaining the achiral groupsD491

The classic approach by Goursat’s Lemma leads only to the chiral groups. Since the chiral partD492

of an achiral group is an index-2 subgroup, every achiral group G is obtained by extending aD493

chiral group H with some orientation-reversing elementD494

e = ∗[a, b].
We will now derive some conditions on e, and possibly by modifying the group G into a geomet-D495

rically conjugate group, constrain e to a finite number of possibilities.D496

Let H be a chiral group with left group L and right group R. For each [l, r] ∈ H, we mustD497

have e−1[l, r]e ∈ H, i.e., H is normalized by e:D498

e−1[l, r]e = ∗[b̄, ā][l, r]∗[a, b] = [āra, b̄lb] ∈ H

This means that āra ∈ L and b̄lb ∈ R for every [l, r] ∈ H, which implies āRa = L and b̄Lb = R,D499

i.e., L and R are conjugate.D500

We conjugate G with [1, a], transforming G to some geometrically equivalent group G′ withD501

left group L′ and right group R′. Let us see what happens to an arbitrary element [l, r]:D502

[1, ā][l, r][1, a] = [l, āra] (4)

The set of values āra forms the new right group R′ = āRa = L, while the left group remainsD503

unchanged: L′ = L. Thus, we have achieved L′ = R′, i.e., the left and right groups are not justD504

conjugate, but equal.D505

The extending element e = ∗[a, b] is transformed as follows:D506

e′ := [1, ā]∗[a, b][1, a] = ∗[1, ba] = ∗[1, c] (5)

Thus we have simultaneously achieved e′ = ∗[1, c]. Moreover,D507

e′e′ = ∗[1, c]∗[1, c] = [c, c] ∈ H,

and thus, c must be an element of L = R.D508

Proposition 3.2. W.l.o.g., we can assume L = R, and the extending element is of the formD509

e = ∗[1, c], with c ∈ L.D510

This reduces the extending element to a finite number of possibilities. Conway and Smith [8,D511

p. 51] have sketched some additional considerations, which allow to further restrict the extendingD512

element, sometimes at the cost of giving up the condition L = R, see Figure 54 on p. 107.D513

Conjugation by [a, a] changes the transformations as follows:D514

[a, a]−1[l, r][a, a] = [a−1la, a−1ra]

[a, a]−1∗[l, r][a, a] = ∗[a−1la, a−1ra]

Its effect is thus a conjugation of the left and right group L = R by a. As for the chiralD515

groups, we can therefore choose any convenient representation of the left and right group L inD516

Proposition 3.2.D517

3.6 Point groups in 3-space and their quaternion representationD518

Table 1 lists the three-dimensional point groups that we will use. We will refer to them by theD519

notation of Conway and Smith [8], given in the first column. As alternate notations, we give theD520

orbifold notation, the Hermann-Mauguin notation or international symbol [21], and the CoxeterD521

notation, which we will revisit in Section 8.D522

The table contains all 7 polyhedral groups (3 chiral and 4 achiral ones): groups consisting ofD523

symmetries of regular polytopes. The groups that are not polyhedral (subgroups of the symmetryD524

groups of regular prisms, related to the frieze groups) include, besides +Cn and +D2n, fiveD525

additional classes of achiral groups, which are not listed here. In total, there are 14 types ofD526

three-dimensional point groups. Note that the subscript 2n in D2n is always even; we follow theD527

convention of using the order of the group, not the number of sides of the polygon or prism ofD528

which it is the symmetry group.D529

The notations +I,±I, etc. for the polyhedral groups are easy to remember. The one thatD530

requires some attention is the full symmetry group of the tetrahedron, which is denoted by TO,D531

as opposed to the pyritohedral group ±T , which is obtained by extending +T by the centralD532

reflection, and which we have discussed extensively in Section 2.1.D533
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the chiral groups
CS orbifold I.T. Coxeter name order orientation-preserving symmetries of . . .
+Cn nn n [n]+ n the n-sided pyramid n ≥ 1)
+D2n 22n n2 [2, n]+ 2n the n-sided prism (n ≥ 1)
+T 332 23 [3, 3]+ 12 the tetrahedron
+O 432 432 [3, 4]+ 24 the octahedron / the cube
+I 532 532 [3, 5]+ 60 the icosahedron / the dodecahedron

some achiral polyhedral groups
CS orbifold I.T. Coxeter name order description of the group

TO ∗332 4̄3m [3, 3] 24 all symmetries of the tetrahedron
±T 3∗2 m3̄ [3+, 4] or [+3, 4] 24 the pyritohedral group
±O ∗432 m3̄m [3, 4] 48 all symmetries of the octahedron
±I ∗532 53m [3, 5] 120 all symmetries of the icosahedron

Table 1: Some point groups in 3 dimensions

3.7 Finite groups of quaternionsD534

The finite groups of quaternions are [8, Theorem 12]:D535

2I = ⟨iI , ω⟩ 2D2n = ⟨en, j⟩
2O = ⟨iO, ω⟩ 2Cn = ⟨en⟩
2T = ⟨i, ω⟩ 1Cn = ⟨en/2⟩ (n odd)

The generators are defined in terms of the following quaternions, which we will use throughout:D536

ω = 1
2 (−1 + i+ j + k) (order 3)

iO = 1√
2
(j + k) (order 4)

iI = 1
2

(
i+

√
5−1
2 j +

√
5+1
2 k

)
(order 4)

en = cos π
n + i sin π

n (order 2n)

(6)

We follow Conway and Smith’s notation for these groups. For each group +G < SO(3) (see theD537

upper part of Table 1), there is quaternion group 2G of twice the size, containing the quater-D538

nions ±l for which [l] represents a rotation in +G. All these groups contain the quaternion −1.D539

In addition, there are the odd cyclic groups 1Cn, of order n. They cannot arise as left or rightD540

groups, because (−1,−1) is always contained in A and hence the left and right groups containD541

the quaternion −1.D542

3.8 Notations for the 4-dimensional point groups, diploid and haploidD543

groupsD544

We use the notation by Conway and Smith [8] for 4-dimensional point groups G, except for theD545

toroidal groups, where we will replace it with our own notation. If L and R are 3-dimensionalD546

orientation-preserving point groups, ±[L×R] denotes full product group { [l, r] | (l, r) ∈ 2L×2R },D547

of order 2|L| · |R|. Note that the groups 2L and 2R that appear in the definition are quaternionD548

groups, while the notation shows only the corresponding rotation groups L,R ∈ SO(3).D549

A group that contains the negation −id = [1,−1] is called a diploid group. A diploid index-fD550

subgroup of ±[L × R] is denoted by ± 1
f [L × R]. It is defined by two normal subgroups of 2LD551

and of 2R of index f . Different possibilities for the normal subgroups and for the isomorphism ΦD552

are distinguished by various ornamentations of the notation, see Appendix G for some of theseD553

cases.D554

A haploid group, which does not contain the negation −id, is denoted by + 1
f [L×R], and it isD555

an index-2 subgroup of the corresponding diploid group ± 1
f [L×R]. Achiral groups are index-2D556

extensions of chiral groups, and they are also denoted by various decorations.D557

Du Val [15] writes the groups as (L/L0;R/R0), where the boldface letters distinguish quater-D558

nion groups from the corresponding 3-dimensional rotation groups. Again, various ornamenta-D559

tions denote different cases of normal subgroups and the isomorphism Φ. Achiral extensionsD560

are denoted by a star. We will not work with this notation except for reference in our tables,D561

and then we will omit the boldface font. In some cases, we had to adapt Du Val’s names, seeD562

Tables 10 and 15.D563
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4 Hopf fibrationsD564

We give a self-contained presentation of Hopf fibrations and Hopf maps. Our treatment wasD565

inspired by Lyons [28], but we did not see it anywhere in this generality. As a tool, we introduceD566

a parameterization of the great circles in S3, which might be useful elsewhere. We also defineD567

oriented Hopf bundles: families of consistently oriented great circles.D568

We summarize the main statements:D569

• The great circles in S3 can be parameterized by pairs p, q of pure unit quaternions, orD570

equivalently, by pairs of points p, q ∈ S2 (Section 4.1). The choice of parameters is uniqueD571

except that Kq
p = K−q

−p . The twofold ambiguity of the parameters can be used to specifyD572

an orientation of the circles (Section 4.1.2).D573

• The great circles Kq
p with fixed q form a partition of S3, which we call the left HopfD574

bundle Hq. It naturally comes with a left Hopf map hq : S3 → S2, which maps all pointsD575

of Kq
p to the point p ∈ S2.D576

This map provides a bijection between the circles of the left Hopf bundle Hq and the pointsD577

on S2.D578

Similarly, the great circles Kq
p with fixed p form a right Hopf bundle Hp, with a right HopfD579

map hp, etc. In the following, we will mention only the left Hopf bundles, but all statementsD580

hold also with left and right reversed.D581

• Every great circle of S3 belongs to a unique left Hopf bundle. In other words, the left HopfD582

bundles form a partition of the set of great circles of S3.D583

• For every left Hopf bundle Hq, there is a one-parameter family of right rotations that mapsD584

every circle in Hq to itself, rotating each circle by the same angle α.D585

Conversely, a right rotation by an angle α /∈ {0, π} rotates every point of S3 by the sameD586

angle α, and the set of circles along which these rotations happen form a left Hopf bundleD587

(Proposition 4.14).D588

• The following statements discuss the behavior of Hopf bundles under orthogonal transfor-D589

mations (Proposition 4.12):D590

– Any left rotation leaves the left Hopf bundle Hq fixed, as a partition. It permutes theD591

great circles of the bundle.D592

– Any rotation maps the left Hopf bundle Hq to another left Hopf bundle. Any two leftD593

Hopf bundles are congruent (by some right rotation).D594

– Left Hopf bundles and right Hopf bundles are mirrors of each other.D595

• The intersection of a left Hopf bundle and a right Hopf bundle consists of two absolutelyD596

orthogonal circles (Corollary 4.10).D597

• Any two great circles in the same Hopf bundle are Clifford-parallel (Proposition 4.15). ThisD598

means that a point moving on one circle maintains a constant distance to the other circle.D599

4.1 Parameterizing the great circles in S3
D600

Definition 4.1. For any two pure unit quaternions p, q ∈ S2, we define the following subset ofD601

unit quaternions:D602

Kq
p := {x ∈ S3 | [x]p = q } (7)

This can be interpreted as the set of rotations on S2 that map p to q.D603

Proposition 4.2. Kq
p has an alternative representationD604

Kq
p = {x ∈ S3 | [p, q]x = x }, (8)

and it forms a great circle in S3. Moreover, every great circle in S3 can be represented in thisD605

way, and the choice of parameters p, q ∈ S2 is unique except that Kq
p = K−q

−p .D606
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This gives a convenient parameterization of the great circles in S3 (or equivalently, the planesD607

in R4) by pairs of points on S2, which might be useful in other contexts. For example, they mightD608

be used to define a notion of distance between great circles (or planes in R4). (Other distanceD609

measures are discussed in [26, 25] and [7]. The connection to these different distance notionsD610

remains to be explored.)D611

Before giving the proof, let us make a general remark about quaternions. Multiple meaningsD612

can be associated to a unit quaternion x: Besides treating it (i) as a point on S3, we can regardD613

it (ii) as a rotation [x] of S2, or (iii) as a left rotation [x, 1] of S3, or (iv) as a right rotation [1, x]D614

of S3. Rather than fixing an opinion on what a quaternion really is (cf. [1, p. 298]), we capitalizeD615

on this ambiguity and freely switch between the definitions (7) and (8).D616

Proof of Proposition 4.2. The two expressions (7) and (8) are equivalent by a simple rearrange-D617

ment of terms:D618

[x]p = q ⇐⇒ x̄px = q ⇐⇒ px = xq ⇐⇒ x = p̄xq ⇐⇒ x = [p, q]x

The expression (8) shows that Kq
p is the set of fixpoints of the rotation [p, q]. Since p and q areD619

unit quaternions, the rotation [p, q] is a simple rotation by 180◦ (a half-turn). Its set of fixpointsD620

is a two-dimensional plane, or when restricted to unit quaternions, a great circle.D621

Conversely, if a great circle K is given and we want to determine p and q, we know thatD622

we are looking for a simple rotation by 180◦ whose set of fixpoints is K. This rotation isD623

uniquely determined, and its quaternion representation [p, q] is unique up to flipping both signsD624

simultaneously.D625

The effect of orthogonal transformations on great circles is expressed easily in our parame-D626

terization:D627

Proposition 4.3. Let p, q ∈ S2. Then for any l, r ∈ S3,D628

(i) [l, r]Kq
p = K

[r]q
[l]p .D629

(ii) (∗[l, r])Kq
p = K

[r]p
[l]q , and in particular, ∗Kq

p = Kp
q .D630

Proof. The following calculation proves part (i).D631

[l, r]Kq
p = { l̄xr | x̄px = q }

= { y | rȳl̄plyr̄ = q } = { y | ȳl̄ply = r̄qr } = { y | [y][l]p = [r]q } = K
[r]q
[l]p ,

where we have substituted x by y := l̄xr. Part (ii) follows from part (i) and ∗Kq
p = Kp

q . ThisD632

last statement expresses the fact that the inverse rotations [x̄] of the rotations [x] that map p toD633

q are the rotations mapping q to p. More formally,D634

∗Kq
p = { x̄ | x̄px = q } = { y | ypȳ = q } = { y | p = ȳqy } = Kp

q ,

with y := x̄.D635

The elements of Kp
p form a subgroup of the quaternions [16]: According to (7), Kp

p is theD636

stabilizer of p. Its cosets can be characterized by Proposition 4.3(i):D637

Corollary 4.4. The left cosets of Kp
p are the circles Kp

p′ , and the right cosets of Kp
p are theD638

circles Kp′
p , for arbitrary p′ ∈ S2.D639

We emphasize that the two parameters p and q in Kq
p “live on different spheres S2”: AnyD640

relation between them has no intrinsic geometric meaning, and will be changed by coordinateD641

transformations according to Proposition 4.3. This is despite the fact that p = q has an algebraicD642

significance, since the circle Kp
p goes through the special quaternion 1, which is one of theD643

coordinate axes, and hence Kp
p forms a subgroup of quaternions.D644
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4.1.1 Keeping a circle invariantD645

The following proposition characterizes the transformations that map a given great circle toD646

itself. Moreover, it describes the action of these transformations when restricted to that circle.D647

For a pure unit quaternion p ∈ S2 and an angle θ ∈ R we use the notationD648

exp pθ := cos θ + p sin θ,

so that [exp pθ] is a clockwise rotation around p by 2θ on S2.D649

Proposition 4.5. Consider the circle Kq
p , for p, q ∈ S2. The rotations [l, r] that leave Kq

pD650

invariant fall into two categories, each of which is a two-parameter family.D651

(a) The orientation-preserving case: [l]p = p and [r]q = q.D652

Every transformation in this family can be written as [exp pφ, exp qθ] for φ, θ ∈ R. ThisD653

transformation acts on the circle Kq
p as rotation by |θ − φ|.D654

(b) The orientation-reversing case: [l]p = −p and [r]q = −q.D655

After choosing two fixed quaternions p′, q′ ∈ S2 orthogonal to p and q, respectively, they canD656

be written as the transformations [p′ exp pφ, q′ exp qθ] for φ, θ ∈ R, and they act on Kq
p asD657

reflections.D658

Note that the transformations that we consider are always orientation-preserving when consid-D659

ered in 4-space; they can be orientation-reversing when considered as (2-dimensional) operationsD660

on the circle Kq
p .D661

Proof. Let [l, r] ∈ SO(4) be a rotation. Then we have the following equivalences.D662

[l, r]Kq
p = Kq

p ⇐⇒ K
[r]q
[l]p = Kq

p ⇐⇒ ([l]p = p ∧ [r]q = q) ∨ ([l]p = −p ∧ [r]q = −q)

For the first case, the transformations [l] on S2 that leave the point p fixed are the rotationsD663

around p, and they are given by the quaternions l = exp pφ, and similarly for r. For the secondD664

case, the transformations [l] on S2 that map p to −p can be written as a composition of [p′],D665

which maps p to −p, and an arbitrary rotation around the axis through p and −p, which isD666

expressed as [exp pφ]. This establishes that [l, r] can be written in the claimed form.D667

We now investigate the action of these rotations on Kq
p .D668

(a) Let x ∈ Kq
p . Since xq = px, we have x exp qθ = (exp pφ)x. In particular,D669

[exp pφ, exp qθ]x = exp(−pφ)x exp qθ = exp(−pφ)(exp pθ)x = (exp p(−φ+ θ))x.

Thus, [exp pφ, exp qθ] acts on Kq
p like the left multiplication with exp p(θ−φ), which (beingD670

a left rotation) moves every point by the angle |θ − φ|.D671

(b) It is enough to show that [p′, q′] acts as a reflection on Kq
p . We will show that Kq

p ∩Kq′

p′ ̸= ∅D672

and Kq
p ∩ K−q′

p′ ̸= ∅. Thus, there is a point x ∈ Kq
p with [p′, q′]x = x and another pointD673

y ∈ Kq
p with [p′, q′]y = −y, and this means that [p′, q′] fixes some, but not all, points on Kq

p ,D674

and thus its action cannot be a rotation.D675

Let [x0] be a rotation that maps p to q. Then it maps p′ to some point p′′ that is orthogonalD676

to q. Let [y0] be the rotation that fixes q and maps p′′ to q′. The rotation [x0y0] maps p toD677

q and p′ to q′. Thus, x0y0 ∈ Kq
p ∩Kq′

p′ . Similarly, if [z0] is the rotation that fixes q and mapsD678

p′′ to −q′, then x0z0 ∈ Kq
p ∩K−q′

p′ .D679

Proposition 4.6. The great circles Kq
p and K−q

p = Kq
−p are absolutely orthogonal.D680

Proof. The simple rotation [p,−q] = [−p, q] maps x ∈ Kq
p to −x ∈ Kq

p . That is, [p,−q] preservesD681

(not pointwise) Kq
p . Since K−q

p is the fixed circle of [p,−q] and the invariant circles of a simpleD682

rotation are absolutely orthogonal, we are done.D683
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4.1.2 Oriented great circlesD684

By Proportion 4.5, the left rotation [exp(−pθ), 1] has the same effect on the circle Kq
p as theD685

right rotation [1, exp qθ]. This allows us to specify an orientation for Kq
p . For some starting pointD686

x ∈ Kq
p , we writeD687

Kq
p = { (exp pθ)x | θ ∈ R } = {x exp qθ | θ ∈ R }, (9)

and both parameterizations traverse the circle in the same sense, for increasing θ. We may thusD688

introduce the notation K⃗q
p to denote an oriented great circle on S3. If we use K⃗−q

−p in (9), theD689

same circle will be traversed in the opposite sense. Thus, we obtain a notation for oriented greatD690

circles on S3, and for this notation, the choice of parameters p, q ∈ S2 is unique. Only for anD691

oriented circle, the phrase “rotation by π/4” or “rotation by −π/3” has a well-defined meaning,D692

and we can give a more specific version of Proposition 4.5a: The operation [exp pφ, exp qθ] rotatesD693

K⃗q
p by θ − φ.D694

In Appendix E, we give a direct geometric view of this orientation, based on the originalD695

interpretation of Kq
p as the set of rotations on S2 that map p to q (Definition 4.1).D696

Proposition 4.3 extends to oriented circles as follows:D697

Proposition 4.7. [l, r]K⃗q
p = K⃗

[r]q
[l]p and ∗K⃗q

p = K⃗−p
−q .D698

Proof. For x ∈ Kq
p ,D699

[l, r](x exp qθ) = l̄x(exp qθ)r = l̄xrr̄(exp qθ)r = (l̄xr) exp(r̄qrθ) = y exp(([r]q)θ)

with y = l̄xr ∈ [l, r]Kq
p = K

[r]q
[l]p . Thus, the orientation that we get on [l, r]K⃗q

p coincides with theD700

orientation prescribed in (9) for K⃗
[r]q
[l]p . Similarly,D701

∗(x exp qθ) = (exp q̄θ)x̄ = exp(−qθ) y

with y = x̄ ∈ ∗Kq
p = Kp

q = K−p
−q , and this is the correct orientation for K⃗−p

−q in accordanceD702

with (9).D703

4.2 Hopf bundlesD704

Hopf bundles are families of circles Kq
p with fixed p or with fixed q:D705

Definition 4.8. Let q0 ∈ S2 be a pure unit quaternion. The left Hopf bundle Hq0 is

Hq0 := {Kq0
q | q ∈ S2 },

and the right Hopf bundle Hq0 is

Hq0 := {Kq
q0 | q ∈ S2 }.

The oriented left and right Hopf bundles are defined analogously:D706

H⃗q0 := { K⃗q0
q | q ∈ S2 }

H⃗q0 := { K⃗q
q0 | q ∈ S2 }

The convention for left and right was adopted from Dunbar [16]: According to Corollary 4.4,D707

the circles Kq0
q of the left Hopf bundle Hq0 are the left cosets of the circle Kq0

q0 .D708

We can naturally assign a Hopf map to each bundle, such that the circles of a bundle becomeD709

the fibers of the associated Hopf map:D710

Definition 4.9. Let q0 ∈ S2 be a pure unit quaternion. The left Hopf map associated with q0 isD711

hq0 : S3 → S2

x 7→ [x̄]q0 = xq0x̄,

and the right Hopf map associated with q0 isD712

hq0 : S
3 → S2

x 7→ [x]q0 = x̄q0x.
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Corollary 4.10. The following statements are direct consequences of the definitions:D713

• The choice of the parameter q0 in the left Hopf bundle Hq0 is unique except that Hq0 =D714

H−q0 . As oriented Hopf bundles, H⃗q0 and H⃗−q0 contain the same circles in opposite ori-D715

entation.D716

The same statement holds for right Hopf bundles.D717

• No two different left Hopf bundles share a circle. That is,D718

Hp0 ∩Hp1 = ∅ if p0 ̸= ±p1.

A similar statement holds for right Hopf bundles.D719

• A left Hopf bundle intersects a right Hopf bundle in exactly two circles, which are absolutelyD720

orthogonal:D721

Hq0 ∩Hp0 = {Kp0
q0 ,K

−p0
q0 = Kp0

−q0}.

• Every great circle Kp0
q0 in S3 belongs to a unique left Hopf bundle Hp0 and to a unique rightD722

Hopf bundle Hq0 .D723

From Proposition 4.7, we can directly work out the effect of a transformation on an (oriented)D724

Hopf bundle:D725

Proposition 4.11. (a) [l, r]H⃗q = H⃗[r]q and [l, r]H⃗p = H⃗[l]p; (b) ∗H⃗q = H⃗−q and ∗H⃗p = H⃗−p.D726

We get consequences about the operations that leave a Hopf bundle invariant and aboutD727

mappings between Hopf bundles.D728

Proposition 4.12. The following statements about the operations that leave a left Hopf bundleD729

invariant hold, and similar statements hold for right Hopf bundles.D730

(i) Any left rotation leaves an oriented left Hopf bundle H⃗q invariant. It permutes the greatD731

circles of the bundle.D732

(ii) A right rotation [1, r] leaves the oriented left Hopf bundle H⃗q invariant iff [r]q = q.D733

(iii) A right rotation [1, r] maps the oriented left Hopf bundle H⃗q to the opposite bundle H⃗−q iffD734

[r]q = −q.D735

(iv) Any two oriented left Hopf bundles are congruent, and can be mapped to each other by aD736

right rotation.D737

(v) Any oriented right Hopf bundle and any oriented left Hopf bundle are mirrors of eachD738

other.D739

We can summarize properties (i)–(iii) in the following statement, which characterizes theD740

transformations that leave a given left Hopf bundle invariant, in analogy to Proposition 4.5.D741

Proposition 4.13.D742

(i) A rotation [l, r] preserves Hq0 if and only if [r]q0 = ±q0.D743

(ii) More precisely, these rotations come in two families.D744

(a) The rotations with [r]q0 = q0 can be written as [l, exp q0θ] for θ ∈ R, and they map H⃗q0
D745

to H⃗q0 , preserving the orientation of the circles.D746

(b) The rotations with [r]q0 = −q0 can be written as [l, q′ exp q0θ] for θ ∈ R, where q′ ∈D747

S2 is some fixed quaternion orthogonal to q0. They map H⃗q0 to H⃗−q0 , reversing theD748

orientation of the circles.D749

Note that an orientation-reversing transformation sends a left Hopf bundle to a right one, andD750

those two share exactly two circles. Thus, no orientation-reversing transformation can preserveD751

a Hopf bundle.D752
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4.2.1 Left and right screwsD753

A generic rotation has two circles that it leaves invariant. The left and right rotations are special:D754

they have infinitely many invariant circles, and as we will see, these circles form a Hopf bundle.D755

In contrast to Proposition 4.13, we now discuss rotations that leave every individual circle of aD756

Hopf bundle invariant:D757

Proposition 4.14.D758

(i) For the oriented left Hopf bundle H⃗q0 , the one-parameter subgroup of right rotations [1, exp q0φ]D759

rotates every circle of H⃗q0 in itself by the same angle φ.D760

(ii) Conversely, for a right rotation [1, r] with r ̸= 1,−1, the set of circles that it leaves invariantD761

forms a left Hopf bundle Hq0 , and [1, r] rotates every circle of H⃗q0 in itself by the sameD762

angle φ.D763

Proof. Part (i) is a direct consequence of the definition (9) of oriented circles.D764

According to Proposition 4.5, the right rotation [1, r] leaves a circle Kq
p invariant iff [r]q = q.D765

(Case (b) of Proposition 4.5, where [l]p = −p, does not apply since l = 1.) After writingD766

r = exp q0φ with φ ̸= 0, π, the condition [r]q = q translates to q = ±q0, and the circlesD767

{K±q0
p | p ∈ S2 } form the Hopf bundle Hq0 . The last part of the statement repeats (i).D768

r

α

ϕ
α+ ϕ

1 i

j

k

keiϕ

Figure 5: A right screw around the great circle Ki
−i (in red)

Geometrically, these rotations are screw motions. If we look at one circle Kq0
p from theD769

bundle, the adjacent circles form helices that wind around this circle, see Figure 5. The rightD770

multiplication by exp q0φ effects a forward motion of φ along every circle, and a simultaneousD771

clockwise rotation by the same angle φ around the circle, when seen in the direction of theD772

forward movement, and is thus a right screw.9 In contrast to the situation in Euclidean 3-space,D773

9While not everything that is associated to right rotations is “right”, it is a lucky coincidence that at least
right rotations perform right screws, and left rotations perform left screws. This view depends on the convention
that we have chosen in Section 2.3 for viewing parts of the 3-sphere as three-dimensional space.

Here is a check of this fact at an example: Figure 5 shows the situation around the point (x1, x2, x3, x4) =
(0, 0, 0, 1) ≡ k ∈ Ki

−i. According to our conventions from Section 2.3, we draw this in 3-space by projecting to
the tangent space x4 = 1, i.e., omitting the x4-coordinate, and drawing (x1, x2, x3) ≡ (1, i, j) as a right-handed
coordinate system. The great circle Ki

−i is invariant under the family of right rotations [1, exp iφ], which move
the point k along the circle:

K⃗i
−i = { k exp iφ } = { k(cosφ+ i sinφ) } = { k cosφ+ j sinφ }

The tangent vector at φ = 0 points in the direction j ≡ (0, 0, 1, 0).
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these screws have no distinguished axis. The blue circle seems to wind around the red circle,D774

but this is an artifact of the projection of this picture. All circles are in fact equivalent, and theD775

situation looks the same for every circle of the bundle.D776

4.2.2 Clifford-parallel circlesD777

We measure the distance between two points p, q ∈ S3 as the geodesic distance on the sphere,D778

which equals the angular distance along the great circle through p and q: dist(p, q) := arccos⟨p, q⟩,D779

where ⟨p, q⟩ denotes the scalar product. The distance between two setsK,K ′ ⊆ S3 is dist(K,K ′) =D780

inf{ dist(p, q) | p ∈ K, q ∈ K ′ }.D781

Two great circles K and K ′ in S3 are called Clifford-parallel if dist(x,K ′) does not dependD782

on x ∈ K. See for example [3, Section 18.8] for more information on Clifford parallelism.D783

Proposition 4.15 ([3, Exercise 18.11.18]). Great circles in the same Hopf bundle Hq are Clifford-D784

parallel, and dist(Kq
p ,K

q
r ) = dist(p, r)/2.D785

Proof. By Proposition 4.5a, the right rotations [1, exp qθ] rotate x ∈ Kq
p along the circle Kq

pD786

while keeping Kq
r invariant as a set. Thus, dist(x,Kq

r ) is constant as x moves on Kq
p , showingD787

that Kq
p and Kq

r are Clifford-parallel.D788

Since Kq
r is a left coset of Kq

q , we may assume that r = q by applying some left rotation toD789

Kq
p and Kq

r . That is, it is enough to show that dist(Kq
p ,K

q
q ) = dist(p, q)/2. Since 1 ∈ Kq

q andD790

the circles Kq
p and Kp

p are Clifford parallel, it is enough to show that dist(Kq
p , 1) = dist(p, q)/2.D791

The points x = cosα + v sinα ∈ Kq
p represent the rotations [x] on S2 that map p to q, andD792

dist(x, 1) = arccos cosα = α, assuming 0 ≤ α ≤ π. Thus, we are trying to minimize α, whichD793

is half the rotation angle of [x]. The rotation that minimizes the rotation angle is the one thatD794

moves p to q along the great circle through p and q, and its rotation angle 2α is dist(p, q).D795

We mention that Clifford parallelism arises in two kinds: left and right, accordingly as theD796

circles belong to a common left or right Hopf bundle. Each kind of Clifford parallelism isD797

transitive, but Clifford parallelism in itself is not.D798

5 Classification of the point groupsD799

We make a coarse classification of the groups by their invariant Hopf bundles. The followingD800

observation of Dunbar [16, p. 124] characterizes this in terms of the left and right groups.D801

Proposition 5.1. A 4-dimensional point group leaves some left Hopf bundle invariant if andD802

only if its right group is cyclic or dihedral. A similar statement holds for right Hopf bundles andD803

the left group.D804

Proof. By Proposition 4.13(i), a transformation [l, r] ∈ SO(4) preserves Hq0 if and only if [r]D805

keeps the line through q0 invariant. The set of such r’s form an infinite group that is isomorphicD806

to O(2). Its finite subgroups are either cyclic or dihedral.D807

As we have seen, the left and right groups L and R are one of the five classes 2I, 2O, 2T, 2D2n,D808

and 2Cn. Besides the infinite families of cyclic groups 2Cn and dihedral groups 2D2n, there areD809

the three polyhedral groups 2I, 2O, 2T . Accordingly, we get a rough classification into threeD810

classes of groups.D811

1. The left subgroup is cyclic or dihedral, and the right subgroup is polyhedral, or vice versa.D812

These groups leave some left or right Hopf bundle invariant, and they are the tubical groups,D813

to be discussed in Section 6.D814

Let us look at a small circle of radius r around Ki
−i, centered at k: It lies in a plane parallel to the 1, i-plane

and can be written as
1√

1+r2
(k + r(cosα+ i sinα)) = 1√

1+r2
(k + r exp iα).

The right rotation [1, exp iφ] maps this to

1√
1+r2

(k + r exp iα) exp iφ = 1√
1+r2

(k exp iφ+ r exp i(α+ φ))

i.e., it increases α together with φ. As can be seen in Figure 5, this is a right screw.
Du Val [15, § 14, p. 36], for example, considers right quaternion multiplications as left screws, without giving

reasons for this choice, and he draws his illustrations accordingly. On the other hand, Coxeter [12, Chapter 6,
p. 70] considers right quaternion multiplications as right screws.



22 Laith Rastanawi and Günter Rote: 4-Dimensional Point Groups

2. Both the left and right subgroup are cyclic or dihedral.D815

These groups leave some both some left and some right Hopf bundle invariant. They formD816

a large family, the toroidal groups, to be discussed in Section 7.D817

3. Both the left and right subgroup are polyhedral.D818

These groups leave no Hopf bundle invariant. There are finitely many groups of this class:D819

the polyhedral groups and the axial groups.D820

For all classes except the tubical groups, there is the possibility that L = R, and hence weD821

also consider the achiral extensions of these groups.D822

5.1 The Clifford torusD823

The toroidal groups are characterized as leaving both some left Hopf bundle Hp and some rightD824

Hopf bundle Hq invariant. By Corollary 4.10, these two bundles intersect in two orthogonalD825

circles Kq
p ∪K−q

p , and hence these two circles must also be invariant. We conclude that the setD826

Tq
p of points that are equidistant from these two circles is also invariant. We will see that thisD827

set is a Clifford torus. It has several alternative representations.D828

Tq
p = {x ∈ S3 | dist(x,Kq

p) = dist(x,K−q
p ) } (10)

= {x ∈ S3 | dist(x,Kq
p) =

π
4 }

= {x ∈ S3 | dist(x,K−q
p ) = π

4 }
= {x ∈ S3 | dist(x,Kq

p) = dist(x,Kq
−p) }

Proposition 4.3 tells us how an orthogonal transformation acts on the circle Kq
p that defines theD829

torus Tq
p. As an immediate corollary, we obtain:D830

Proposition 5.2. Let p, q ∈ S2. Then for any l, r ∈ S3,D831

(i) [l, r]Tq
p = T[r]q

[l]p .D832

(ii) (∗[l, r])Tq
p = T[r]p

[l]q , and as a special case, ∗Tq
p = Tp

q .D833

From Tq
p, we can recover the two defining circles Kq

p ∪ K−q
p as those points whose distanceD834

from Tq
p takes the extreme values π/4:D835

Kq
p ∪K−q

p = {x ∈ S3 | dist(x,Tq
p) =

π
4 }

Since the choice of parameters p, q for circles Kq
p is unique up to simultaneous sign changes,D836

the choice of parameters p, q ∈ S2 for the torus Tq
p is unique up to independent sign changes:D837

Tq
p = T−q

−p = Tq
−p = T−q

p .D838

By Proposition 5.2, any two Clifford tori are related by an appropriate orientation-preservingD839

transformation. There are no “left” or “right” Clifford tori. Thus, it is sufficient to study oneD840

special torus. In particular, Ti
i is the “standard” Clifford torus:D841

Ti
i = { 1√

2
(cos θ, sin θ, cosφ, sinφ) | 0 ≤ θ, φ < 2π } = {x ∈ R4 | x2

1 + y21 = x2
2 + y22 = 1

2 } (11)

It is a square flat torus, and we name the coordinates (x1, y1, x2, y2) to emphasize that it is theD842

Cartesian product of a circle of radius
√
1/2 in the x1, y1-plane and a circle of radius

√
1/2 inD843

the x2, y2-plane. For this torus, the two circles of extreme distance are Ki
i and K−i

i , the greatD844

circles in the x1, y1-plane and in the x2, y2-plane.D845

In Section 7.11.2, we will see another torus, Ti
k, with a different, but equally natural equa-D846

tion (25).D847

6 The tubical groupsD848

In this section we consider the point groups that preserve a left or a right Hopf bundle, but notD849

both. By Proposition 5.1, these groups are characterized as the groups for which the left or theD850

right group, but not both, is cyclic or dihedral. These groups will be called tubical groups. WeD851
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have chosen this name because, as we will see (see for instance Figure 6), for large enough order,D852

the polar orbit polytope consists of intertwined congruent tube-like structures.10D853

Since any two left (resp. right) Hopf bundles are congruent, it is enough to consider the tubicalD854

groups that preserve a specific left (resp. right) Hopf bundle. We will call these the left tubicalD855

groups and the right tubical groups. Since left and right Hopf bundles are mirror-congruent, weD856

can restrict our attention to the left tubical groups.D857

The classic classification leads to 11 classes of left tubical groups. Table 2 lists them withD858

the notation from Conway and Smith [8, Table 4.1] in the first column, together with theirD859

generators. In Appendix F, we depict subgroup relations between these groups.D860

G ⩽ SO(4) parameter n generators order Gh ⩽ O(3)

cyclic type

±[I × Cn] n ≥ 1 [iI , 1], [ω, 1]; [1, en] 120n +I

±[O × Cn] n ≥ 1 [iO, 1], [ω, 1]; [1, en] 48n +O

± 1
2 [O × C2n] n ≥ 1 [i, 1], [ω, 1]; [1, en]; [iO, e2n] 48n +O

±[T × Cn] n ≥ 1 [i, 1], [ω, 1]; [1, en] 24n +T

± 1
3 [T × C3n] n ≥ 1 [i, 1]; [1, en]; [ω, e3n] 24n +T

dihedral type

±[I ×D2n] n ≥ 2 [iI , 1], [ω, 1]; [1, en], [1, j] 240n ±I

±[O ×D2n] n ≥ 2 [iO, 1], [ω, 1]; [1, en], [1, j] 96n ±O

± 1
2 [O ×D4n] n ≥ 2 [i, 1], [ω, 1]; [1, en], [1, j]; [iO, e2n] 96n ±O

± 1
2 [O ×D2n] n ≥ 2 [i, 1], [ω, 1]; [1, en]; [iO, j] 48n TO

± 1
6 [O ×D6n] n ≥ 1 [i, 1]; [1, en]; [iO, j], [ω, e3n] 48n TO

±[T ×D2n] n ≥ 2 [i, 1], [ω, 1]; [1, en], [1, j] 48n ±T

Table 2: Left tubical groups [8, Table 4.1]. See (6) on p. 14 for definitions of the quaternions
iI , iO, ω, en.

According to the right group, there are 5 tubical group classes of cyclic type and 6 tubicalD861

group classes of dihedral type. The left Hopf bundle that they leave invariant is Hi. This followsD862

from Proposition 4.13(ii) and our choice for the generators of 2Cn and 2D2n. The cyclic-typeD863

groups are those tubical groups that moreover preserve the consistent orientation of the circlesD864

in Hi. That is, they preserve H⃗i. Each of these classes is parameterized by a positive integer n,D865

which is the largest integer n such that [1, en] is in the group.D866

In some cases the parameter n starts from 2 in order to exclude the groups D2, which isD867

geometrically the same as C2. We also exclude ± 1
2 [O ×D4] because the notation D4n indicatesD868

that the normal subgroupD2n ofD4n is used, and not C2n. For n = 1, this distinction disappears,D869

and hence ± 1
2 [O×D4] is geometrically the same as ± 1

2 [O×D4] (see also Appendix G.1). In thisD870

case and in all other cases where C2 and D2 are exchanged, the respective groups are conjugateD871

under [1, 1√
2
(i+ j)], which exchanges [1, i] with [1, j].D872

Convention. For ease of use, we drop the word “left” from “left tubical group” and call itD873

simply “tubical group” in this section. We will denote Hi by H and call it the Hopf bundle. WeD874

will also denote hi(x) = xix̄ by h(x) and call it the Hopf map.D875

6.1 Orbit circlesD876

An element of a tubical group has one of the following two forms, and Proposition 4.5 describesD877

its action on the circles of H:D878

• [l, esm], which maps K⃗p to K⃗[l]p, andD879

• [l, jesm], which mapsKp toK−[l]p with a reversal of orientation. More precisely, this rotationD880

maps K⃗p = K⃗i
p to K⃗−i

[l]p, which is the reverse of K⃗i
−[l]p = K⃗−[l]p. These elements occur onlyD881

in the groups of dihedral type.D882

Thus, the rotations permute the Hopf circles of H. Via the one-to-one correspondence of theD883

Hopf map, they induce mappings on the Hopf sphere S2:D884

10There is a notion of tubular groups, which is something completely different, see for example [5].
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Proposition 6.1. A tubical group G induces a 3-dimensional point group Gh via the Hopf map h.D885

This group Gh is isomorphic to G/⟨[1, en]⟩, where n is the largest integer such that [1, en] ∈ G.D886

Proof. The above considerations show that [l, esm] induces the orientation-preserving transforma-D887

tion [l] on S2, and [l, jesm] induces the orientation-reversing transformation −[l] on S2. We areD888

done since the image of G in the homomorphismD889

G → O(3)

[l, esm] 7→ [l]

[l, jesm] 7→ −[l]

is Gh, and the kernel is ⟨[1, en]⟩.D890

The column “Gh ⩽ O(3)” in Table 2 lists the induced group for each tubical group G. TubicalD891

groups of cyclic type induce chiral groups Gh, and tubical groups of dihedral type induce achiralD892

groups Gh.D893

As a consequence, the orbit of some starting point v ∈ S3 can be determined as follows:D894

1. The starting point lies on the circle Kh(v). The subgroup ⟨[1, en]⟩ generates a regularD895

2n-gon in this circle.D896

2. For each t ∈ Gh, there is a coset of elements that map Kh(v) to the circle Kt(h(v)), andD897

these elements generate a regular 2n-gon in this circle.D898

Proposition 6.2. Let G be a tubical group. The orbit of a point v ∈ S3 is the union of regularD899

2n-gons on the circles Kt(h(v)) for t ∈ Gh.D900

We call these circles the orbit circles of G.D901

If the Gh-orbit of h(v) is not free, several of these 2n-gons will share the same circle, andD902

they may overlap. The 2n-gons may coincide, or they may form polygons with more vertices. ItD903

turns out that they can intersperse to form a regular 2fn-gon or, in the case of dihedral-typeD904

groups, the union of two regular 2fn-gons, for some 1 ≤ f ≤ 5.D905

The Gh-orbit of h(v) is always free when the starting point does not lie on a rotation centerD906

or a mirror of Gh. The following corollary follows directly from the previous proposition.D907

Corollary 6.3. Let G be a tubical group and let v ∈ S3 be a point. If the Gh-orbit of h(v) isD908

free, then the G-orbit of v is also free.D909

For tubical groups of cyclic type, the orbit has the following nice property.D910

Proposition 6.4. Let G be a cyclic-type tubical group. The G-orbit of a point v ∈ S3, up toD911

congruence, depends only on the circle of H on which v lies.D912

Proof. Rotation of v along Kh(v) can be performed by a right rotation of the form [1, exp θi].D913

Since the right group of G is cyclic, elements of G have the form [l, esm]. These elements commuteD914

with right rotations of the form [1, exp θi]. In particular,D915

orbit([1, exp θi]v,G) = [1, exp θi]orbit(v,G).

6.2 TubesD916

If n is large, the orbit fills the orbit circles densely. Figure 6a shows the cells (i.e. facets) of theD917

polar orbit polytope that correspond to orbit points on three orbit circles. Here orbit pointsD918

form a regular 80-gon on each orbit circle. We clearly see twisted and intertwined tubes, whichD919

are characteristic for these groups, and which we have used to assign their names. Figures 6cD920

and 6e show a single cell. It has two large flat faces, where successive cells are stacked on topD921

of each other with a slight twist. On the boundary of the tubes in Figure 6a we can distinguishD922

two different sets of “parallel” curves. One set of curves comes from the boundaries betweenD923

successive slices (cells) of the tubes, and the other set of curves is a trace of the slices of theD924

adjacent tubes. At first sight, it is hard to know which of the two line patterns is which. InD925

Figure 6b, we have cut the tubes open to show where the boundaries between the slices are,D926

revealing also the three orbit circles.D927

If we let n grow to infinity, the tubes become smooth, see Figure 6d. We explore the limitingD928

shape of these tubes in Section 6.3. We will see that the tubes are either 3-sided, 4-sided, orD929
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5-sided, and their shape as well as their structure, how they share common boundaries and howD930

they meet around edges, can be understood in terms of the spherical Voronoi diagram on theD931

Hopf sphere S2. Figure 6f shows this Voronoi diagram for our example.D932

We will show some more examples of cells below (Figures 12 and 13) and in Appendix B.D933

In general, the cell of a polar orbit polytope of a tubical group for large enough n will alwaysD934

exhibit the following characteristic features.D935

• It is a thin slice with a roughly polygonal shape.D936

• The top and bottom faces are parallel.D937

• Moreover, the top and bottom faces are congruent and slightly twisted with a right screw.D938

(There are, however exceptions for tubical groups of dihedral type: With some choices ofD939

starting points, there is an alternative way of stacking the slices: every other slice is upsideD940

down, as in Figure 9.)D941

• The top and bottom faces approach the shape of a triangle, quadrilateral or pentagon withD942

curved sides.D943

• The sides are decorated with slanted patterns, which come from the boundaries of theD944

adjacent tubes.D945

• The tube twists around the orbit circle by one full 360◦ turn as it closes up on itself.D946

If n is small, these properties break down: The circles are not filled densely enough to ensureD947

that the cells are thin slices. Sometimes they are regular or Archimedean polytopes, and the orbitD948

polytopes coincide with those of polyhedral groups, and the “tubes” may even be disconnected,D949

see for example Figures 36 or 44 in Appendix B. See Section 6.12 for more examples.D950

Figure 6 shows a case where the 2n-gons lie on different circles. Then the orbit is free: for anyD951

two cells, there is a unique transformation in the group that moves one cell to the other. If theD952

starting point is generic enough, the cells have no symmetries. (See Proposition 6.10 below for aD953

precise statement.) Then the given group is the symmetry group of its orbit polytope: There is aD954

unique transformation mapping one cell to the other even among all orthogonal transformations,D955

not just the group elements.D956

6.2.1 Mapping between adjacent cellsD957

Definition 6.5. The cell axis of a cell of the polar orbit polytope is the orthogonal projectionD958

of the orbit circle into the 3-dimensional hyperplane of the cell.D959

The cell axis thus gives the direction in which consecutive cells are stacked upon each otherD960

along the orbit circle. It is a line going through the orbit point. Figure 6c shows a cell togetherD961

with its axis. The cell axis is not necessarily a symmetry axis. The cell axis intersects theD962

boundary of the cell in two poles.D963

This is where consecutive cells are attached to each other (unless n is too small and the tubesD964

are disconnected.) More precisely: For the orbit polytope of a generic starting point, the nextD965

cell is attached as follows. We translate the cell C from the bottom pole to the top pole. CallD966

the new cell C ′. We rotate C ′ slightly until its bottom face matches the top face of C, and weD967

attach it there (with a bend into the fourth dimension, as for every polytope).D968

6.3 The geometry of the tubesD969

We investigate the structure of the tubes in the limiting case as n → ∞, where they becomeD970

smooth objects. As n gets larger, the orbit circle is filled more and more densely, and theD971

slices get thinner. In the limit, every slice becomes a flat plane convex region, which we callD972

a tangential slice. The tangential slices around an orbit circle sweep out the tangential tube asD973

v moves around the circle. The limit of the polar orbit polytope consists of tangential tubes,D974

and this is what is shown in Figure 6d. The central projections of these tubes and slices to theD975

sphere are the spherical tubes and the spherical slices of these tubes. The spherical tubes areD976

the Voronoi diagram on S3 of the orbit circles.D977

This gives us a way to generalize these notations to any finite set of circles from a commonD978

Hopf bundle. For that we first need the definition of the spherical Voronoi diagram. Let X be aD979
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(a) Three tubes (b) Three partial tubes

(c) A single cell (d) Three smooth tubes

(e) Top view of a cell in orthogonal projection (f) Voronoi diagram on the Hopf sphere

Figure 6: (a) Three tubes (out of twenty-four) of the polar ±[O×Cn]-orbit polytope for a generic
starting point v and n = 40. Each tube consists of 80 cells (slices). The tubes are shown in
a central projection. (b) Some of the cells are removed to make the slices visible. We also
show the corresponding orbit circles. (c) A single cell (with its cell axis) from those tubes, in a
perspective view from the side, and (e) a top view in orthogonal projection. (f) The spherical
Voronoi diagram of the +O-orbit of h(v). The colored points correspond to the tubes of the
same color. (d) The tubes as n goes to infinity.
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finite collection of nonempty subsets of Sd, and let X ∈ X be one of these subsets. The sphericalD980

Voronoi cell of X with respect to X isD981

VorX (X) := {x ∈ Sd | dist(x,X) ≤ dist(x, Y ) for all Y ∈ X}.

The spherical Voronoi cells of the subsets in X give a decomposition of Sd, denoted by VorXD982

and called the spherical Voronoi diagram. If the subsets in X are singletons, we get the usualD983

spherical Voronoi diagram.D984

Let C be a finite set of at least two circles from a common Hopf bundle, and let K ∈ C be oneD985

of them. We can assume that the common Hopf bundle is H. The Voronoi cell of K with respectD986

to C is called a spherical tube. The intersection of VorC(K) with the hyperplane perpendicularD987

to K at a point v ∈ K gives two (2-dimensional) patches. One contains v and one contains −v.D988

These are spherical slices. The tangential slices and tangential tubes are defined as above in theD989

special case of orbit circles.D990

We will show that the spherical tubes are bounded by patches of Clifford tori (Theorem 6.7),D991

and the tangential slices are polygons of circular arcs (Theorem 6.8).D992

6.3.1 The spherical tubesD993

Given that the circles belong to a common Hopf bundle and the Hopf map transforms distancesD994

appropriately (Proposition 4.15), it is no surprise that the Voronoi diagram of the set of circlesD995

on S3 is closely related to the Voronoi diagram of the corresponding points on S2 (see Figure 6f.)D996

Proposition 6.6. Let C ⊂ H be a finite set of circles from H, and let K ∈ C be one of them.D997

The spherical tube VorC(K) is the union of circles from H that are the preimages under h of theD998

points in Vorh(C)(h(K)), where h(C) := {h(C) | C ∈ C }.D999

Proof. First we will show that for any point x′ ∈ VorC(K), the great circle K ′ from H on whichD1000

x′ lies is also in VorC(K). Since all the circles in H are Clifford-parallel (Proposition 4.15),D1001

dist(K ′, C) = dist(x′, C) for all C ∈ C. Thus, we get the following equivalence.D1002

dist(x′,K) ≤ dist(x′, C) ⇐⇒ dist(K ′,K) ≤ dist(K ′, C),

for all C ∈ C. That is, K ′ ⊂ VorC(K). By Proposition 4.15 we know thatD1003

dist(K ′,K) ≤ dist(K ′, C) ⇐⇒ dist(h(K ′), h(K)) ≤ dist(h(K ′), h(C)),

for all C ∈ C. That is, K ′ ∈ VorC(K) if and only if h(K ′) ∈ Vorh(C)
(
h(K)

)
.D1004

6.3.2 The spherical tube boundariesD1005

Theorem 6.7. Let C ⊂ H be a finite set of circles from H. The boundaries of the correspondingD1006

spherical tubes consist of patches of Clifford tori. The edges of these tubes are great circlesD1007

from H.D1008

Proof. As in Proposition 6.6, the boundary between two tubes is the preimage, under the HopfD1009

map h, of the boundary between the two corresponding Voronoi regions in Vorh(C). Such aD1010

boundary edge on the Hopf sphere S2 is contained in a great circle. A great circle can beD1011

described as the points that are equidistant from two antipodal points ±p on S2, and underD1012

the inverse Hopf map, these become the points on S3 that are equidistant from two absolutelyD1013

orthogonal circles Kp and K−p, and this is, by definition, a Clifford torus.D1014

The tube edges, where three or more tubes meet, are the preimages of the Voronoi verticesD1015

of Vorh(C). Thus, they are circles from H.D1016

6.3.3 The tangential slicesD1017

Theorem 6.8. Let C ⊂ H be a finite set of circles from H. The corresponding tangential slicesD1018

are (flat) convex regions bounded by circular arcs.D1019

Proof. Let K ∈ C be one of the circles. We want to consider the tangential slice of K at a pointD1020

v ∈ K. Without loss of generality, we may assume that v = i, because the left rotation [−vi, 1]D1021

preserves H (see Proposition 4.12(i)) and maps v to i. Then K is actually Ki, the great circleD1022

through the points 1 and i.D1023
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Figure 7: The procedure to get the tangential slice AT . (a) The spherical pentagon B is the
Voronoi cell of the point i = h(Ki) with respect to h(C). The pentagon in the plane passing
through i is the central projection of B onto that plane. (b) The spherical pentagon A is the
spherical slice at i, which we get from a radial contraction of B. The circular-arc pentagon AT

in the tangent plane T passing through i is the corresponding tangential slice, which we get from
a central projection of A to T . This example is constructed from the orbit circles of Figure 6.

The tangent direction of K at v is the quaternion 1. The hyperplane Q perpendicular to KD1024

at v is spanned by i, j and k, which we represent in a 3-dimensional coordinate system x̂, ŷ, ẑ,D1025

see Figure 7b. Q intersects S3 in a great 2-sphere S0. The spherical tube VorC(K) cuts out twoD1026

opposite patches from S0: the spherical slices. Denote by A the slice that contains v. The sliceD1027

A intersects each circle of VorC(K). Thus, by Proposition 6.6, h(A) equals Vorh(C)(h(v)), whichD1028

we will denote by B.D1029

Using spherical coordinates, a point in S0 has the form i cos θ + p sin θ, where the directionD1030

vector p is a unit vector in the ŷ, ẑ-plane that plays the role of the longitude, and θ ∈ R is theD1031

angular distance on S0 between that point and i. See Figure 7. Since p and i are pure unitD1032

quaternions, they anticommute, and in particular, pip = −ipp = i. We will now apply the HopfD1033

map h to a point in S0:D1034

h(i cos θ + p sin θ) = (i cos θ + p sin θ) i (−i cos θ − p sin θ)

= i cos2 θ − pip sin2 θ + p cos θ sin θ + p cos θ sin θ

= i(cos2 θ − sin2 θ) + 2p cos θ sin θ

= i cos 2θ + p sin 2θ.

That is, h maps a point whose angular distance from i is θ to the point in the same direction butD1035

with angular distance 2θ. Thus, if we identify S0 with S2 using the natural identification (onD1036

S2, we denote the i, j and k directions by x, y and z, respectively), we see that A is obtainedD1037

from B by a radial contraction. That is, we look from i in all directions and multiply the angularD1038

distance between i and each point in B by 1/2.D1039

The intersection of Q with the (3-dimensional) tangent space of S3 at v is the 2-dimensionalD1040

tangent plane T of S0 at v. For our choice v = i, T is the plane in Q defined by x̂ = 1. TheD1041

tangential slice lies in this plane.D1042

So to get the tangential slice AT at v, we radially contract B to get A, and then centrallyD1043

project A to T . We will describe this procedure algebraically. The radial contraction towards iD1044

is the mapD1045

i cos θ + p sin θ 7→ i cos θ
2 + p sin θ

2 .

This map is not uniquely determined at the South Pole (θ = π), and we will tacitly exclude thisD1046

point from further consideration. Writing p as j cosφ + k sinφ, the map can be described asD1047

follows:D1048 x
y
z

 =

 cos θ
cosφ sin θ
sinφ sin θ

 7→

x̂
ŷ
ẑ

 =

 cos θ
2

cosφ sin θ
2

sinφ sin θ
2


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Using the identities cos θ
2 =

√
1+cos θ√

2
and sin θ = 2 sin θ

2 cos
θ
2 , the map is written as follows.D1049

(x, y, z) 7→ (x̂, ŷ, ẑ) =
1√
2

(√
1 + x,

y√
1 + x

,
z√
1 + x

)
Combining this with the central projection from the origin onto T gives the following map f .D1050

f : (x, y, z) 7→ (x̂, ŷ, ẑ) =
(
1,

y

1 + x
,

z

1 + x

)
=

(
1,

y/x

1 + 1/x
,

z/x

1 + 1/x

)
If we apply f to a boundary edge of B, it will turn out the resulting curve is part of a circle.D1051

The boundary edges of B are arcs of great circles on S2. We obtain such an arc by centrallyD1052

projecting to S2 a straight segment in the tangent plane of S2 at h(v) = i. Without loss ofD1053

generality suppose that one of these segments lies on the line (x, y, z) = (1, c0, t), t ∈ R, for someD1054

constant c0 ̸= 0, see the blue line in Figure 7a. The central projection of this line to S2 lies onD1055

the great circleD1056 { ±1√
c20 + t2 + 1

(1, c0, t)
∣∣∣ t ∈ R

}
.

See the blue curve in Figure 7a. The map f transforms this great circle into the setD1057 {(
1,

c0

1±
√
c20 + t2 + 1

,
t

1±
√
c20 + t2 + 1

) ∣∣∣ t ∈ R
}
. (12)

See the blue curve in the tangent plane in Figure 7b. Straightforward manipulations show thatD1058

this set is a circle:D1059

ŷ =
c0

1±
√
c20 + t2 + 1

⇐⇒ ±ŷ
√
c20 + t2 + 1 = c0 − ŷ

⇐⇒ ŷ2c20 + ŷ2t2 + ŷ2 = ŷ2 − 2c0ŷ + ŷ20 ⇐⇒ ŷ2c20 + ŷ2t2 + 2c0ŷ = c20

Dividing both sides by c20 and then substituting the relation ẑ
ŷ = t

c0
, which follows from (12),D1060

givesD1061

ŷ2 + ẑ2 +
2

c0
ŷ = 1 ⇐⇒

(
ŷ +

1

c0

)2

+ ẑ2 =
c20 + 1

c20
, (13)

which is the equation of a circle.D1062

The circle defined in (13) belongs to the pencil of circles through the points (x̂, ŷ, ẑ) =D1063

(1, 0,±1), because these points fulfill the equations (13). The center (x̂, ŷ, ẑ) = (1,− 1
c0
, 0) liesD1064

on the axis (x̂, ŷ, ẑ) = λ(c0,−1, 0) perpendicular to the plane c0x = y containing the great circleD1065

and the line that started the construction.D1066

If the set of great circles C in the previous theorem are the orbit circles of a tubical group G,D1067

then the spherical Voronoi cell B on S2 can have 3, 4 or 5 sides, because the cells form a tilingD1068

of the sphere with equal cells. Thus, the spherical slice is also 3, 4 or 5 sided. In particular, weD1069

get the following corollary.D1070

Corollary 6.9. The tangential slice of an orbit of a tubical group is a convex plane region whoseD1071

boundary consists of 3, 4, or 5 circular arcs.D1072

6.3.4 The tangential tube boundariesD1073

The boundary surfaces of the tangential tubes (shown in Figure 6d) carry some interestingD1074

structures, but we don’t know what these surfaces are.D1075

The points on such a surface are equidistant from two circles K and K ′, and we denote theD1076

surface by B(K,K ′). We know from Theorem 6.7 that its central projection to the sphere is aD1077

Clifford torus T, whose image h(T) is the bisector between h(K) and h(K ′) on S2. AccordingD1078

to the relation between Voronoi diagrams and polar orbit polytopes (as briefly discussed inD1079

Section 2.1.2), a circle K ∈ H that belongs to T is expanded by some factor, depending on theD1080

distance to K and K ′, to become a circle on B(K,K ′). Thus, the surface B(K,K ′) is fibered byD1081

circles (of different radii) around the origin.D1082

Another fibration by circles, this time of equal radii, can be obtained by taking the circular arcD1083

that forms the boundary of the tangential slice towards K ′, and sweeping it along the circle K.D1084
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In Figure 7b, the circle K proceeds from the point i into the fourth dimension, and the circularD1085

boundary arc must simultaneously wind around K as it moves along K. A third fibration, byD1086

circles of the same radius, is obtained in an analogous way from K ′. Each of these fibrationsD1087

leads to a straightforward parametric description of B(K,K ′).D1088

Alternatively, an implicit description B(K,K ′) by two equations can be obtained as theD1089

intersection of two “tangential hypercylinders” in which the two tangential tubes of K and K ′ lie.D1090

(If the circle K is described by the system x2
1+x2

2 = 1, x3 = x4 = 0 in an appropriate coordinateD1091

system, its tangential hypercylinder is obtained by omitting the equations x3 = x4 = 0.)D1092

6.4 Generic starting pointsD1093

We return to the analysis of the polar orbit polytope, and start with the easy generic case.D1094

Proposition 6.10. Let G be a tubical group whose right group is Cn or Dn for n ≥ 6. LetD1095

v ∈ S3 be a point. If the Gh-orbit of h(v) has no symmetries other than Gh, then the same holdsD1096

for the G-orbit of v: the symmetry group of this orbit is G.D1097

Proof. Since no Cn orDn for n ≥ 6 is contained in a polyhedral group, the only groups containingD1098

G are tubical. In particular, the symmetry group H of the G-orbit of v is tubical. Since theD1099

symmetry group of the Gh-orbit of h(v) is Gh by assumption, the point h(v) does not lie on anyD1100

rotation center or a mirror of a supergroup of Gh. In particular, the Hh-orbit of h(v) is free.D1101

Thus, by Corollary 6.3, the H-orbit of v is free. So G and H have the same order. Since G ⩽ H,D1102

we get G = H.D1103

According to our goal of obtaining a geometric understanding through the orbit polytope,D1104

as described in Figure 2 in Section 2, we are done, in principle. Since the cell has no nontrivialD1105

symmetries, all symmetries of a cell are in G. We are in the branch of Figure 2 that requires noD1106

further action. Every cell can be mapped to every other cell in a unique way.D1107

In particular, for two consecutive cells on a tube it is obvious what the transformation betweenD1108

them is: a small translation along the orbit circle combined with a slight twist around the orbitD1109

circle, or in other words, a right screw, effected by the right rotation [1, en].D1110

Between cells on different tubes, the transformation is not so obvious. For example, inD1111

Figure 6c, we see a vertical zigzag of three short edges between the front corner of the upperD1112

(roughly pentagonal) face and the corresponding corner of the lower face. These edges are part ofD1113

a longer sequence of edges, where 3 tubes meet, and which closes in a circular way. How are theD1114

cells arranged around this “axis”, and how does the group map between them? To investigateD1115

this question, it is helpful to move the starting point closer to the axis to look what happensD1116

there. In particular, this will help us to distinguish different classes of groups G with the sameD1117

group Gh. We will see an example in Section 6.14. Eventually, we will also consider startingD1118

points on the axis.D1119

6.5 Starting point close to a mirrorD1120

Let G be a dihedral-type tubical group, and p ∈ S2 be a point close to the mirror of a reflectionD1121

of Gh. Moreover, assume that p does not lie on any rotation center of Gh. The point p hasD1122

a neighboring partner p′, which is obtained from p by reflecting it across that mirror. We callD1123

the corresponding circles Kp and Kp′ neighboring circles. The red point and the blue point inD1124

Figure 8a form a neighboring pair for the group ±T .D1125

We will now discuss the G-orbit under different choices for the starting point v on Kp.D1126

Case 1. Choose v ∈ Kp such that for each orbit point, the closest point on the neighboring circleD1127

is also in the orbit. See Figure 8c. Thus, in the polar G-orbit polytope, each cell has aD1128

“big” face that directly faces the closest point on the neighboring circle.D1129

Case 2. If we move v in one direction, the orbit points on the neighboring circle move in theD1130

opposite direction. We choose v such that the orbit points on neighboring circles areD1131

in “alternating positions”. That is, the distance between orbit points on neighboringD1132

circles is maximized. See Figure 8d. Thus, in every cell of the polar G-orbit polytope,D1133

the side that is close to the neighboring circle is divided into two faces, on each a cellD1134

of the neighboring tube is stacked.D1135

Case 3. Figure 8e shows an intermediate situation.D1136
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(a) The ±T -orbit polytope of p. (b) The spherical Voronoi diagram of the orbit.

(c) (d) (e)

Figure 8: Orbits of the group G = ±[T ×D20] for a starting point v whose image p := h(v) lies
near a mirror of Gh = ±T . The top row shows the three-dimensional ±T -orbit polytope of p and
the corresponding spherical Voronoi diagram. The red and the blue points form a neighboring
pair. The next row shows different possible configurations for orbit points on the corresponding
neighboring circles. Red points and blue points are orbit points on the two neighboring circles.
Yellow points are midpoints of orbit points on the red circle. They are not orbit points. The
third row shows a cell of the corresponding polar orbit polytope.

6.6 Starting point on a mirrorD1137

It is also interesting to see what happens if we move p to lie on that mirror of Gh. We stillD1138

assume that p does not lie on any rotation center of Gh. In this case, the neighboring pairs on S2
D1139

coincide, and thus the corresponding neighboring circles also coincide. We describe next whatD1140

happens in each of the previous cases.D1141

Case 1. The orbit points coincide in pairs, and thus they form a regular 2n-gon on Kp. EachD1142

orbit point can be mapped to any other orbit point by two different elements of G, oneD1143

of which rotates Kp and one of which reverses the orientation of Kp. Thus, in the polarD1144

orbit polytope, each cell has a half-turn symmetry that flips the direction of the cellD1145

axis, and exchanges the top and bottom faces. We call it a flip symmetry. (For smallD1146

n, top and bottom faces might not be defined.)D1147

It is interesting to notice that for this choice of the starting point, the G-orbit of vD1148

coincides with the orbit of v under the cyclic-type index-2 subgroup GC of G. Since theD1149

GC-orbit is the same up to congruence for any starting point on Kp (Proposition 6.4),D1150

the GC-orbit of any starting point on Kp has the extra symmetries coming from aD1151

dihedral-type group that is geometrically equal to G. (This geometrically equal groupD1152
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has the generators of G with j replaced by a different unit quaternion q′ orthogonalD1153

to i, which is the quaternion q′ from Proposition 4.5(b).) We put this in a propositionD1154

since we will need it later.D1155

Proposition 6.11. Let GC be a cyclic-type tubical group, and let GD be a dihedral-typeD1156

tubical group containing GC as an index-2 subgroup. If p lies on a mirror of Gh
D, thenD1157

the GC-orbit of any point on Kp has the symmetries from (a geometrically equal copyD1158

of) GD.D1159

Case 2. Orbit points on Kp form a regular 4n-gon. Each orbit point can be mapped to anyD1160

other orbit point by a unique element of G. However, this orbit has extra symmetries,D1161

which come from the supergroup of G that we obtain by extending G by the newD1162

symmetry [1, e2n]. This orbit of the supergroup follows the behavior described in Case 1.D1163

Accordingly, each cell of the polar G-orbit polytope has a flip symmetry.D1164

In almost all choices for G, the supergroup has the same class as G but with twiceD1165

the parameter n. The only exceptional case is G = ± 1
2 [O × D4n]. In this case, theD1166

supergroup is ±[O ×D4n].D1167

Case 3. Orbit points on Kp form two regular 2n-gons whose union is a 4n-gon with equal angles,D1168

and side lengths alternating between two values. The orbit points come in close pairs.D1169

Accordingly, the cells of the polar orbit polytope come in a sequence of alternatingD1170

“up-and-down pancakes” stacked upon each other. See the two cells in Figure 9.D1171

Figure 9: Two cells stacked upon each other with a 180◦ rotation. The two left figures show each
cell individually.

6.7 Starting point close to a rotation centerD1172

Let G be a cyclic-type tubical group, and let p be an f -fold rotation center11 of Gh. Let [g] ∈ Gh
D1173

be the clockwise rotation of Gh around p by 2π
f . That is, g = cos π

f + p sin π
f .D1174

Choose a point p1 ∈ S2 close to p. Since p1 avoids rotation centers of Gh, its images under
[g] are all distinct:

p1, p2 := [g]p1, . . . , pf := [g]f−1p1

Figure 10a and Figure 11a show these points around a 4-fold rotation center and a 5-fold rotationD1175

center, respectively.D1176

We want to describe the G-orbit for a starting point on Kp1
. By Proposition 6.4, any pointD1177

on Kp1 will give the same G-orbit, up to congruence. Thus, let v ∈ Kp1 be any point on Kp1D1178

and consider its G-orbit.D1179

We will now discuss the G-orbit of v under different assumptions on the subgroup H ofD1180

elements of G that preserve Kp.D1181

Case 1. H contains a simple rotation fixing Kp of order f : Orbit points around Kp can beD1182

grouped into regular f -gons (if f ≥ 3) or pairs (if f = 2). See Figure 10c and Figure 11c.D1183

11We call p an f-fold rotation center of some 3-dimensional point group if f is the largest order of a rotation
around p in that group. Hence, a 4-fold rotation center of a group is not a 2-fold rotation center of that group.



6. The tubical groups 33

(a) The +O-orbit polytope of p. (b) The spherical Voronoi diagram of the orbit.

(c) ±[O × C20]
squares

(d) ±[O × C21]
3/4 (right) staircase

(e) ±[O × C22]
pairs

(f) ±[O × C23]
1/4 (left) staircase

Figure 10: Orbits of the groups G = ±[O×Cn] for a starting point v whose image p := h(v) lies
near a 4-fold rotation center of Gh = +O. The top row shows the three-dimensional +O-orbit
polytope of p and the corresponding spherical Voronoi diagram. The four images of p under the
4-fold rotation are colored. The next row shows all possible configurations for orbit points on
the corresponding colored circles. The vertical line in each figure is the great circle of H that
correspond to the rotation center. The third row shows a cell of the corresponding polar orbit
polytope, and the bottom row combines the previous two rows.

Case 2. H contains no simple rotation fixing Kp: Orbit points around Kp form different typesD1184

of staircases. See Figures 10d and 10f, and Figures 11d–11g.D1185

Case 3. H contains a simple rotation fixing Kp of order not equal to f : This case can only occurD1186

when f = 4 and the order of that simple rotation is 2. Orbit points around Kp can beD1187

grouped into pairs. See Figure 10e.D1188

6.8 Starting point on a rotation centerD1189

It is also interesting to see what happens if we move p1 to p. In this case, the points p1, . . . , pfD1190

coincide with p, and thus the corresponding circles Kp1 , . . . ,Kpf
coincide with Kp. We describeD1191

next what happens in each of the previous cases.D1192

Case 1. The orbit points coincide in groups of size f , and thus they form a regular 2n-gon onD1193

Kp. Each orbit point can be mapped to itself by f different elements of G. Thus, inD1194

the polar orbit polytope, each cell has an f -fold rotational symmetry whose axis is theD1195

cell axis.D1196
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(a) The +I-orbit polytope of p. (b) The spherical Voronoi diagram of the orbit.

(c) ±[I × C20]
pentagons

(d) ±[I × C21]
4/5 staircase

(e) ±[I × C22]
2/5 staircase

(f) ±[I × C23]
3/5 staircase

(g) ±[I × C24]
1/5 staircase

Figure 11: Orbits of the groups G = ±[I ×Cn] for a starting point v whose image p := h(v) lies
near a 5-fold rotation center of Gh = +I. The top row shows the three-dimensional +I-orbit
polytope of p and the corresponding spherical Voronoi diagram. The five images of p under the
5-fold rotation are colored. The next row shows all possible configurations for orbit points on
the corresponding colored circles. The vertical line in each figure is the great circle of H that
correspond to the rotation center. The third row shows a cell of the corresponding polar orbit
polytope, and the bottom row combines the previous two rows.

Case 2. Orbit points on Kp form a regular 2fn-gon. Each orbit point can be mapped to itself byD1197

a unique element of G. However, the orbit has extra symmetries, which come from theD1198

supergroup of G that we obtain by extending G by the new symmetry [1, efn]. Thus,D1199

in total, each orbit point can be mapped to itself by f symmetries. Accordingly, in theD1200

polar orbit polytope, each cell has an f -fold rotational symmetry whose axis is the cellD1201

axis.D1202

Case 3. Orbit points on Kp form a regular 4n-gon. Each orbit point can be mapped to itselfD1203

by 2 different elements of G. However, the orbit has extra symmetries, which comeD1204

from the supergroup of G that we obtain by extending G by the new symmetry [1, e2n].D1205

Thus, each orbit point can be mapped to itself by extra 2 symmetries. Accordingly, inD1206

the polar orbit polytope, each cell has a 4-fold rotational symmetry whose axis is theD1207

cell axis.D1208

See Section 6.9 for particular examples and Appendix B for a coverage of all groups.D1209
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6.8.1 Supergroups of cyclic typeD1210

The cyclic-type supergroups described in Case 2 and Case 3 are listed in Table 3 for each groupD1211

class and each type of rotation center. For large enough n, this supergroup is the largest cyclic-D1212

type symmetry group of the orbit. In most cases, this is the same class of group with a largerD1213

parameter n. The only exception are the groups G = ±[T × Cn] when p is a 2-fold rotationD1214

center of Gh = +T . As can be seen in Table 3, the symmetry groups of cyclic type of the orbitD1215

are then of the form ±[O × Cn′ ] or ± 1
2 [O × Cn′ ].D1216

The reason for this exceptional behavior can already be seen at the level of the groups Gh
D1217

in three dimensions: On S2, the group +T is an index-2 subgroup of +O. The 2-fold rotationD1218

centers p of +T coincide with the 4-fold rotation centers of +O, and the orbit has size 6 in bothD1219

cases.D1220

The group G1 := ±[T ×Cn] is an index-2 subgroup of G2 := ±[O ×Cn]. One can show thatD1221

when n ≡ 0 mod 4, the orbits of both groups have a simple rotation fixing Kp of order 2 (for G1)D1222

and of order 4 (for G2). In particular, both orbits follow Case 1 above and they form a regularD1223

2n-gon on each orbit circle. Since they also have the same orbit circles, these two orbits coincide.D1224

The other cases (n ≡ 2 mod 4, and n odd) are similar.D1225

Accordingly, all cells of the groups ±[T×Cn] when p is a 2-fold rotation center (Section B.4.2),D1226

appear also as cells of the groups ± 1
2 [O × Cn′ ] when p is a 4-fold rotation center (Figure 13),D1227

and those when n is a multiple of 4 also appear for the groups ±[O × Cn′ ] (Section B.2.1).D1228

It is perhaps instructive to look at a particular example and compare the groups ±[T ×C24]D1229

(Figure 44) and ± 1
2 [O×C24] (Figure 13 for n = 12), which have equal, 4-sided cells. The allowedD1230

rotations between consecutive cells, apart from the necessary adjustment of π/24, are 0◦ andD1231

180◦ in the first case and ±90◦ in the second case. The common supergroup that has all fourD1232

rotations is ±[O × C24] (Figure 38).D1233

6.8.2 Supergroups of dihedral type, and flip symmetriesD1234

For each cyclic-type tubical group and for each rotation center p of its induced group on S2,D1235

there is a dihedral-type tubical group whose induced group on S2 has a mirror through p, and theD1236

cyclic-type group is an index-2 subgroup of the dihedral-type group. Thus, by Proposition 6.11,D1237

the orbit of the cyclic-type group for a starting point on Kp has extra symmetries coming fromD1238

(a geometrically equal copy of) that dihedral-type tubical group. In particular, each cell of theD1239

polar orbit polytope will have a flip symmetry. See the figures in Section 6.9 and Appendix B.D1240

The dihedral-type supergroups are listed in Table 3.D1241

6.9 Two examples of special starting pointsD1242

In this section we will discuss two cases of non-generic starting points. In particular, we want toD1243

consider orbits of cyclic-type tubical groups where the image of the starting point under h is aD1244

rotation center of the induced group. In Table 3 and Appendix B, we summarize the results forD1245

the remaining groups and rotation centers.D1246

6.9.1 ±[I × Cn], 5-fold rotation centerD1247

Let G = ±[I ×Cn]. We want to consider the G-orbit of a point whose image under h is a 5-foldD1248

rotation center p of +I. By Proposition 6.4, any starting point on Kp will give the same orbit,D1249

up to congruence. Notice also that the other orbit circles correspond to the other 5-fold rotationD1250

centers of +I. Thus, choosing p to be an arbitrary 5-fold rotation center will yield the sameD1251

orbit, up to congruence.D1252

So let p be the 5-fold rotation center p = 1√
φ2+1

(0, 1, φ), where φ = 1+
√
5

2 . Then g = −ωiI =D1253

cos π
5 + p sin π

5 ∈ 2I defines the 72◦ clockwise rotation [g] ∈ +I around p. By Proposition 4.5, weD1254

know the elements of G that preserve Kp. These elements form a subgroup H = ⟨[g, 1], [1, en]⟩D1255

of order 10n. Proposition 4.5 also tells us the H acts on Kp as a 2-dimensional cyclic group.D1256

The rotation [g, 1] rotates K⃗p by −π
5 , while [1, en] rotates it by π

n . Thus, the G-orbit of aD1257

point on Kp forms a regular lcm(2n, 10)-gon on Kp. We will discuss the orbit of a point v ∈ KpD1258

depending on the value of n. Figure 12 shows cells of the polar orbit polytopes for differentD1259

values of n.D1260

• If n is a multiple of 5, then the orbit points form a regular 2n-gon on each orbit circle. So,D1261

every orbit point can be mapped to itself by 5 different elements of G. This is reflectedD1262
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center
#tubes n

orbit cyclic-type dihedral-type
figure

type size supergroup supergroup

± [I × Cn]

5-fold 12
0 mod 5 24n – ±[I ×D2n] 12
else 120n ±[I × C5n] ±[I ×D10n]

3-fold 20
0 mod 3 40n – ±[I ×D2n] 36
else 120n ±[I × C3n] ±[I ×D6n]

2-fold 30
0 mod 2 60n – ±[I ×D2n] 37
else 120n ±[I × C2n] ±[I ×D4n]

± [O × Cn]

4-fold 6

0 mod 4 12n – ±[O ×D2n]

382 mod 4 24n ±[O × C2n] ±[O ×D4n]

else 48n ±[O × C4n] ±[O ×D8n]

3-fold 8
0 mod 3 16n – ±[O ×D2n] 39
else 48n ±[O × C3n] ±[O ×D6n]

2-fold 12
0 mod 2 24n – ±[O ×D2n] 40
else 48n ±[O × C2n] ±[O ×D4n]

± 1
2 [O × C2n]

4-fold 6

2 mod 4 12n – ± 1
2 [O ×D4n]

130 mod 4 24n ±[O × C2n] ±[O ×D4n]

else 48n ±[O × C4n] ±[O ×D8n]

3-fold 8
0 mod 3 16n – ± 1

2 [O ×D4n] 41
else 48n ± 1

2 [O × C6n] ± 1
2 [O ×D12n]

2-fold 12
0 mod 2 24n – ± 1

2 [O ×D4n] 42
else 48n ± 1

2 [O × C4n] ± 1
2 [O ×D8n]

± [T × Cn]

3-fold 4
0 mod 3 8n – ± 1

2 [O ×D2n] 43
else 24n ±[T × C3n] ± 1

2 [O ×D6n]

2-fold 6

0 mod 4 12n ±[O × Cn] ±[O ×D2n]

442 mod 4 12n ± 1
2 [O × C2n] ± 1

2 [O ×D4n]

else 24n ± 1
2 [O × C4n] ± 1

2 [O ×D8n]

± 1
3 [T × C3n]

3-fold I 4
1 mod 3 8n – ± 1

6 [O ×D6n] 46
else 24n ±[T × C3n] ± 1

2 [O ×D6n]

3-fold II 4
2 mod 3 8n – ± 1

6 [O ×D6n] 45
else 24n ±[T × C3n] ± 1

2 [O ×D6n]

2-fold 6
0 mod 2 12n – ± 1

6 [O ×D6n] 47
else 24n ± 1

3 [T × C6n] ± 1
6 [O ×D12n]

Table 3: The columns “cyclic-type supergroup” and “dihedral-type supergroup” indicate the
largest symmetry group of the orbit that is tubical of that type. In Section 6.9, we extensively
discuss two cases from the table. For the other cases, we summarize the results in Appendix B.
The last column refers to the figure that shows cells of the corresponding polar orbit polytope
with different values for n. The two types of 3-fold rotation centers for ± 1

3 [T × C3n] (3-fold I
and 3-fold II) are defined in Section 6.14.
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on the cells of the polar orbit polytope where each cell has a 5-fold rotational symmetryD1263

whose axis is the cell axis.D1264

This case corresponds to Case 1 in Section 6.8, where H contains a simple rotation ofD1265

order 5 fixing Kp.D1266

The element [1, en] of G maps an orbit point to an adjacent one on the same circle. Corre-D1267

spondingly, on each tube, the cells of the polar orbit polytope are stacked upon each otherD1268

with a right screw by π
n .D1269

• If n is not a multiple of 5, then the orbit points form a regular 10n-gon on each orbit circle.D1270

That is, the orbit is free. So, every orbit point can be mapped to itself by a unique elementD1271

of G. However, this orbit has extra symmetries. In particular, the rotation [1, e5n] mapsD1272

each orbit point to an adjacent one on the same circle. Adjoining [1, e5n] to G gives theD1273

supergroup ±[I×C5n], whose orbit of n follows the first case. Accordingly, each cell of theD1274

polar orbit polytope has a 5-fold symmetry whose axis is the cell axis.D1275

This case corresponds to Case 2 in Section 6.8, where H does not contain any simpleD1276

rotation fixing Kp.D1277

The symmetry [1, e5n] (which is not in G) maps an orbit point to an adjacent one on theD1278

same circle. Correspondingly, on each tube, the cells of the polar orbit polytope are stackedD1279

upon each other with a right screw by π
5n .D1280

In accordance with Section 6.8.2, every cell has a flip symmetry, which is not included in G.D1281

It comes from (a group geometrically equal to) the group ±[I × D2n], which contains G as anD1282

index-2 subgroup.D1283

The top and bottom faces in each cell are congruent. They resemble the shape of a pentagon.D1284

This corresponds to the fact that the spherical Voronoi cell of the +I-orbit of p on the 2-sphereD1285

is a spherical regular pentagon, as shown in the top right picture of Figure 12. (Refer to theD1286

discussion in Section 6.3.)D1287

Since the +I-orbit of p has size 12, the G-orbit of v lies on 12 orbit circles. Accordingly, theD1288

cells of the polar orbit polytope can be decomposed into 12 tubes, each with lcm(2n, 10) cells.D1289

In the PDF-file of this article, the interested reader can click on the pictures in Figure 12 for anD1290

interactive visualization of these tubes. We refer to Section 6.13 for more details.D1291

In accordance with the program set out in Figure 2 in Section 2 to understand the group byD1292

its action on the orbit polytope, we will now work out how each cell is mapped to the adjacentD1293

cell in the same tube. This requires a small number-theoretic calculation. The mapping betweenD1294

adjacent cells is obtained in cooperation between the right group and the left group. In particular,D1295

to get a rotation by 2π
lcm(2n,10) along the orbit circle K⃗p, we have to combine a left rotation byD1296

−a · π
5 with a right rotation by b · π

n , resulting in the angleD1297

bπ

n
− aπ

5
=

2π

lcm(2n, 10)
. (14)

For example, for n = 12 we can solve this by a = 2, b = 5. The right screw angle betweenD1298

consecutive slices (or orbit points) is then bπ
n + aπ

5 . Using (14), this can be rewritten asD1299

aπ

5
+

bπ

n
=

2aπ

5
+

2π

lcm(2n, 10)
=

(
a

5
+

1

lcm(2n, 10)

)
· 2π, (15)

which is (25 + π
120 ) · 2π in our example. This angle is always of the form (a5 + 1

lcm(2n,10) ) · 2π forD1300

some integer a, in accordance with the requirement to match the pentagonal shape. The valueD1301

a can never be 0. The rotation angles for different values of n are listed in Figure 12.D1302

When n is not a multiple of 5, there is one element of the group that maps a cell to theD1303

upper adjacent one. Thus, a has a unique value. When n is a multiple of 5, each cell has a 5-foldD1304

symmetry included in the group. Thus, all values of a are permissible.D1305

6.9.2 ± 1
2 [O × C2n], 4-fold rotation centerD1306

Let G = ± 1
2 [O × C2n]. We want to consider the G-orbit of a point whose image under h isD1307

a 4-fold rotation center p of +O. The discussion will closely parallel that of the group fromD1308

the previous section, but in connection with the 4-fold rotation, we will also meet Case 3. AnyD1309

of the 4-fold rotation centers p gives the same orbit. So let p be the 4-fold rotation centerD1310
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n = 1, 5
( 45 + 1

10 ) · 2π
n = 2, 10

( 25 + 1
20 ) · 2π

n = 3, 15
( 35 + 1

30 ) · 2π

n = 4, 20
( 15 + 1

40 ) · 2π
n = 25

(k5 + 1
50 ) · 2π

n = 6, 30
( 45 + 1

60 ) · 2π

n = 7, 35
( 25 + 1

70 ) · 2π
n = 8, 40

( 35 + 1
80 ) · 2π

n = 9, 45
( 15 + 1

90 ) · 2π

n = 50
(k5 + 1

100 ) · 2π
n = 11, 55

( 45 + 1
110 ) · 2π

n = 12, 60
( 25 + 1

120 ) · 2π

n = 13, 65
( 35 + 1

130 ) · 2π
n = 14, 70

( 15 + 1
140 ) · 2π

n = 75
(k5 + 1

150 ) · 2π

Figure 12: The +I-orbit polytope of the 5-fold rotation center p = (1/
√
φ2 + 1)(0, 1, φ) of +I,

where φ = (1 +
√
5)/2 (top left), and the spherical Voronoi diagram of that orbit (top right).

The remaining pictures show cells of polar ±[I ×Cn]-orbit polytopes for a starting point on Kp

for different values of n. In addition we indicate the counterclockwise angle (as seen from the
top) by which the group rotates as it proceeds from a cell to the consecutive cell above. When
the same orbit arises for several values of n, then the indicated angle is the unique valid angle
only for the smallest value n0 that is specified. For a larger value n = 5n0, this can be combined
with arbitrary multiples of a 5-fold rotation. The polar orbit polytope can be decomposed into
12 tubes, each with lcm(2n, 10) cells. The blue vertical line indicates the cell axis, the direction
towards the next cell along Kp. For an appropriate choice of starting point on Kp, the group
±[I ×D2n] produces the same orbit.

https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/5/120cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/5/240cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/5/360cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/5/480cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/5/600cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/5/720cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/5/840cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/5/960cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/5/1080cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/5/1200cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/5/1320cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/5/1440cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/5/1560cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/5/1680cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/5/1800cells_12tubes
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p = (0, 1, 0). Then g = −ωiO = cos π
4 + p sin π

4 ∈ 2O defines the 90◦ clockwise rotation [g] ∈ +OD1311

around p. By Proposition 4.5, we determine the elements of G that preserve Kp as the subgroupD1312

H = ⟨[g, e2n], [1, en]⟩ of order 8n, which acts on Kp as a 2-dimensional cyclic group. The rotationD1313

[g, e2n] rotates K⃗p by −π
4 + π

2n = − (n−2)π
4n . Its order isD1314

2π

gcd( (n−2)π
4n , 2π)

=
2π

π
4n gcd(n− 2, 8n)

=
8n

gcd(n− 2, 8n− 8(n− 2))
=

8n

gcd(n− 2, 16)
.

The other operation, [1, en] rotates it by
π
n . Thus, the G-orbit of a point on Kp forms a regularD1315

polygon with lcm(2n, 8n
gcd(n−2,16) ) sides on Kp. The denominator gcd(n − 2, 16) can take theD1316

values 1, 2, 4, 8, 16, but in the overall expression, the values 4, 8, 16 make no distinction, and thusD1317

we can simplify the expression for the number of sides to 8n
gcd(n−2,4) .D1318

The structure of the orbit of a point v ∈ Kp depends on n. Cells of the polar orbit polytopesD1319

for different values of n are shown in Figure 13.D1320

• If n − 2 is a multiple of 4, then gcd(n − 2, 4) = 4 and 8n
gcd(n−2,4) = 2n. The orbit pointsD1321

form a regular 2n-gon on each orbit circle, and every point can be mapped to itself by 4D1322

different elements of G. This is reflected on the polar orbit polytope where each cell has aD1323

4-fold symmetry whose axis is the cell axis.D1324

This corresponds to Case 1 in Section 6.8, where H contains a simple rotation of order 4D1325

fixing Kp.D1326

The element [1, en] of G maps an orbit point to an adjacent one on the same circle. Corre-D1327

spondingly, on each tube, the cells of the polar orbit polytope are stacked upon each otherD1328

with a right screw by π
2n .D1329

• If n − 2 ≡ 2 mod 4, then gcd(n − 2, 4) = 2 and 8n
gcd(n−2,4) = 4n. The orbit points form aD1330

regular 4n-gon on each orbit circle, and every point can be mapped to itself by 2 differentD1331

elements of G. However, this orbit has extra symmetries. In particular, the rotation [1, e2n]D1332

maps each orbit point to an adjacent one on the same circle. Adjoining [1, e2n] to G givesD1333

the supergroup ±[O × C2n], which contains G as an index-2 subgroup. Thus, each orbitD1334

point can be mapped to itself by 2 extra symmetries that are not in G. Accordingly, as inD1335

the first case, every cell of the polar orbit polytope has a 4-fold symmetry whose axis isD1336

the cell axis.D1337

This corresponds to Case 3 in Section 6.8, where H contains a simple rotation of order 2D1338

fixing Kp.D1339

The symmetry [1, e2n] (which is not in G) maps an orbit point to adjacent one on the sameD1340

circle. Correspondingly, on each tube, the cells of the polar orbit polytope are stackedD1341

upon each other with a right screw by π
2n .D1342

• If n−2 is odd, then gcd(n−2, 4) = 1 and 8n
gcd(n−2,4) = 8n. The orbit is free. The orbit formsD1343

a regular 8n-gon on each orbit circle. Every point can be mapped to any other point byD1344

a unique element of G. Again, the orbit has extra symmetries. In particular, the rotationD1345

[1, e4n] maps each orbit point to an adjacent one on the same circle. Adjoining [1, e4n] toD1346

G gives the supergroup ±[O×C4n], which contains G as an index-4 subgroup. Thus, eachD1347

orbit point can be mapped to itself by 4 symmetries. Accordingly, as in the other cases,D1348

every cell of the polar orbit polytope has a 4-fold symmetry whose axis is the cell axis.D1349

This corresponds to Case 2 in Section 6.8, where H does not contain a simple rotationD1350

fixing Kp.D1351

The symmetry [1, e4n] (which is not in G) maps an orbit point to the next one on the sameD1352

circle. Correspondingly, on each tube, the cells of the polar orbit polytope are stackedD1353

upon each other with a right screw by π
4n .D1354

In accordance with Section 6.8.2, every cell has a flip symmetry, which is not included in G.D1355

It comes from (a group geometrically equal to) the group ± 1
2 [O×D4n], which contains G as anD1356

index-2 subgroup.D1357

The top and bottom faces in each cell are congruent. They resemble the shape of a roundedD1358

square, in agreement with the quadrilateral Voronoi cell on the 2-sphere, as shown in the topD1359

right figure in Figure 13.D1360
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Since the +O-orbit of p has size 6, the G-orbit of v lies on 6 orbit circles. Accordingly, theD1361

cells of the polar orbit polytope can be decomposed into 6 tubes, each with 8n
gcd(n−2,4) cells.D1362

Similar to the previous section, one can work out the right screw angle (in G) betweenD1363

consecutive slices. To summarize: When n − 2 is odd, there is a unique angle of the form:D1364

(k0

4 + 1
8n ) · 2π (with specific k0 = 1, 2, or 3). When n − 2 ≡ 2 mod 4, there are two angles:D1365

( 2k+1
4 + 1

4n ) · 2π (with arbitrary k). When n − 2 is a multiple of 4, there are four angles:D1366

(k4 + 1
2n ) · 2π (with arbitrary k).D1367

6.10 Consequences for starting points near rotation centersD1368

In Sections 6.7 and 6.8 we have discussed the different cases that can arise for an orbit nearD1369

a rotation axis and on a rotation axis. Indeed, we can confirm this relation by comparingD1370

Figure 11 and Figure 12. By the analysis that lead to Figure 11, an orbit of ±[I × Cn] near aD1371

5-fold rotation axis forms a 4/5, 2/5, 3/5, or 1/5 staircase if n ≡ 1, 2, 3, 4 mod 5, respectively,D1372

and it forms pentagons if n is a multiple of 5. We can check in Figure 12 that these values areD1373

precisely the specified rotations (up to the twist by π
5n ), except when n is a multiple of 5, and inD1374

that case all five rotations are allowed. Similarly, Figure 10 corresponds with Figure 38.D1375

Conversely, we can consult the appropriate entries in Appendix B for orbits on a rotationD1376

axis to conclude what type of pentagons, quadrilaterals, triangles, pairs, or staircases to expectD1377

for an orbit near this rotation axis.D1378

6.11 Mappings between different tubesD1379

Continuing the discussion of the tubes for the groups G = ± 1
2 [O × C2n], from Section 6.9.2, weD1380

will now continue with the program set out in Figure 2 in Section 2, by asking, for this example,D1381

how cells in different tubes are mapped to each other. The cells in Figure 13 have a roughlyD1382

four-sided shape. At corners of these quadrilaterals, three tubes meet.D1383

To understand what is happening there, we imagine putting a starting point v′ near a corner.D1384

Then h(v′) is near a three-fold rotation center of +O. Near such a rotation center, the orbitD1385

forms either a set of triangles, or a left or right staircase. As just discussed, we can check thisD1386

by consulting the pictures for the orbit on a three-fold rotation axis: Figure 41.D1387

We see that those cells of Figure 13 that have a straight line segment A between the top andD1388

the bottom face at the corners (n = 6, 3, 18, 12) correspond to cases where the orbit of v′ consistsD1389

of triangles. Indeed, one can imagine three cells arranges around a common edge A. (The cellsD1390

don’t lie perpendicular to the axis A, but they are twisted.)D1391

For the remaining cases (n = 1, 4, 10, 14, 8, 5, 22) the edge is broken into three parts betweenD1392

the top and the bottom face, and this is where the cells are arranged in a staircase-like fashion.D1393

6.12 Small values of nD1394

For small values of n, some of the cyclic-type tubical groups recover well-known decompositionsD1395

of regular/uniform polytopes into tubes (or more commonly knows as rings). These appear inD1396

various places in the literature. We list some of the references. Next to each group, we state theD1397

rotation center of the induced group that is the image of the starting point.D1398

• ±[I ×C1] and 5-fold rotation center (Figure 12): We get the decomposition of the 120-cellD1399

into 12 tubes, each with 10 regular dodecahedra.12. Figure 30 shows a picture of threeD1400

dodecahedra from one tube, see also [15, Figure 21], [9, p. 75] and Coxeter [12, p. 53].D1401

• ±[O × C1] and 4-fold rotation center (Figure 38): We get the decomposition of the bi-D1402

truncated 24-cell (the 48-cell) into 6 tubes, each with 8 truncated cubes, stacked upon theD1403

octagonal faces.D1404

• ±[O × C1] and 3-fold rotation center (Figure 39): We get the decomposition of the bi-D1405

truncated 24-cell (the 48-cell) into 8 tubes, each with 6 truncated cubes, stacked upon theD1406

triangular faces. [9, p. 75-76].D1407

• ±[T × C1] and 3-fold rotation center (Figure 43): We get the decomposition of the 24-cellD1408

into 4 tubes, each with 6 octahedra [9, p. 74], [2].D1409

12A remarkable paper model of a Schlegel diagram with two rings was produced by Robert Webb, https:

//youtu.be/2nTLI89vdzg. An interesting burr puzzle was made in [33] using pieces of these rings.

https://youtu.be/2nTLI89vdzg
https://youtu.be/2nTLI89vdzg
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n = 2
(k4 + 1

4 ) · 2π
n = 1

( 14 + 1
8 ) · 2π

n = 6
(k4 + 1

12 ) · 2π

n = 4
( 2k+1

4 + 1
16 ) · 2π

n = 10
(k4 + 1

20 ) · 2π
n = 3

( 34 + 1
24 ) · 2π

n = 14
(k4 + 1

28 ) · 2π
n = 8

( 2k+1
4 + 1

32 ) · 2π
n = 18

(k4 + 1
36 ) · 2π

n = 5
( 14 + 1

40 ) · 2π
n = 22

(k4 + 1
44 ) · 2π

n = 12
( 2k+1

4 + 1
48 ) · 2π

Figure 13: The +O-orbit polytope of the 4-fold rotation center p = (0, 1, 0) of +O (top left),
and the spherical Voronoi diagram of that orbit (top right). The remaining pictures show cells of
polar ± 1

2 [O×C2n]-orbit polytopes for a starting point on Kp for different values of n. In addition
we indicate the counterclockwise angle (as seen from the top) by which the group rotates as it
proceeds from a cell to the consecutive cell above. The polar orbit polytope can be decomposed
into 6 tubes, each with 8n

gcd(n−2,4) cells. The blue vertical line indicates the cell axis, the direction

towards the next cell along Kp. For an appropriate choice of starting point on Kp, the group
± 1

2 [O × D4n] produces the same orbit. When n = 2, the cells that should form a tube touch
each other only in a vertex.

https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/4/24cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/4/48cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/4/72cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/4/96cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/4/120cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/4/144cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/4/168cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/4/192cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/4/216cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/4/240cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/4/264cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/4/288cells_6tubes
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• ±[T × C1] and 2-fold rotation center (Figure 44): We get the decomposition of the 24-cellD1410

into 6 tubes, each with 4 octahedra, touching each other via vertices.D1411

• ± 1
3 [T × C3] and 3-fold (type I) rotation center (Figure 45): This is a degenerate case. WeD1412

get the decomposition of the hypercube into 4 “tubes”, but each “tube” is just a pair ofD1413

opposite cube faces.D1414

We remark that the orbit of G = ±[L× C1], is the same, up to congruence, for any startingD1415

point. This follows since the G-orbit of a point v ∈ R4 can be obtained from the G-orbit of theD1416

quaternion 1 by applying the rotation [1, v]:D1417

orbit(v,G) = { l̄v | l ∈ L} = [1, v]{ l̄ | l ∈ L} = [1, v]orbit(1, G).

6.13 Online gallery of polar orbit polytopesD1418

The interested reader can explore polar orbit polytopes for the cyclic-type tubical groups with allD1419

special choices of starting points in an online gallery that provides interactive three-dimensionalD1420

views.13D1421

The polytopes are shown in a central projection to the three-dimensional tangent space atD1422

the starting point v of the orbit. The projection center lies outside the polytope, close to theD1423

cell F0 opposite to v. In the projection, F0 becomes the outer cell that (almost) encloses allD1424

remaining projected cells. The orientation of the outer cell is reversed with respect to the otherD1425

cells. We are mostly interested not in F0 but in the cells near v, which are distorted the leastD1426

in the projection, and as a consequence, we go with the majority and ensure that these cells areD1427

oriented according to our convention (Section 2.3). For large values on n, we have refrained fromD1428

constructing true Schlegel diagrams, because this would have resulted in tiny inner cells. As aD1429

result, cells near the boundary of the projection wrap around and overlap.D1430

The goal of the gallery is to show the decomposition of the polytopes into tubes, and howD1431

these tubes are structured and interact with each other. It is possible to remove cells one by oneD1432

to see more structure. The order of the cells is based on the distances of their orbit points toD1433

the starting point v.D1434

6.14 ±[T × Cn] versus ±1
3
[T × C3n]D1435

Looking at the tubical groups in Table 2, we see that there are groups G with the same inducedD1436

symmetry group Gh on S2. Thus, for the same starting point, these groups have the same orbitD1437

circles. However, they differ in the way how the points on different circles are arranged relativeD1438

to each other.D1439

In this section we will consider the case where the induced group is +T . For the same n,D1440

we will compare the actions of ±[T ×Cn] and ± 1
3 [T ×C3n] on and around the circles of H thatD1441

correspond to rotation centers of +T . We will see that these two groups have different sets ofD1442

fixed circles of H, which correspond to 3-fold rotation centers of +T . On such a fixed circle, theD1443

size of the orbit is reduced by a factor of 3 (from 24n to 8n, see Table 3). In Figures 15 and 16, weD1444

visualize the effect of that difference on the orbit points and the cells of the polar orbit polytopeD1445

around these circles. We will see that triangles and both types of staircases appear in ±[T ×Cn]D1446

and ± 1
3 [T ×C3n], depending on n. In this sense, there is no sharp geometric distinction betweenD1447

the two families.D1448

2-fold rotation center. Let p ∈ S2 be a 2-fold rotation center of +T and let [g] ∈ +T be theD1449

180◦ rotation around p. If n is even, then [g, e2] is in both groups, and it is a simple rotation thatD1450

fixes Kp. If n is odd, then Kp is not fixed. Thus, for the same n, ±[T × Cn] and ± 1
3 [T × C3n]D1451

have the same set of fixed circles that correspond to 2-fold rotation centers of +T .D1452

3-fold rotation center. The eight 3-fold rotation centers of +T belong to two conjugacyD1453

classes, depending on which +T -orbit they are in. The rotation centers of type I, are the onesD1454

in the orbit of p0 = (−1,−1,−1), and the rotation centers of type II, are the ones in the orbit ofD1455

−p0 = (1, 1, 1). We will see that the group ±[T × Cn] does not distinguish between the circlesD1456

13https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/. In the PDF-file of this ar-
ticle, the pictures of the cells in the figures in Section 6.9 and Appendix B are linked to the corresponding entries
in the gallery.

https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/
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Kp0
and K−p0

. In particular, the orbit of a starting point on p0 is congruent to the one of aD1457

starting point on −p0. However, this is not the case for ± 1
3 [T × C3n].D1458

The quaternion −ω ∈ 2T defines the 120◦ clockwise rotation [−ω] around p0. That is −ω =D1459

cos π
3 + p0 sin

π
3 . The quaternion −ω2 ∈ 2T defines the 120◦ clockwise rotation [−ω2] aroundD1460

−p0. That is −ω2 = cos π
3 − p0 sin

π
3 .D1461

By Proposition 4.5, the set of rotations that preserve Kp0 is the same as the set of rotationsD1462

that preserve K−p0
. Let’s look at these rotations inside each of the two groups.D1463

• The elements of ±[T × Cn] that preserve Kp0
(and K−p0

) form the subgroupD1464

⟨[−ω, 1], [1, en]⟩ = ⟨[−ω2, 1], [1, en]⟩

of order 6n. The rotation [−ω, 1] rotates Kp0
by π

3 in one direction, while [1, en] rotates itD1465

by π
n in the other direction. Thus, the ±[T × Cn]-orbit of a starting point on Kp0 forms aD1466

regular lcm(2n, 3)-gon on Kp0 . Similarly, the ±[T × Cn]-orbit of a starting point on K−p0D1467

forms a regular lcm(2n, 3)-gon on K−p0
. In particular, if n is a multiple of 3, ±[T × Cn]D1468

has a simple rotation ([−ω, e3]) fixing Kp and a simple rotation ([−ω2, e3]) fixing K−p0
. IfD1469

n is not a multiple of 3, ±[T × Cn] has no simple rotation fixing Kp0
or K−p0

, and theD1470

orbit points on the three circles form a left or right staircase.D1471

• The elements of 1
3 [T × C3n] that preserve Kp0

(and K−p0
) form the subgroupD1472

⟨[−ω, e3n], [1, en]⟩ = ⟨[−ω2, e23n], [1, en]⟩

of order 6n. We will now consider the action of this subgroup on the circles Kp0 and K−p0 .D1473

On Kp0 , the rotation [−ω, e3n] rotates Kp0 by π
3 − π

3n = (n−1)π
3n . Its order isD1474

2π

gcd( (n−1)π
3n , 2π)

=
2π

gcd( π
3n (n− 1), 6n π

3n )
=

2π
π
3n gcd(n− 1, 6n)

=
6n

gcd(n− 1, 6)
.

Thus, the ± 1
3 [T × C3n]-orbit of a starting point on Kp0

forms a regular polygon withD1475

lcm(2n, 6n
gcd(n−1,6) ) =

6n
gcd(n−1,3) sides. In particular, if n−1 is a multiple of 3, ± 1

3 [T ×C3n]D1476

has a simple rotation fixing Kp0
. Otherwise, G has no simple rotation fixing Kp0

. OnD1477

K−p0
, the rotation [−ω2, e23n] rotates K−p0

by π
3 − 2π

3n = (n−2)π
3n . Its order isD1478

2π

gcd( (n−2)π
3n , 2π)

=
2π

gcd( π
3n (n− 2), 6n π

3n )
=

2π
π
3n gcd(n− 2, 6n)

=
6n

gcd(n− 2, 12)
.

Thus, the ± 1
3 [T × C3n]-orbit of a starting point on K−p0 forms a regular polygon withD1479

lcm(2n, 6n
gcd(n−2,12) ) =

6n
gcd(n−2,3) sides. In particular, if n−2 is a multiple of 3, ± 1

3 [T ×C3n]D1480

has a simple rotation fixing K−p0 . Otherwise, G has no simple rotation fixing K−p0 .D1481

To summarize, ±[T ×Cn] fixes Kp0
and K−p0

if and only if n ≡ 0 mod 3. While, ± 1
3 [T ×C3n]D1482

fixes Kp0
if and only if n ≡ 1 mod 3, and it fixes K−p0

if and only if n ≡ 2 mod 3.D1483

Here, we have discussed the situation in terms of orbits near the axis. As discussed inD1484

Section 6.10, the results can be checked against Figures 43, 46, and 45.D1485

7 The toroidal groupsD1486

7.1 The invariant Clifford torusD1487

We will now study the large class of groups of type [D ×D] or [C × C] or [C ×D], where bothD1488

the left and the right group are cyclic or dihedral. At the beginning of Section 5.1, we have seenD1489

that these groups have an invariant Clifford torus Tq
p. All tori Tq

p are the same up to orthogonalD1490

transformations. We can thus, without loss of generality, restrict our attention to the standardD1491

torus Ti
i. Indeed this is the torus that is left invariant by the left and right multiplication withD1492

the groups ±[D2m×D2n] and their subgroups, as follows from Proposition 4.13. When we speakD1493

of the torus in this section, we mean the torus Ti
i and we denote it by T.D1494

Since we also have cases where the left and right subgroup are equal, we also have to dealD1495

with their achiral extensions. According to Proposition 3.2, the extending element can be takenD1496

as e = ∗[1, c], which is a composition of ∗ : (x1, y1, x2, y2) 7→ (x1,−y1,−x2,−y2), which leavesD1497
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Figure 14: The +T -orbit polytope of a starting point near a 3-fold rotation center of +T (left),
and the spherical Voronoi diagram of this orbit (right). The picture looks the same for a Type I
or a Type II center.

(a) ±[T × C15] (b) ±[T × C16] (c) ±[T × C17]

(d) ± 1
3
[T × C45] (e) ± 1

3
[T × C48] (f) ± 1

3
[T × C51]

Figure 15: Cells of polar orbit polytopes of the corresponding groups, where the image of the
starting point lies near a 3-fold rotation center of type I. The colors are in correspondence with
Figure 14.

(a) ±[T × C15] (b) ±[T × C16] (c) ±[T × C17]

(d) ± 1
3
[T × C45] (e) ± 1

3
[T × C48] (f) ± 1

3
[T × C51]

Figure 16: Cells of polar orbit polytopes of the corresponding groups, where the image of the
starting point lies near a 3-fold rotation center of type II. The colors are in correspondence with
Figure 14.
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ϕ1

ϕ2

(0, 0)

(2π, 2π) ≡ (0, 0)

(π, 0) (2π, 0) ≡ (0, 0)

(0, 0) ≡ (0, 2π)

(0, π)

ϕ2 = const + ϕ1

ϕ2 = const− ϕ1

ϕ2 = const

ϕ1 = const

Figure 17: Torus coordinates for the Clifford torus

the torus fixed, with [1, c], for an element c of the right group, which also leaves the torus fixed.D1498

This means that the achiral extensions can also be found among the groups that leave the torusD1499

fixed.D1500

We call these groups, namely the subgroups ±[D2m ×D2n] and their achiral extensions, theD1501

toroidal groups.D1502

We will study and classify these groups by focusing on their action on T. In particular, it willD1503

be of secondary interest whether the groups are chiral or achiral, or which Hopf bundles theyD1504

preserve. These properties were important to derive the existence of the invariant torus, but weD1505

will not use them for the classification.D1506

Since T is a two-dimensional flat surface, the symmetry groups acting on T bear much resem-D1507

blance to the discrete symmetry groups of the plane, i.e., the wallpaper groups. These groupsD1508

are well-studied and intuitive. All wallpaper groups except those that contain 3-fold rotationsD1509

will make their appearance (12 out of the 17 wallpaper groups). The reason for excluding 3-foldD1510

rotations is that a Clifford torus has two distinguished directions, which are perpendicular toD1511

each other, and these directions must be preserved. We don’t assume familiarity with the classi-D1512

fication of the wallpaper groups. We will develop the classification as we go and adapt it to ourD1513

needs.D1514

7.2 Torus coordinates and the torus foliationD1515

The Clifford torus belongs to a foliation of S3 by a family of tori, which, in terms of CartesianD1516

coordinates (x1, y1, x2, y2), have the equationsD1517

x2
1 + y21 = r21, x2

1 + y22 = r22 (16)

for fixed radii r1, r2 with 0 < r1, r2 < 1 and r21 + r22 = 1. The standard Clifford torus has theD1518

parameters r1 = r2 =
√
1/2. As limiting cases, r1 = 1 gives the great circle in the x1, y1-plane,D1519

and r1 = 0 gives the great circle in the x2, y2-plane. Every torus in this family is the CartesianD1520

product of two circles, and thus is a flat torus, with a locally Euclidean metric, forming aD1521

2πr1 × 2πr2 rectangle with opposite sides identified.D1522

The best way to see the mapping to the rectangle is to use double polar coordinates:D1523 
x1

y1
x2

y2

 =


r1 cosφ1

r1 sinφ1

r2 cosφ2

r2 sinφ2

 (17)

Then φ1 and φ2 (appropriately scaled) can be used as rectangular two-dimensional coordinates,D1524

see Figure 17.D1525

The lines with φ1 = const and φ2 = const are what we would normally call meridian circlesD1526

and parallel circles of the torus, except that there is no natural way to distinguish the two classes.D1527
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+r2 − r1

F = ·

ϕ2

r2 = r1 =
√

1
2

r2 > r1

r2 < r1

ϕ1

ϕ2 = ϕ1

S+ =

S− =

ϕ2 = −ϕ1

−r2 + r1

O

Figure 18: Patches of flat tori in the 3-sphere. This illustration is a central projection from the
3-sphere to the 3-dimensional tangent hyperplane at the point O = (

√
1/2, 0,

√
1/2, 0), which is

the marked point in the center. Great circles, i.e. geodesics on the 3-sphere, appear as straight
lines. The axes of the flip half-turns F and the swap half-turns S+ and S− are indicated.
The tangent in direction φ1 points in the direction (0, 1, 0, 0) and the tangent vector in direction
φ2 points in the direction (0, 0, 0, 1). The “perpendicular direction”, which is the vertical axis
+r2 − r1 in the figure, is the direction (−

√
1/2, 0,

√
1/2, 0).
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These circles have radius
√
1/2. The 45◦ lines with φ2 = const + φ1 and φ2 = const − φ1 areD1528

great circles. They are the circles from the Hopf bundles Hi and Hi.D1529

Figure 18 gives a picture of corresponding patches around the origin φ1 = φ2 = 0 for threeD1530

tori. The middle one is the Clifford torus with r1 = r2 =
√

1/2 ≈ 0.7, the top one hasD1531

r1 = 0.55 < r2 ≈ 0.835, and the bottom one has the reversed values r1 and r2.D1532

Each torus is intrinsically flat, i.e., isometric to the Euclidean plane in every small patch, but,D1533

as the figure suggests, it is embedded as a “curved” surface inside S3. The only “lines” in theD1534

torus that are geodesics of S3 are those that are parallel to the diagonal lines φ2 = ±φ1. TheD1535

dotted “vertical” lines connect points with the same φ1, φ2-coordinates on different tori. TheyD1536

are great circles, and they intersect every torus of the family orthogonally.D1537

In Section 7.11.2, we will see the easy equation x1x3 = x2x4 (24) for the same torus in aD1538

different coordinate system.D1539

7.3 Symmetries of the torusD1540

Since the torus is locally like the Euclidean plane, and the plane is the universal covering spaceD1541

of the torus, we can investigate the isometric symmetries of the torus by studying the isometriesD1542

of the plane. However, not every isometry of the plane can be used as a symmetry of the torus;D1543

it must be “compatible” with the torus structure. The following theorem makes this precise:D1544

Theorem 7.1. There is a one-to-one correspondence betweenD1545

• groups G of isometries of the torus [0, 2π)× [0, 2π),D1546

• groups Ĝ of isometries x 7→ Ax+ t of the (φ1, φ2)-plane with the following properties:D1547

(i) The directional part A of every isometry in Ĝ keeps the integer grid Z2 invariant.D1548

(ii) The group contains the two translations φ1 7→ φ1 + 2π and φ2 7→ φ2 + 2π.D1549

The proof uses the following lemma, which shows how to lift torus isometries to plane isome-D1550

tries:D1551

Lemma 7.2. Let Λ denote the scaled integer grid { (k12π, k22π) | k1, k2 ∈ Z }, and let p : R2 →
R2|Λ be the quotient map from the plane to the torus [0, 2π)× [0, 2π):

p(φ1, φ2) = (φ1 mod 2π, φ2 mod 2π)

For every isometry T of the torus [0, 2π)× [0, 2π), there is an isometry T̂ of the plane with theD1552

following properties.D1553

(a) T (p(x)) = p(T̂ (x)) for all x ∈ R2.D1554

(b) T̂ maps the grid Λ to a translate of Λ.D1555

The isometry T̂ is unique up to translation by a grid vector t ∈ Λ.D1556

Proof. Pick some point y0 of the torus and let T (y0) = y′0. Find points x0, x
′
0 ∈ R2 withD1557

y0 = p(x0) and y′0 = p(x′
0). Since p is locally injective, the mapping T can be lifted to a mappingD1558

T̂ (x) = p−1(T (p(x))) in some neighborhood N(x0) of x0 ∈ R2:D1559

R2 : x0 x′
0

T : y0 y′0

T̂

p

T

p (18)

In other words, T̂ (x0) = x′
0, and for all x ∈ N(x0):D1560

p(T̂ (x)) = T (p(x)) (19)

Moreover, since both p and T are locally isometries, T̂ is an isometry in N(x0). This isometryD1561

can be extended to a unique isometry T̂ of the plane.D1562

To extend the validity of (19) from N(x0) to the whole plane, we look at a path x0+λt fromD1563

x0 to an arbitrary point x0 + t of the plane, where (0 ≤ λ ≤ 1). On the torus, it corresponds toD1564

a path p(x0 + λt), which is mapped to an image path T (p(x0 + λt)), which in turn can be liftedD1565
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to a path on R2. Since p is locally invertible and an isometry, (19) must hold along the wholeD1566

path, and therefore for an arbitrary point x0 + t of the plane. This is claim (a).D1567

To show claim (b), consider any t ∈ Λ. By (19),D1568

p(T̂ (t)) = T (p(t)) = T (p(0))

that is, all values T̂ (t) for t ∈ Λ project to the same point T (p(0)) on the torus. It follows thatD1569

the image of Λ under T̂ is contained in a translate of Λ. But then it must be equal to thisD1570

translate of Λ.D1571

Once x0 and x′
0 have been chosen, the construction gives a unique transformation T̂ . TheD1572

result can be varied by adding an arbitrary translation t ∈ Λ to x0 (before applying T̂ ) or t′ ∈ ΛD1573

to x′
0 (after applying T̂ ). By property (b), it makes no difference whether we are allowed toD1574

translate by an element of Λ before applying T̂ or after (or both). This proves the uniquenessD1575

claim of the lemma.D1576

As a consequence, we can write a torus isometry like a plane isometry in the form x 7→ Ax+ tD1577

with an orthogonal matrix A and a translation vector t, bearing in mind that t is unique onlyD1578

up to grid translations.D1579

Proof of Theorem 7.1. Given a group G, we can construct the lifted group Ĝ as the set of liftedD1580

isometries T̂ of the transformations T ∈ G according to the lemma. The group property of ĜD1581

can be easily shown by extending the diagram (18):D1582

R2 : x0 x′
0 x′′

0

T : y0 y′0 y′′0

T̂ T̂ ′

T̂ T̂ ′

p

T T ′

TT ′

p p

The translations φ1 7→ φ1 + 2π and φ2 7→ φ2 + 2π arise as lifts of the identity id ∈ G. It isD1583

clear that a matrix A keeps the scaled integer grid Λ := { (k12π, k22π) | k1, k2 ∈ Z } invariantD1584

(Property (b)) if and only if it keeps the standard integer grid Z2 invariant (Property (i)).D1585

Conversely, given a transformation T̂ in the group Ĝ, we can define T as follows: For a pointD1586

y0 of the torus, pick a point x0 with p(x0) = y0, and define T (y0) through the relation (18):D1587

T (y0) := p(T̂ (x0)). The choice of x0 is ambiguous. It is determined only up a translation byD1588

t ∈ Λ, but we see that this has no effect on T (y0):D1589

p(T̂ (x0 + t)) = p(T̂ (x0) + t′) = p(T̂ (x0))

By property (i), or property (b), t′ ∈ Λ, and therefore the ambiguity evaporates through theD1590

projection p.D1591

7.3.1 Torus translationsD1592

The simplest operations are the ones that appear as translations on the torus, modulo 2π. We
denote them by

Rα1,α2 : (φ1, φ2) 7→ (φ1 + α1, φ2 + α2)

in accordance with (1). In this notation, a left rotation [expαi, 1] turns out to be a negative
translation along the 45◦ direction: T−α,−α. A right rotation [1, expαi] is a translation in
the −45◦ direction: Rα,−α. Arbitrary torus translations can be composed from left and right
rotations, and the general translation is written in quaternion notation as

Rα1,α2
=

[
exp(−α1−α2

2 i), exp(α1−α2

2 i)
]
.

The torus translations Rα,0 and R0,α along the φ1 and φ2-axis are simple rotations, leaving theD1593

x2, y2-plane or the x1, y1-plane fixed, respectively.D1594

One should bear in mind that all “translations”, as they appear on the torus, are actuallyD1595

rotations of S3. (Only the left and right rotations among them may be called translations of S3
D1596

with some justification, because they correspond to the translations in elliptic 3-space.)D1597
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symbol name [l, r] (φ1, φ2) → order side det conj. mirror
identity [1, 1] (φ1, φ2) 1 + + –
horizontal reflection ∗[i, i] (−φ1, φ2) 2 + − − –

− vertical reflection ∗[k, k] (φ1,−φ2) 2 + − –
· torus flip F = − · [j, j] (−φ1,−φ2) 2 + + – ·

torus swap S+ [i, k] (φ2, φ1) 2 − + –
alternate torus swap S− [−k, i] (−φ2,−φ1) 2 − + –

⟲ left swapturn · ∗[−j, 1] (φ2,−φ1) 4 − − ⟳ –
⟳ right swapturn ⟲ −1 ∗[1, j] (−φ2, φ1) 4 − − ⟲ –

Table 4: The directional parts of the torus symmetries, the elements of the group DT
8 . Some

come in conjugate pairs, as indicated in the column “conj.”, meaning that they are geometrically
equivalent. The conjugacy is established by any of the operations or in these cases. The torus
flip · commutes with all other operations. The last column shows the mirror transformation for
each transformation of determinant +1 (the orientation-preserving transformations).

7.3.2 The directional group: symmetries with a fixed pointD1598

We pick the point O = (
√
1/2, 0,

√
1/2, 0) with torus coordinates φ1 = φ2 = 0 as a referenceD1599

point or origin on T. Every isometry of T can be decomposed in a unique way into a symmetryD1600

that leaves O fixed (the directional part), plus a torus translation (the translational part).D1601

Let us therefore study the symmetries that leave O fixed. In the plane, these would be allD1602

rotations and reflections. However, according to Theorem 7.1 we can only use symmetries thatD1603

leave the standard square grid Z2 invariant, apart from a translation. This allows rotations byD1604

multiples of 90◦, as well as reflections in the coordinate axes and in the 45◦-lines.D1605

In the plane, these seven operations together with the identity form the dihedral group D8,D1606

the symmetries of the square. We denote the group by DT
8 , to indicate that we think of theD1607

transformations of S3 that leave the torus T invariant. Table 4 summarizes these operations andD1608

their properties. For each operation, we have chosen a symbol indicating the axis direction inD1609

case of a reflection, or otherwise some suggestive sign, and a name. We also give the quaternionD1610

representation, the effect in terms of the φ1, φ2-coordinates, and the order of the group element.D1611

Some transformations may swap the two sides of T, exchanging the tori with parameters r1, r2D1612

and r2, r1. This is indicated by a “−” in the column “side”, and the names of these operationsD1613

include the term “swap”. The nonswapping operations leave every torus of the foliation (16)D1614

invariant, not just the “central” Clifford torus.D1615

The column “det” indicates whether the operation is orientation-preserving (+) or orientation-D1616

reversing (−). One must keep in mind that the operation on the torus T induces a transformationD1617

of the whole S3, and what appears as a reflection in the planar φ1, φ2-picture of Tmay or may notD1618

be an orientation-reversing transformation of S3. Thus, it may at first sight come as a surpriseD1619

that the torus swap is orientation-preserving. The reason is that it goes together with a swapD1620

of the sides. As shown in Figure 18, it is actually a half-turn around the axis S+. (The productD1621

of the signs in the “side” and “det” columns tells whether the operation is orientation-preservingD1622

when considered purely in the plane.)D1623

Figure 18 makes it clear why there is no “pure swap”, no “inversion” at the central torusD1624

that would keep the torus pointwise fixed and swap the two sides of the torus: such a mappingD1625

would flip the dashed perpendicular lines and thus map the long side of the rectangular patchD1626

on the top to the short side of the rectangular patch at the bottom. We see that a swap is onlyD1627

possible if it goes hand in hand with an exchange of the φ1 and φ2 axes. In particular, such anD1628

exchange comes with the rotations by ±90◦, the right and left swapturn operations, which areD1629

accordingly orientation-reversing.D1630

The column “conj.” indicates operations that are conjugate to each other, i.e., geometricallyD1631

equivalent. Thus, for example, the operation may, in a different coordinate system, appear asD1632

the operation −. By contrast, and are distinguished: the axis of belongs to the invariantD1633

left Hopf bundle Hi, and the axis of belongs to the invariant right Hopf bundle Hi. TheD1634

operations and are mirrors of each other, i.e., conjugate under an orientation-reversingD1635

transformation. This is indicated in the last column.D1636

When viewed in isolation, the half-turns S+ = , S− = , and F = · are conjugate to eachD1637

other. However, they are distinct when considering only transformations that leave the torusD1638

invariant.D1639
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group name chirality swapping conjugate mirror
= { } translation chiral no –
= { , } reflection achiral no − , by –

− = { ,−} reflection achiral no , by –
· = { , · } flip chiral no – ·
+ = { , ,−, · } full reflection achiral no – –

= { , } swap chiral yes –
= { , } swap chiral yes –

× = { , , , · } full swap chiral yes – ×
⟲ = { , ⟲, · , ⟳} ∼= C4 swapturn achiral yes – –
+× = { , ⟲, · , ⟳, ,−, , } full torus achiral yes – –

Table 5: The 10 subgroups of DT
8 . A group is achiral if it contains an orientation-reversing

transformation. A group is swapping if it contains a transformation that swaps the two sides of
the torus. The fifth column shows to which other groups the group is conjugate by an orientation-
preserving transformation. The last column shows the mirror group of each chiral group, i.e.,
the conjugate group by an orientation-reversing transformation. (Each achiral group in this list
is its own mirror image.)

7.3.3 Choice of coordinate systemD1640

The conjugacies discussed above introduces ambiguities in the representation of torus transla-D1641

tions, which depend on the choice of the coordinate system for a given invariant torus. Rα1,α2D1642

may, in a different coordinate system, appear as R−α1,−α2 (conjugacy by · ), or as Rα2,α1 (con-D1643

jugacy by ), or as R−α2,−α1
(conjugacy by ). (The operation Rα1,−α2

or R−α1,α2
is its mirrorD1644

operation.) The choice of origin in the φ1, φ2-plane, on the other hand, has no influence on theD1645

torus translations. It only affects the other operations.D1646

7.3.4 The directional group and the translational subgroupD1647

We have mentioned that every symmetry of the torus can be decomposed in a unique way (afterD1648

fixing an origin) into a directional part and a translational part.D1649

For a group G, the torus translations contained in it form a normal subgroup, the translationalD1650

subgroup, which we denote by G□. The directional parts of the group operations form theD1651

directional group of G. It is a subgroup of DT
8 , and we will use it as a coarse classification of theD1652

toroidal groups. (The directional group is isomorphic to the factor group G/G□.)D1653

The ten subgroups of DT
8 are listed in Table 5, together with a characteristic symbol and aD1654

name. Figure 19 shows their pictorial representation.D1655

− · +

× ⟲ +×

Figure 19: The 10 subgroups of DT
8 . See Table 5.

The following lemma is useful in order to restrict the translational subgroup for a givenD1656

directional group.D1657
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Lemma 7.3. For a group G of torus symmetries, the translational subgroup G□ is closed underD1658

every symmetry in the directional group of G.D1659

Proof. Assume that t ∈ G□, and we have an operation in G/G□ that is represented by anD1660

orthogonal 2× 2 matrix A. This means that G contains some transformation x 7→ Ax+ b. If weD1661

conjugate the translation x 7→ x+ t with this transformation, we get x 7→ A(A−1(x−b)+ t)+b =D1662

x+At, i.e., a translation by At.D1663

7.4 Overview of the toroidal groupsD1664

After fixing the directional group, we have to look at the translational subgroup, and the inter-D1665

action between the two. The result is summarized as follows.D1666

Proposition 7.4. The 4-dimensional point groups that have an invariant torus can be classifiedD1667

into 25 infinite families of toroidal groups, among themD1668

• 2 three-parameter familiesD1669

• 19 two-parameter familiesD1670

• 4 one-parameter familiesD1671

as shown in Table 6.D1672

The last column of Table 6 shows the names of these groups in the classification of ConwayD1673

and Smith.14 We make a comparison in Section 7.12.D1674

There is one difficulty that we have not addressed: We look at the groups that leave one par-D1675

ticular Clifford torus invariant. However, there are some groups, in particular small groups, thatD1676

have several invariant Clifford tori. This leads to ambiguities. For example, a torus translationD1677

by 180◦ on one torus may appear as a swapturn on a different torus. We investigate theseD1678

cases in detail in Section 7.11.D1679

The natural constraint on the parameters m and n is m,n ≥ 1 in all cases of Table 6, in theD1680

sense that all these choices (in a few cases under the additional constraint that m ≡ n (mod 2))D1681

lead to valid groups. (But note that some extra evenness constraints are already built into theD1682

notation, for example, when we write pm
2m,2n instead of pm

m,n.) For the swapturn groups ⟲ a,b,D1683

the natural choices are a, b ≥ 0 except for (a, b) = (0, 0). The stricter conditions on m and n inD1684

Table 6 are imposed in order to exclude duplications.D1685

We will now go through the categories one by one. This closely parallels the classificationD1686

of the wallpaper groups. When appropriate, we use the established notations for wallpaperD1687

groups to distinguish the torus groups. We have to choose suitable parameters for the differentD1688

dimensions of each wallpaper group, and in some cases, we have to refine the classification ofD1689

wallpaper groups because different axis directions are distinguished.D1690

7.5 The torus translation groups, typeD1691

These are the groups that contain only torus translations. The pure translation groups are theD1692

simplest class, but they are also the richest type of groups, requiring three parameters for theirD1693

description. The translations (α1, α2) with Rα1,α2 ∈ G form an additive group modulo (2π, 2π),D1694

and hence a lattice modulo (2π, 2π). In accordance with Theorem 7.1 we can also view it as aD1695

lattice in the plane that contains all points whose coordinates are multiples of 2π, see Figure 20.D1696

We parameterize these lattices with three parameters m,n, s: The lattice subdivides theD1697

principal diagonal from (0, 0) to (2π, 2π) into some number m ≥ 1 of segments. Then we chooseD1698

t1 = ( 2πm , 2π
m ) as the first generator of the lattice. The second parameter n ≥ 1 is the number ofD1699

lattice lines parallel to the principal diagonal that run between (0, 0) and (2π, 0), including theD1700

last one through (2π, 0). In the figure, we have m = 2 and n = 5. On each such line, the pointsD1701

are equidistant with distance 2π
m ·

√
2. The first parallel lattice line thus contains a unique pointD1702

t2 = (πn ,−π
n )+ (x, x) with 0 ≤ x < 2π

m , and we choose x as the third parameter. The range fromD1703

which t2 can be chosen is indicated by a double arrow in the figure.D1704

14To get a closer correspondence with our parameterization for the groups of type and · in the first two
rows, we swap the role of the left and right factors in the generators given in Conway and Smith. Effectively, we

consider the mirror groups. Accordingly, we have adapted the Conway–Smith convention of writing 1
f
[Cm×C

(s)
n ],

by decorating the left factor with the parameter s. More details are given in Appendix G.
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group order parameters names in Conway–Smith [8, Tables 4.1–4.3]

torus translation groups (chiral, wallpaper group p1)
(s)
m,n mn m,n ≥ 1, −m

2 ≤ s ≤ n−m
2 m ≡ 0 (mod 2): ± 1

f [C
(s′)
mf/2 × Cn]

m ≡ 1 (mod 2): + 1
f [C

(s′)
mf × Cn]

torus flip groups (chiral, wallpaper group p2)

· (s)
m,n 2mn m,n ≥ 1, −m

2 ≤ s ≤ n−m
2 m ≡ 0 (mod 2): ± 1

2f [D
(f−s′)
mf ×D2n]

(m,n) ̸= (1, 1), (2, 1) m ≡ 1 (mod 2): + 1
2f [D

(2f−s′)
2mf ×D2n]

torus swap groups (chiral) n even n odd
pm
2m,2n 4mn m,n ≥ 2 ±[D2m × Cn] ± 1

2 [D2m × C2n]
pg
2m,2n 4mn m ≥ 2, n ≥ 1 ± 1

2 [D2m × C2n] ±[D2m × Cn]
cm
m,n 2mn m ≥ 3, n ≥ 2, m− n even ± 1

2 [D2m × Cn] + 1
2 [D2m × C2n]

pm
2m,2n 4mn m,n ≥ 2 mirrors of the groups pm

2n,2m
pg
2m,2n 4mn m ≥ 1, n ≥ 2 mirrors of the groups pg

2n,2m
cm
m,n 2mn m ≥ 2, n ≥ 3, m− n even mirrors of the groups cm

n,m

full torus swap groups (chiral) m n even n odd

×p2mm
2m,2n 8mn m,n ≥ 2 m even ±[D2m ×D2n] ± 1

2 [D2m ×D4n]

m odd ± 1
2 [D4m ×D2n] ± 1

4 [D4m ×D4n]

×p2mg
2m,2n 8mn m,n ≥ 2 m even ± 1

2 [D2m ×D4n] ±[D2m ×D2n]

m odd ± 1
4 [D4m ×D4n] ± 1

2 [D4m ×D2n]

×p2gm
2m,2n 8mn m,n ≥ 2 m even ± 1

2 [D4m ×D2n] ± 1
4 [D4m ×D4n]

m odd ±[D2m ×D2n] ± 1
2 [D2m ×D4n]

×p2gg
2m,2n 8mn m,n ≥ 2 m even ± 1

4 [D4m ×D4n] ± 1
2 [D4m ×D2n]

m odd ± 1
2 [D2m ×D4n] ±[D2m ×D2n]

× c2mm
m,n 4mn m,n ≥ 3, m− n even m ≡ n ± 1

2 [D2m ×D2n] + 1
4 [D4m ×D4n]

torus reflection groups (achiral)

pm
m,n 2mn m,n ≥ 1

{
+ or ± 1

f [Cn′f × C
(s)
n′f ] · 2(0) or

+ 1
f [Cn′f × C

(s)
n′f ] · 2(2)

pg
m,n 2mn m,n ≥ 1

{
+ or ± 1

f [Cn′f × C
(s)
n′f ] · 2(1) or

+ 1
f [Cn′f × C

(s)
n′f ] · 2(0)

cm
m,n 4mn m,n ≥ 1 ± 1

f [Cn′f × C
(s)
n′f ] · 2(0) or + 1

f [Cn′f × C
(s)
n′f ] · 2(0)

full torus reflection groups (achiral)

+p2mm
m,n 4mn m ≥ n ≥ 1, (m,n) ̸= (1, 1)

+p2mg
m,n 4mn m,n ≥ 1, (m,n) ̸= (1, 1)

 ± 1
2f [D2n′f ×D

(s)
2n′f ] · 2(α,β) or

+ 1
2f [D2n′f ×D

(s)
2n′f ] · 2(α,β)+p2gg

m,n 4mn m ≥ n ≥ 1, (m,n) ̸= (1, 1)

+ c2mm
m,n 8mn m ≥ n ≥ 1, (m,n) ̸= (1, 1) ± or + 1

2f [D2n′f ×D
(s)
2n′f ] · 2(0,0)

torus swapturn groups (achiral, wallpaper group p4)

⟲ a,b 4(a2+b2) a ≥ b ≥ 0 a ≡ b (mod 2): ± 1
2f [D2nf ×D

(s)
2nf ] · 2

a ≥ 2, (a, b) ̸= (2, 0) a ̸≡ b (mod 2): + 1
2f [D2nf ×D

(s)
2nf ] · 2

full torus groups (achiral) n even n odd

+×p4mmU
n 8n2 n ≥ 3 ± 1

2 [D2n ×D2n] · 2 + 1
4 [D4n ×D4n] · 21

+×p4gmU
n 8n2 n ≥ 3 ± 1

2 [D2n ×D2n] · 2 + 1
4 [D4n ×D4n] · 23

+×p4mmS
n 16n2 n ≥ 2 ±[D2n ×D2n] · 2 ± 1

4 [D4n ×D4n] · 2
+×p4gmS

n 16n2 n ≥ 2 ± 1
4 [D4n ×D4n] · 2 ±[D2n ×D2n] · 2

Table 6: Overview of the toroidal groups. In the Conway–Smith names, we write n′ and s′ when
these parameters don’t directly correspond to our parameters n, s.
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α1

α2

(0, 0)

(2π, 2π)

t1 = ( 2πm ,
2π
m )

t2

t1 − t2

(πn ,−
π
n )

α1

α2

(0, 0)

(2π, 2π)

nt2

(x, x)

s( 2πm ,
2π
m )

Figure 20: A lattice of torus translations. In the right part, we see that it is given by the
parameters m = 2, n = 5, and s = 1. The vectors t1 = (π, π) and t2 = (π5 ,−π

5 ) + ( 2π5 , 2π
5 ) =

( 3π5 , π
5 ) generate the group

(1)
2,5. This lattice happens to be a square lattice, but this plays no

role.

We still have to take into account the ambiguity from the choice of the coordinate systemD1705

(Section 7.3.3). The choice of origin is no problem, since a translation does not depend on theD1706

origin. Also, the “flip” ambiguity from · is no problem at all: Rotating the coordinate systemD1707

by 180◦ maps the lattice to itself. The “swap” ambiguity from , however, is more serious, as itD1708

exchanges the coordinate axes: α1 ↔ α2. (From , we get no extra ambiguity, since = · · .)D1709

To eliminate this ambiguity, we look at the vectors t1 − t2 and t2. They form also a latticeD1710

basis, and they span a parallelogram whose diagonal t1 lies on the α1 = α2 axis. The alternateD1711

choice of the basis will reflect the parallelogram at this diagonal. Thus, the choices x and 2π
m −xD1712

will lead to the same group. We can achieve a unique representative by stipulating that t2 is notD1713

longer than t1 − t2. This means that we restrict t2 to the lower half of the range, including theD1714

midpoint, which is marked in the figure: 0 ≤ x ≤ π
m .15D1715

Finally, we look at the point nt2, which lies on the 45◦ line through (2π, 0). We have to
ensure that it is one of the existing lattice points on this line because additional points would
contradict the choice of m. Thus

nt2 = (π,−π) + (nx, nx) = (2π, 0) + s( 2πm , 2π
m )

for some integer s, or in other words

x =
π

n
+ s · 2π

mn

Combining this with the constraint 0 ≤ x ≤ π
m , we getD1716

−m

2
≤ s ≤ −m

2
+

n

2
(20)

This range contains ⌈n
2 ⌉ integers if m is odd and ⌈n+1

2 ⌉ integers if m is even. In particular, thereD1717

is always at least one possible value s.D1718

15This easy way of dealing with the duplications caused by is the reason for preferring the oblique axes of
Figure 20 for measuring the parameters m and n over the more natural α1, α2-axes. This oblique system is also
aligned with the specification of the group by its left and right group (of left translations and right translations)
that underlies the classic classification, see Appendix G. Curiously, these duplications caused by were overlooked
by Conway and Smith [8], although they had escaped none of the previous classifications [20, p. 62, groupe I],
[35, p. 20, item §1, formula (2)], [15, p. 55, first paragraph].
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Proposition 7.5. The point groups that contain only torus translations can be classified asD1719

follows:D1720

For any integers m,n ≥ 1 and any integer s in the range (20), there is one such group, theD1721

torus translation group
(s)
m,n, of order mn. It is generated by R 2π

m , 2πm
and R 2π

n + 2sπ
mn , 2sπmn

.D1722

In terms of quaternions, these generators are [exp(− 2π
m i), 1] and [exp(− (m+2s)π

mn i), exp πi
n ]. WeD1723

emphasize that the two parameters m and n play different roles in this parameterization, andD1724

there is no straightforward way to read off the parameters of the mirror group from the originalD1725

parameters m,n, s. (See for example the entries 11/01 and 11/02 in Table 17.)D1726

We have observed above that x and x′ = 2π
m −x lead to the same group, and the same is trueD1727

for x′ = 2π
m +x. In terms of s this means that the parameters s′ = −m− s and s′ = s+n lead toD1728

the same group as s. In Section 7.11, when we discuss duplications, it will be convenient to allowD1729

values s outside the range (20). In particular, it is good to remember that s = 0 corresponds toD1730

a generating point on the α1-axis.D1731

7.5.1 Dependence on the starting pointD1732

Proposition 7.6. Any two full-dimensional orbits of a toroidal translation group are linearlyD1733

equivalent.D1734

Proof. Let G be a toroidal translation group. We will show that any full-dimensional G-orbitD1735

can be obtained from the G-orbit of the point ( 1√
2
, 0, 1√

2
, 0) by applying an invertible linearD1736

transformation.D1737

Let v ∈ R4 be a point whose G-orbit is full-dimensional. This is equivalent to requiring thatD1738

the projections of v to the x1, y1-plane and to the x2, y2-plane are not zero. We can map v to aD1739

point v′ of the form (r1, 0, r2, 0), with r1 ̸= 0 and r2 ̸= 0, by applying a rotation of the formD1740

Rα1,α2
=

(
Rα1

0
0 Rα2

)
. (21)

The new point v′ can be mapped to the point ( 1√
2
, 0, 1√

2
, 0) by applying a matrix of the formD1741

diag(λ1, λ1, λ2, λ2) =


λ1 0 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ2

 . (22)

Since torus translations commute with the linear transformations (21) and (22), we are done.D1742

Frieder and Ladisch [17, Proposition 6.3 and Corollary 8.4] proved that the same conclusionD1743

holds for any abelian group: All full-dimensional orbits are linearly equivalent to each other inD1744

this case.D1745

7.6 The torus flip groups, type ·D1746

These groups are generated by torus translations together with a single torus flip. Adding theD1747

flip operation is completely harmless. Conjugation with a flip changes Rα1,α2
to R−α1,−α2

, andD1748

therefore does not change the translation lattice at all. The order of the group doubles.D1749

If we choose the origin at the center of a 2-fold rotation induced by a torus flip, then · (s)
m,n

is generated by

[exp(− 2πi
m ), 1], [exp(− (m+2s)πi

mn ), exp πi
n ], [j, j].

7.7 Groups that contain only one type of reflectionD1750

These are the torus reflection groups and − , as well as the torus swap groups and .D1751

The groups of type and − are geometrically the same, because (or ) exchanges verticalD1752

mirrors with horizontal mirrors. Thus, Table 6 contains no entries for − . The groups andD1753

are mirrors, and their treatment is similar.D1754

If the directional part of a transformation is a reflection (in the plane), the transformationD1755

itself can be either a reflection or a glide reflection. In both cases there is an invariant line. WeD1756

will classify the groups by placing a letter F on the invariant line and looking at its orbit.D1757

We need a small lemma that is familiar from the classification of the wallpaper groups:D1758
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Lemma 7.7. If a two-dimensional lattice has an axis of symmetry, then the lattice is eitherD1759

(1) a rectangular lattice that is aligned with the axis, orD1760

(2) a rhombic lattice, which contains in addition the midpoints of the rectangles.D1761

In case (1), the symmetry axis goes through a lattice line or half-way between two lattice lines.D1762

In case (2), the symmetry axis goes through a lattice line.D1763

For an example, see the upper half of Figure 22, where the mirror lines are drawn as solidD1764

lines.D1765

Proof. Assume without loss of generality that the symmetry axis is the y-axis. (We may haveD1766

to translate the lattice so that it no longer contains the origin.) With every lattice point (x, y),D1767

the lattice contains also the mirror point (−x, y), and thus (2x, 0) is a horizontal lattice vector.D1768

It follows that there must be a lattice point (x0, y0) with smallest positive x-coordinate, sinceD1769

otherwise there would be arbitrarily short lattice vectors.D1770

(x0, y0) (x0, y0)

H H
L

(a) (b)

(i),(ii)

(i),(ii)

(ii)

(i)
L′



(0, y0) (−x0, y0)

Figure 21: Different possibilities for the lattice line L′. The gray area is forbidden.

Consider the horizontal lattice line L through (x0, y0). There are two cases, see Figure 21.D1771

(a) (0, y0) is also a lattice point, and (H, 0) = (x0, 0) is a lattice basis vector. (b) (0, y0) isD1772

not a lattice point, and (H, 0) = (2x0, 0) is a lattice basis vector. Now look at the next-higherD1773

horizontal lattice line L′ above L, and choose a lattice point (x′, y′) on L′. L′ contains the pointsD1774

(x′ + kH, y′) for k ∈ Z, and therefore a point (x, y′) in the interval −H/2 ≤ x ≤ H/2. The valueD1775

of x cannot be in the range −x0 < x < 0 or 0 < x < x0 because this would contradict the choiceD1776

of (x0, y0). Thus, either (i) x = 0 or (ii) both points (±x0, y
′) are in the lattice. In case (a), bothD1777

possibilities (i) and (ii) hold simultaneously, and this leads to a rectangular lattice with the axisD1778

through lattice points. If (b) and (ii) holds, we have a rectangular lattice with the axis betweenD1779

lattice lines. If (b) and (i) holds, we have a rhombic lattice.D1780

7.7.1 The torus reflection groups, typeD1781

We distinguish two major cases.D1782

M) The group contains a mirror reflection.D1783

G) The group contains only glide reflections.D1784

In both cases, every orientation-reversing transformation has a vertical invariant line. (Actually,D1785

since the translation φ1 7→ φ1 + 2π is always an element of the group, by Theorem 7.1, theD1786

invariant lines come in pairs φ1 = β and φ1 = β + π.)D1787

As announced, we observe the orbit of the letter F. We put the bottom endpoint of the F onD1788

an invariant line ℓ. First we look at the orbit under those transformations that leave ℓ invariant,D1789

see the left side of Figure 22. In case G, the images with and without reflection alternate along ℓ.D1790

In case M, they are mirror images of each other.D1791

In case M, we have a mirror symmetry, and by Lemma 7.3, the translational subgroup mustD1792

be closed under the mirror symmetry. Lemma 7.7 gives the two possibilities of a rectangular or aD1793

rhombic translational subgroup. Combining these translations with the mirror operations leadsD1794

to the two cases in the top row of Figure 22.D1795

In case G, we cannot apply Lemma 7.7 right away. Let H be the vertical distance betweenD1796

consecutive points on the axis. If we combine each glide reflection with a vertical translation byD1797

−H, we get mirror reflections, as in case M. To this modified group, we can apply Lemma 7.7, andD1798

we conclude that the translational group must either form a rectangular or a rhombic pattern.D1799

Adding back the translation byH to the orientation-reversing transformations leads to the resultsD1800
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glide/rhombic

mirror/rhombic = cmmirror/rectangular = pm

glide/rectangular = pg

Case M: mirror reflections

Case G: glide reflections

= mirror/rhombic = cm

Figure 22: Torus reflection groups, type . Combinations of a vertical mirror/glide reflection
axis with either a rectangular or a rhombic grid. Invariant lines are shown as solid lines if they
act as mirrors, otherwise dashed. The dotted lines indicate the lattice of translations, and the
shaded area is a fundamental domain.

in the lower row of Figure 22. In the rhombic case in the lower right picture we see that, whenD1801

we try to combine glide reflections with a rhombic translational subgroup, we generate mirrorD1802

symmetries, and thus, this case really belongs to case M. The picture looks different from theD1803

corresponding picture in the upper row because there are two alternating types of invariant lines:D1804

mirror lines, and lines with a glide reflection. Depending on where we put the F, we get differentD1805

pictures.D1806

We are thus left with three cases, which we denote by superscripts that are chosen in accor-D1807

dance with the International Notation for these wallpaper groups:D1808

• mirror/rectangular: pm,D1809

• mirror/rhombic: cm, andD1810

• glide/rectangular: pg.D1811

The groups are parameterized by two parameters m ≥ 1 and n ≥ 1, the dimensions of theD1812

rectangular grid of translations in the φ1 and φ2 directions, see the left part of Figure 23.D1813

Since the invariant lines give a distinguished direction, we need not worry about duplicationsD1814

when exchanging m and n. The order of each group G is twice the order of the translationalD1815

subgroup G□.D1816

7.7.2 The torus swap groupsD1817

For the groups of type , we have to turn the picture by 45◦. We have the same three cases, pm,D1818
cm, and pg, but we must adapt the definition of m and n, see the right part of Figure 23. WeD1819

divide the principal diagonal from (0, 0) to (2π, 2π) into m parts and the secondary diagonal fromD1820

(0, 0) to (2π,−2π) into n parts. We cannot choose m and n freely because the midpoint (2π, 0)D1821

of the square spanned by these two diagonal directions, which represents the identity mapping,D1822

is always part of the lattice. Therefore, for the rectangular lattice cases pm and pg, m andD1823

n must be even, and the number of lattice points on the torus is mn/2. (We loose a factor of 2D1824

compared to , because the tilted square in the figure covers the torus twice.) For the rhombicD1825

lattice case cm, m and n must have the same parity, and the number of lattice points on theD1826

torus is mn.D1827
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α1

α2

(0, 0)

(2π, 2π)

n = 5

m
=

3

α1

α2

(0, 0)

(2π, 2π)

m
=
3

n
=
5

(4π, 0)

(0, 2π)

(2π, 0)

(2π,−2π)

Figure 23: Left: Parameters for the translational subgroup of the groups with vertical invariant
lines, type . We divide the vertical axis into m equal parts and the horizontal axis into n equal
parts. In the rectangular case, the grid consists only of the mn black points. In the rhombic
case, the white points are also present, for 2mn translations in total.
Right: For the groups of type , the axes are tilted clockwise by 45◦ and longer by the factor

√
2.

We mention that the parameter m in this case coincides with the parameter m for theD1828

translations-only case of Figure 20. The parameter n coincides in the rhombic case; in theD1829

rectangular case, it is twice as big.D1830

As mentioned, the groups of type are mirrors of the groups of type , and we need notD1831

discuss them separately.D1832

Generators for , and . Whenever a mirror line exists (cm and pm), we chooseD1833

the origin of the coordinate system on such a line; otherwise (pg), we place it on an axis ofD1834

glide reflection. With these conventions, the groups can be generated by the generators listed inD1835

Table 7.D1836

group generators
pm
m,n [e

πi
m , e

πi
m ], [e

πi
n , e−

πi
n ], ∗[i, i]

pg
m,n [e

πi
m , e

πi
m ], [e

πi
n , e−

πi
n ], ∗[i, i][e πi

2m , e
πi
2m ]

cm
m,n [e

πi
m , e

πi
m ], [e

πi
n , e−

πi
n ], [e

πi
2m+ πi

2n , e
πi
2m− πi

2n ], ∗[i, i]
pm
2m,2n [e

πi
m , 1], [1, e

πi
n ], [−k, i]

pg
2m,2n [e

πi
m , 1], [1, e

πi
n ], [1, e

πi
2n ][−k, i]

cm
m,n [e

i2π
m , 1], [1, e

i2π
n ], [e

πi
n , e

πi
m ], [−k, i]

pm
2m,2n [e

πi
m , 1], [1, e

πi
n ], [i, k]

pg
2m,2n [e

πi
m , 1], [1, e

πi
n ], [e

πi
2m , 1][i, k]

cm
m,n [e

i2π
m , 1], [1, e

i2π
n ], [e

πi
n , e

πi
m ], [i, k]

Table 7: Generators for torus reflection groups and torus swap groups

7.8 The torus swapturn groups, type ⟲D1837

By Lemma 7.3, the lattice of translations must be a square grid. The left part of Figure 24 showsD1838

how we parameterize a square grid on the torus. We take the sides a ≥ 0 and b ≥ 0 of the gridD1839

rectangle spanned by the two points (0, 0) and (2π, 0), measured in grid units. Since (0, b) leadsD1840

to the same grid rectangle as (b, 0), we require a ≥ 1.D1841

Conjugation by reflects the grid at the principal diagonal. Since the grid is symmetricD1842

under 90◦ rotations, this has the same effect as reflection at a vertical axis, and it is easy to seeD1843
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α1

α2

2π

2π

0

a =
6 b

=
3

Figure 24: Left: Parameterizing a square grid. Right: The wallpaper group p4 corresponding
to the groups ⟲ . The centers of 4-fold rotations are marked by diamonds, the centers of 2-fold
rotations are marked by “digons” in the form of a lense. The dotted light-blue square indicates
the square lattice of the subgroup of translations, arbitrarily anchored at an upright F.

that such a reflection swaps the parameters a and b. Thus, (a, b) and (b, a) describe the sameD1844

group, and we can assume a ≥ b without loss of generality.D1845

The number of grid points, i.e., the size of the translational subgroup, is a2 + b2, and theD1846

order is 4(a2 + b2). The right part of Figure 24 shows the various centers of 2-fold and 4-foldD1847

rotations, and a typical orbit. This corresponds to the wallpaper group p4.D1848

The grid is generated by the two orthogonal vectors (α1, α2) = 2π( a
a2+b2 ,

b
a2+b2 ) and (α1, α2) =

2π( b
a2+b2 ,− −a

a2+b2 ), with c =
√
a2 + b2. If we choose the origin at the center of a 4-fold rotation

induced by a swapturn, then ⟲ a,b can be generated by

[exp (−a−b)πi
a2+b2 , exp (a−b)πi

a2+b2 ], [exp (a−b)π
a2+b2 , exp

(a+b)πi
a2+b2 ], ∗[−j, 1].

7.9 Groups that contain two orthogonal reflections, type + and ×D1849

As in the case of , we distinguish, for each axis separately, whether there are mirror reflectionsD1850

or only glide reflections. We know that the glide reflection case is inconsistent with the rhombicD1851

lattice (cf. Section 7.7.1). Hence, we have the following cases, see Figure 25.D1852

• The grid of translations is a rhombic grid. In this case, both axes directions must beD1853

mirrors: c2mm.D1854

• The grid of translations is a rectangular grid. In this case each axis direction can be aD1855

mirror direction or a glide reflectionD1856

– p2mm. Two mirror directionsD1857

– p2mg. One mirror direction and one glide directionD1858

– p2gg. Two glide directionsD1859

In p2mg, the two families of invariant lines are distinguishable: one family of parallel linesD1860

consists of mirror lines, whereas the perpendicular family has only glide reflections. Thus, thereD1861

are two different types, where the two directions change roles.D1862

However, for +, we need not distinguish two versions of +p2mg, because conjugation withD1863

maps one to the other. For × , on the other hand, the two versions are distinct. They are mirrorD1864

images. We distinguish ×p2mg, where the mirror lines are parallel to the principal diagonalD1865

φ2 = +φ1, and ×p2gm, where the mirror lines are parallel to the secondary diagonal directionD1866

φ2 = −φ1.
16 The parameters m and n have the same meaning as in the corresponding groupsD1867

and .D1868

16This is in accordance with previous editions of the International Tables of X-Ray Crystallography, which
explicitly provided variations of the symbols for different “settings” [21, Table 6.1.1, p. 542 in the 1952/1969
edition]: short symbol pmg, full symbol p2mg, or p2gm for other setting.
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group generators

+p2mm
m,n [e

πi
m , e

πi
m ], [e

πi
n , e−

πi
n ], ∗[i, i], ∗[k, k]

+p2mg
m,n [e

πi
m , e

πi
m ], [e

πi
n , e−

πi
n ], ∗[i, i][e πi

2n , e−
πi
2n ], ∗[k, k][e πi

2n , e−
πi
2n ]

+p2gg
m,n [e

πi
m , e

πi
m ], [e

πi
n , e−

πi
n ], ∗[i, i][e πi

2m+ πi
2n , e

πi
2m− πi

2n ], ∗[k, k][e πi
2m+ πi

2n , e
πi
2m− πi

2n ]

+ c2mm
m,n [e

πi
m , e

πi
m ], [e

πi
n , e−

πi
n ], [e

πi
2m+ πi

2n , e
πi
2m− πi

2n ], ∗[i, i], ∗[k, k]
×p2mm

2m,2n [e
πi
m , 1], [1, e

πi
n ], [i, k], [−k, i]

×p2mg
2m,2n [e

πi
m , 1], [1, e

πi
n ], [1, e

πi
2n ][i, k], [1, e

πi
2n ][−k, i]

×p2gm
2m,2n [e

πi
m , 1], [1, e

πi
n ], [e

πi
2m , 1][i, k], [e

πi
2m , 1][−k, i]

×p2gg
2m,2n [e

πi
m , 1], [1, e

πi
n ], [e

πi
2m , e

πi
2n ][i, k], [e

πi
2m , e

πi
2n ][−k, i]

× c2mm
m,n [e

i2π
m , 1], [1, e

i2π
n ], [e

πi
m , e

πi
n ], [i, k], [−k, i]

+×p4mmU
n [e

πi
n , e

πi
n ], [e

πi
n , e−

πi
n ], [i, k], ∗[i, i]

+×p4gmU
n [e

πi
n , e

πi
n ], [e

πi
n , e−

πi
n ], [i, k][e

πi
n , 1], ∗[i, i][eπi

n , 1]

+×p4mmS
n [e

πi
n , 1], [1, e

πi
n ], [i, k], ∗[i, i]

+×p4gmS
n [e

πi
n , 1], [1, e

πi
n ], [i, k][e

πi
2n , e

πi
2n ], ∗[i, i][e πi

2n , e
πi
2n ]

Table 8: Generators for full torus reflection groups, full torus swap groups, and full torus groups

These groups contain torus flips, as the product of two perpendicular reflections. We chooseD1869

the origin on the center of a 2-fold rotation induced by a torus flip. For the groups c2mm, weD1870

place origin at the intersection of two mirror lines. Then the groups can be generated by theD1871

generators given in Table 8.D1872

p2mg

c2mm

p2mm

p2gg

Figure 25: The four types of groups with two orthogonal families invariant lines. The light-blue
region indicates the lattice of translations. For better visibility, the letter F is moved away from
the mirror lines. Axes of mirror reflection are shown as solid lines, and axes of glide reflection
are dashed. As in Figure 24, lenses mark centers of 2-fold rotations.

7.10 The full torus groups, type +×D1873

Finally, we have the groups where all directional transformations are combined. The conditionsD1874

of + and × force the lattice to be a rectangular lattice both in the φ1, φ2 axis direction and inD1875

the ±45◦ direction, possibly with added midpoints (rhombic case). This means that the latticeD1876

is a square lattice. It appears as a rectangular lattice in one pair of perpendicular directions andD1877

as a rhombic lattice in the other directions.D1878

Thus, there are only two cases for the translation lattice: The square n × n lattice with n2
D1879

translations (the upright grid “U”, Figure 26a), and its rhombic extension with 2n2 translationsD1880

(the slanted grid “S”, Figure 26b).D1881
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(a) mirror reflections, upright grid (p4mmU) (b) glide reflections, slanted grid (p4gmS)

Figure 26: Two of the four types of groups +× . Small squares denote centers of 4-fold rotations.
For each figure, there exists a rotated version by 45◦, where +×p4mmU becomes +×p4mmS, and
+×p4gmS becomes +×p4gmU.

Let us first consider the slanted case, see Figure 26b. The lattice appears as a rhombic latticeD1882

for the + directions. From the point of view of the subgroups of type +, we know that thisD1883

means that the “glide reflection” case is excluded (cf. the discussion in Section 7.7.1). ThereD1884

must be mirror reflections in the horizontal and vertical axes.D1885

For the × directions, the lattice appears as a rectangular lattice. According to Section 7.9D1886

we can have the cases mirror/mirror, mirror/glide, glide/glide. But since 90◦ rotations areD1887

included, the mixed mirror/glide case is impossible. Two cases remain, which we call +×p4mmS
D1888

and +×p4gmS. The latter is shown in Figure 26b. When the lattice appears as a square latticeD1889

for the + directions, the two pairs of directions + and × change roles, and we have two moreD1890

groups, +×p4mmU and +×p4gmU. The first one is shown in Figure 26a. The groups +×p4mm haveD1891

mirrors in all four directions, whereas the groups +×p4gm have mirrors in two directions only.D1892

To list the generators for the full torus groups, we choose the origin of the coordinate systemD1893

on the center of a 4-fold rotation induced by a swapturn, see Table 8.D1894

This concludes the discussion of the toroidal groups. The reader who wishes to practice theD1895

understanding of these classes might try to count, as an exercise, all groups of order 100, seeD1896

Appendix C.D1897

7.11 DuplicationsD1898

As we have seen, every subgroup of a group ±[D2m × D2n] has an invariant torus. So far,D1899

we have analyzed the groups that leave a fixed torus invariant. We have already mentionedD1900

that some subgroups have more than one invariant Clifford torus, and this leads to duplications.D1901

Unfortunately, when it comes to weeding out duplications, all classifications (including the classicD1902

classification) become messy.17D1903

We analyze the situation as follows. Every orientation-preserving transformation is of theD1904

form Rα1,α2
, with −π ≤ α1, α2 ≤ π. If α1 ̸= ±α2, there is a unique pair of absolutely orthogonalD1905

invariant planes, and hence, there is a unique invariant Clifford torus on which the transformationD1906

appears as a torus translation. We call this torus the primary invariant torus.D1907

Our strategy is to analyze the situation backwards. We look at all orientation-preservingD1908

transformations that are not torus translations, we write them in the form Rα1,α2
and determineD1909

the translation vector (α1, α2) by which they would appear on their primary invariant torus. TheD1910

result is summarized in the following proposition. The torus translations that lead to ambiguityD1911

are shown in Figure 27:D1912

Proposition 7.8. The orientation-preserving transformations that have more than one invariantD1913

torus are the following:D1914

(a) Simple half-turns of the form diag(−1,−1, 1, 1).D1915

On their primary torus, they appear as torus translation by (π, 0) or (0, π). There is anD1916

infinite family of alternate tori for which they are interpreted as torus flips or torus swaps.D1917

17The difficulty caused by these ambiguous transformations, in particular in connection with achiral groups,
was already acknowledged by Hurley [23, p. 656–7].
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(b) Double rotations Rα,π±α.D1918

On an alternate torus, they appear as reflections or glide reflections associated to torus swapsD1919

or .D1920

(c) Left and right rotations Rα,±α, including id and −id. (For α = ±π/2, these fall also underD1921

case (b).)D1922

A left rotation Rα,α with α ̸= ±π/2 appears as a torus translation by (α, α) or by (−α,−α)D1923

on every invariant torus.D1924

Similarly, a right rotation Rα,−α with α ̸= ±π/2 appears as a torus translation by (α,−α)D1925

or by (−α, α) on every invariant torus.D1926

left rotations

right rotations

−id

α1

α2

(0, 0)

(2π, 2π) ≡ (0, 0)

, , ·

(π, 0) (2π, 0)

(0, 2π)

(0, π)

Figure 27: The torus translations on the tilted square are ambiguous: they can appear as
rotations of different types, as indicated. Left and right rotations (on the diagonal) also have no
unique invariant torus, but they appear as left and right rotations on any invariant torus.

Proof. The orientation-preserving transformations that are not torus translations are · (torusD1927

flips) and and (reflections and glide reflections associated to torus swaps).D1928

Every torus flip is a half-turn, and these are covered in case (a).D1929

Let us look at reflections and glide reflections associated to the torus swaps . The torusD1930

swap at the principal diagonal is the transformation [i, k]. Both i and k are pure quaternions,D1931

in accordance with the fact that is a half-turn. The general torus swap of type is obtainedD1932

by combining [i, k] with an arbitrary torus translation [expβli, expβri]:D1933

[i expβli, k expβri] = [exp(π2 i) expβli, k(cosβr + i sinβr)] = [exp((π2 + βl)i), k cosβr + j sinβr]

The right component k cosβr + j sinβr is still a unit quaternion (rotation angle π/2), and henceD1934

the right rotation [1, expβri] has no effect on the type of the transformation. This is in accordanceD1935

with the fact that, on the φ1, φ2-torus, a right rotation is a translation perpendicular to theD1936

reflection axis of , whose effect is just to move the reflection axis. The left rotation, however,D1937

changes the rotation angle from π/2 to π/2 + βl. The result is a rotation of type Rπ+βl,βl
. AsD1938

a torus translation Rα1,α2
, it lies on the line α1 = α2 + π (and α1 = α2 − π, considering thatD1939

angles are taken modulo 2π), see Figure 27.D1940

The operations of type are the mirrors of , and hence they appear on the reflected linesD1941

α1 = −(α2 ± π).D1942

Left and right rotations have infinitely many invariant tori, but cause no confusion for ourD1943

classification, because a left rotation will appear as the same left rotation on any invariant torusD1944

(possibly with an inverted angle), except when it falls under case (b).D1945

We note the curious fact that the operations that don’t have a unique invariant torus coincideD1946

with the operations whose squares are left or right rotations.D1947

Corollary 7.9. A group may have more than one invariant torus only if the translational sub-D1948

group contains only elements on the diagonals and on the tilted square in Figure 27.D1949
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This excludes from the search for duplications those groups for which the translational sub-D1950

group is sufficiently rich, i.e., when both parameters m and n are large. Still it leaves a largeD1951

number of cases where one of the parameters is small. We present the list of duplications below.D1952

7.11.1 List of DuplicationsD1953

As mentioned, we have imposed the stricter conditions on m and n (and a and b) in Table 6 inD1954

order to exclude all duplications. As a rule, among equal groups, we have chosen the group withD1955

the larger subgroup of torus translations (with the chosen invariant torus) to stay in the table.D1956

Table 9 lists every group G1 that is excluded from Table 6, together with a group G2 toD1957

which it is conjugate, and a conjugation that converts the second group to the first one. TheD1958

conjugations depend on the specific parameterizations that we have chosen and that were givenD1959

with each class of groups discussed above, in particular in Tables 7 and 8.D1960

In this section, we use the notation G1
.
= G2 for groups that are geometrically the same,D1961

i.e., conjugate under an orientation-preserving transformation, and we reserve the sign “=” forD1962

groups that are equal in our chosen coordinate system.D1963

In some classes, the choice of the two parameters m and n is symmetric (e.g., +p2mm
m,n

.
=D1964

+p2mm
n,m ). In those cases, we have achieved uniqueness by requiring m ≥ n in Table 6. SuchD1965

symmetries between the parameters, and other general relations are listed first for each type ofD1966

group in Table 9. This is followed by a list of groups with small parameters that are explicitlyD1967

excluded in Table 6.D1968

We have made some simplifications to keep the table compact. As mentioned previously, weD1969

sometimes refer to groups
(s)
m,n or · (s)

m,n where the parameter s lies outside the “legal” rangeD1970

(20), in order to avoid case distinctions. The parameter s can be brought into that range byD1971

using the equalities
(s)
m,n =

(s±m)
m,n

.
=

(−n−s)
m,n , and similarly for · . If the permissible rangeD1972

of parameters s contains only one integer, we omit the parameter and denote the group simplyD1973

by m,n or · m,n. In such a case, any choice of s will lead to the same group.D1974

We have a few cases with more than two equal groups:D1975

cm
1,1

.
= cm

1,1
.
= · (0)

1,1
.
=

(0)
1,2 = ⟨diag(1, 1,−1,−1)⟩ (order 2)

pm
2,2

.
= pm

2,2
.
= · (−1)

2,1
.
=

(0)
2,2 = ⟨diag(1, 1,−1,−1),diag(−1,−1, 1, 1)⟩ ∼= D4 (order 4)

×p2gg
2,2

.
= pm

4,2
.
= pm

2,4
.
=

(−2)
4,2 = ⟨diag(Rπ/2, Rπ/2),diag(Rπ/2, R−π/2)⟩ (order 8)

×p2gm
2,2

.
= cm

2,2
.
= pm

2,4
.
= · (−1)

2,2
.
= ⟨−id,diag(1,−1, 1,−1),diag(Rπ/2, R−π/2)⟩ (order 8)

×p2mg
2,2

.
= cm

2,2
.
= pm

4,2
.
= · (−2)

4,1
.
= ⟨−id,diag(1,−1, 1,−1),diag(Rπ/2, Rπ/2)⟩ (order 8)

+×p4gmU
1

.
= +p2gg

2,1
.
= +p2gg

1,2
.
= ⟨diag(−1,−1, 1, 1),diag(1, 1,−1, 1),diag(1, 1, 1,−1)⟩ (order 8)

× c2mm
2,2

.
= ×p2mm

4,2
.
= ×p2mm

2,4
.
= · (−2)

4,2 (order 16)

To reduce case distinctions, some of these groups G1 point to groups G2 that are themselvesD1976

excluded in Table 6, and which must be looked up again in Table 9.D1977

The conjugations in Table 9 were found by computer search for particular values of m. InD1978

many cases, the conjugate group or the conjugacy mapping depends on the parity of someD1979

parameter. We tried to simplify the entries of the table by manually adjusting them. AllD1980

conjugations were checked by computer for m ≤ 100.D1981

When the groups are translated to the Conway-Smith classification using Table 6, the dupli-D1982

cations have easy algebraic justifications: For example, C2 and D2 are obviously the same group.D1983

Also, D̄4 can be replaced by D4, see Appendix G.1 for more information.D1984

7.11.2 A duplication exampleD1985

By way of example, we treat one duplication in detail:D1986

× c2mm
1,n

.
= · (n−1

2 )
1,2n , for odd n. (23)

Figure 28 shows the action of these groups on the torus for n = 5. We can confirm that, inD1987

accordance with Corollary 7.9, the 10 torus translations of · (2)
1,10 lie only on a diagonal and onD1988

the line α1 + α2 = ±π. The latter 5 translations become reflections and glide reflections inD1989

× c2mm
1,5 . More precisely, in accordance with Figure 27, they are the reflections at the diagonalD1990
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G1 G2 [l̂, r̂] G1 G2 [l̂, r̂]
chiral groups

(s)
m,n

(s+n)
m,n [1, 1] (equal) · (s)

m,n · (s+n)
m,n [1, 1] (equal)

(s)
m,n

(−m−s)
m,n [i, k] = · (s)

m,n · (−m−s)
m,n [i, k] =

· 1,1 1,2 [i+ j, 1 + k]

· 2,1
(0)
2,2 [i+ j, i+ j]

pm
4m−2,2 · 4m−2,1 [j + k, i+ j] pm

2,4m−2 · (−1)
2,2m−1 [i+ j, j + k]

pm
4m,2 · 4m,1 [1, i+ j] pm

2,4m · (−1)
2,2m [i+ j, 1]

pm
2,4m−2

(2m−2)
2,4m−2 [i+ k, 1] pm

2m,2
(0)
2m,2 [1, i+ k]

pm
2,4m

(−2)
4,2m [i+ k, 1]

pg
2,4m−2

(−2)
4,2m−1 [i+ k, 1] pg

2m,2
(1)
2m,2 [1, i+ k]

pg
2,4m

(2m−1)
2,4m [i+ k, 1]

cm
2m+1,1 · 2m+1,1 [j + k, 1− k] cm

1,2m+1 · (m)
1,2m+1 [i+ j, j + k]

cm
1,4m−3

(2m−2)
1,8m−6 [i+ k, 1] cm

4m−3,1 4m−3,2 [1, 1− j]
cm
1,4m−1

(2m−1)
1,8m−2 [1− j, 1] cm

4m−1,1 4m−1,2 [1, i+ k]
cm
2,4m−2

pm
4,4m−2 [i+ j, 1] cm

4m−2,2
pm
4m−2,4 [1, i+ j]

cm
2,4m

pg
4,4m [i+ k, 1] cm

4m,2
pg
4m,4 [1, i+ k]

×p2mm
2m,2 · (0)

2m,2 [1, i+ k] ×p2mm
2,4m−2 · (2m−2)

2,4m−2 [i+ k, 1]

×p2mm
2,4m · (−2)

4,2m [i+ k, 1]

×p2gm
2m,2 · (1)

2m,2 [1, i+ k] ×p2mg
2,4m−2 · (−2)

4,2m−1 [i+ k, 1]

×p2mg
2,4m · (2m−1)

2,4m [i+ k, 1]

×p2gm
2,4m−2

cm
2,4m−2 [i+ j, j + k] ×p2mg

4m−2,2
cm
4m−2,2 [j + k, i+ j]

×p2gm
2,4m

pm
4,4m [i+ j, 1] ×p2mg

4m,2
pm
4m,4 [1, i+ j]

×p2gg
4m−2,2

pm
4m−2,4 [j + k, i+ j] ×p2gg

4m,2
cm
4m,2 [1, i+ j]

×p2gg
2,4m−2

pm
4,4m−2 [i+ j, j + k] ×p2gg

2,4m
cm
2,4m [i+ j, 1]

× c2mm
4m−3,1 · 4m−3,2 [1, 1− j] × c2mm

4m−2,2 ×p2mm
4m−2,4 [j + k, i+ j]

× c2mm
4m−1,1 · 4m−1,2 [1, 1 + j] × c2mm

4m,2 ×p2gm
4m,4 [1, i+ k]

× c2mm
1,4m−3 · (2m−2)

1,8m−6 [1 + j, 1] × c2mm
2,4m−2 ×p2mm

4,4m−2 [i+ j, j + k]

× c2mm
1,4m−1 · (2m−1)

1,8m−2 [1− j, 1] × c2mm
2,4m ×p2mg

4,4m [i+ k, 1]

achiral groups
+p2mm

m,n +p2mm
n,m [i, k] = ⟲ a,b ⟲ b,a [i, k] =

+p2gg
m,n +p2gg

n,m [i, k] = ⟲ 1,0
pg
2,1 [1 + k, 1− i+ j + k]

+ c2mm
m,n + c2mm

n,m [i, k] = ⟲ 1,1
pg
2,2 [1 + k, 1 + i− j + k]

+p2mm
1,1

pm
1,2 [1 + k, 1− k] ⟲ 2,0 +p2gg

2,2 [1 + k, 1 + k]

+p2mg
1,1

pm
2,1 [1 + k, i− j]

+p2gg
1,1

pg
1,2 [1 + k, 1− k]

+ c2mm
1,1

pm
2,2 [1 + k, 1− k]

+×p4mmU
1 +p2mg

1,2 [1 + k, 1− i− j − k] +×p4gmU
1 +p2gg

2,1 [1 + k, 1 + i− j + k]

+×p4mmU
2 + c2mm

2,2 [1 + k, 1 + k] +×p4gmU
2 ⟲ 2,2 [1 + j, 1 + j]

+×p4mmS
1 +p2mg

2,2 [1 + k, 1 + i+ j − k] +×p4gmS
1

cm
2,2 [1 + k, 1 + k]

Table 9: Duplications. The range of the parameter m is m ≥ 1 in all cases. The group G1 is

obtained from G2 by conjugation with h := [ l̂
∥l̂∥ ,

r̂
∥r̂∥ ]. That is, G1 = h−1G2h.
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0 2π0 2π

2π2π

ϕ1 ϕ1

ϕ2ϕ2

· (2)
1,10 ×c2mm

1,5

Figure 28: Duplication example, · (2)
1,10

.
= × c2mm

1,5

(4 glide reflections and one reflection). The picture shows actually more glide reflections andD1991

reflection axes than the order of the group would allow. The reason is that every glide reflectionD1992

in this group can also be interpreted as a reflection, at a different axis.D1993

We now prove the conjugacy formally. Since these groups have the same order 4n, it isD1994

enough to show that G2 = · (n−1
2 )

1,2n is contained in G1 = × c2mm
1,n . We do this by checking thatD1995

the generators of G2, under conjugation by the element h from Table 9, are elements of G1. HereD1996

are the generators we gave for these groups:D1997

G1 = × c2mm
1,n = ⟨[1, 1], [1, e i2π

n ], [−1, e
πi
n ], [i, k], [−k, i]⟩ (see Table 8)

G2 = · (n−1
2 )

1,2n = ⟨[e−2πi, 1], [−i, e
πi
2n ], [j, j]⟩ = ⟨[−i, e

πi
2n ], [j, j]⟩ (see Section 7.6)

We have to choose different conjugations depending on the value of n modulo 4.D1998

• For × c2mm
1,4m−1

.
= · (2m−1)

1,8m−2, we do conjugation by h1 = [1− j, 1]:D1999

[ 1+j
2 , 1][−i, e

πi
8m−2 ][1− j, 1] = [k, e

πi
8m−2 ] = [k, e

i(14m−3)π
8m−2 ] = [k,−i][1, e

i2π
4m−1 ]m ∈ G1

[ 1+j
2 , 1][j, j][1− j, 1] = [j, j] = [i, k][−k, i] ∈ G1

• For × c2mm
1,4m−3

.
= · (2m−2)

1,8m−6, we do conjugation by h2 = [1 + j, 1]:D2000

[ 1−j
2 , 1][−i, e

πi
8m−6 ][1 + j, 1] = [−k, e

πi
8m−6 ] = [j, j][1, e

i2π
4m−3 ]m−1[i, k] ∈ G1

[ 1−j
2 , 1][j, j][1 + j, 1] = [j, j] = [i, k][−k, i] ∈ G1

We can also study this transformation geometrically: What happens to the torus under thisD2001

coordinate transformation? On which other torus do the glide reflections of × c2mm
1,n appear asD2002

torus translations? Indeed, there is another simple equation for a Clifford torus that is commonlyD2003

used. We can transform our equation for the torus T as follows:D2004

x2
1 + x2

2 = x2
3 + x2

4

x2
2 − x2

4 = x2
3 − x2

1

(x2 − x4)(x2 + x4) = (x3 + x1)(x3 − x1) (24)

x̃2x̃4 = x̃1x̃3, (25)

with transformed coordinates (x̃1, x̃2, x̃3, x̃4). This is, for example, how the torus is introduced inD2005

Coxeter [12, Eq. (4.41)], who has a separate section on “the spherical torus” [12, §4.4, p. 35–37].D2006

Now, the coordinate change from (24) to (25) is precisely what the transformation h1 =D2007

[1− j, 1] in our example achieves: [1− j, 1] maps the quaternion units (1, i, j, k) ≡ (x1, x2, x3, x4)D2008
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to (1 + j, i − k,−1 + j, i + k) ≡ (x1 + x3, x2 − x4,−x1 + x3, x2 + x4) = (x̃1, x̃2, x̃3, x̃4). ManyD2009

conjugations in Table 9 are of this form.D2010

The reason why we have chosen the example (23) for manual confirmation is that it cor-D2011

responds to one of two duplications in the Conway-Smith classification that are not literallyD2012

mentioned there:D2013

+ 1
4 [D4 × D̄4n]

.
= + 1

4 [D4 ×D
(1)
4n ] for odd n.

± 1
4 [D4 × D̄4n]

.
= ± 1

4 [D4 ×D
(1)
4n ]

The second equality appears in Table 9 as ×p2mm
2,2m for odd m and ×p2gm

2,2m for even m. TheD2014

reason behind these duplications is discussed in Section G.1.D2015

7.12 Comparison with the classification of Conway and SmithD2016

Looking at the right column of Table 6, we see that our classification and the classificationD2017

of Conway and Smith [8] have some similarity in the rough categorization. For example theD2018

“mixed” groups of type [C × D] are the torus swap groups (type ). In the finer details,D2019

however, the two classifications are often quite at odds with each other. Groups that come fromD2020

one geometric family correspond to different classes in the CS classification from the algebraicD2021

viewpoint, depending on parity conditions. On the other hand, some groups that belong togetherD2022

algebraically appear in different categories of our classification.D2023

While we acquired some understanding of the classic classification of the toroidal groupsD2024

according to Conway and Smith [8], in particular, of the simplest case of the torus translationD2025

groups (type , corresponding to [C × C], see Appendix G), most entries in the right columnD2026

of Table 6 were filled with the help of a computer, by generating the groups from the specifiedD2027

generators and comparing them by the fingerprints described in Section 10.2, and recognizingD2028

patterns.D2029

One reason for the difficulty is the distinction between haploid and diploid groups, a termD2030

borrowed from biology by Conway and Smith [8]. A group is diploid if it contains the centralD2031

reflection −id; otherwise, it is haploid.18 In the classic classification, the diploid groups ariseD2032

easily, but the haploid groups must be specially constructed as index-2 subgroups of diploidD2033

groups. Thus, the presence or absence of −id appears at the very beginning of the classicD2034

classification by quaternions. In the notation of [8], diploid and haploid groups are distinguishedD2035

by the prefix ± and +.D2036

For our geometric construction of the toroidal groups, this distinction is ephemeral. TheD2037

central reflection −id is the torus translation Rπ,π in the center of the parameter square. ItD2038

depends on some parity conditions of the translation parameters whether this element belongsD2039

to G□. (For example, one can easily work out from Figure 23 that the groups pm and pg
D2040

are diploid if m and n are even. The groups cm are diploid if m and n have the same parity.)D2041

In elliptic geometry, where opposite points of S3 are identified, the distinction between haploidD2042

and the corresponding diploid groups disappears, or in other words, only diploid groups play aD2043

role in elliptic space.D2044

8 The polyhedral groupsD2045

We will now explain the polyhedral groups, which are related to the regular 4-dimensional poly-D2046

topes. The regular 4-dimensional polytopes have a rich and beautiful structure. They and theirD2047

symmetry groups have been amply discussed in the literature, see for example [10, ChaptersD2048

VIII and XIII], [15, §26, §27], and therefore we will be brief, except that we study in some moreD2049

detail the groups that come in enantiomorphic pairs. Table 10 gives an overview, and Table 16D2050

in Appendix A lists these groups with generators and cross references to other classifications.D2051

We mention that pictures of the cube, the 120-cell, the 24-cell, and the bitruncated 24-cellD2052

(also known as the 48-cell, defined in Section 8.6.1) arise among the illustrations for the tubicalD2053

groups, see Section 6.12.D2054

18Threlfall and Seifert [35, § 5] used the terms zweistufig and einstufig for these groups.
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CS name Du Val # and name Coxeter name order method

symmetries of the 120-cell Q120 = {5, 3, 3} / the 600-cell P600 = {3, 3, 5}
±[I × I] · 2 50. (I/I; I/I)∗ [3, 3, 5] 14400

±[I × I] 30. (I/I; I/I) [3, 3, 5]+ 7200 chiral part

±[I ×O] 29. (I/I;O/O) [[3, 3, 5]+1
5L

] 2880 inscribed polar & swap

±[O × I] 29. (O/O; I/I) [[3, 3, 5]+1
5R

] 2880 inscribed polar & swap

±[I × T ] 24. (I/I;T/T ) [3, 3, 5]+1
5L

1440 inscribed polar

±[T × I] 24. (T/T ; I/I) [3, 3, 5]+1
5R

1440 inscribed polar

symmetries of the 24-cell PT = {3, 4, 3} and its polar 24-cell PT1

±[O ×O] · 2 48. (O/O;O/O)∗ [[3, 4, 3]] 2304

±[O ×O] 25. (O/O;O/O) [[3, 4, 3]]+ 1152 chiral part

± 1
2 [O ×O] · 2 45. (O/T ;O/T )∗ [3, 4, 3] 1152 nonswapping

± 1
2 [O ×O] · 2̄ 46. (O/T ;O/T )∗− [[3, 4, 3]+] 1152 swap with mirror

± 1
2 [O ×O] 28. (O/T ;O/T ) [3, 4, 3]+ 576 chiral & nonswapping

±[T × T ] · 2 43. (T/T ;T/T )∗ [3, 4, 3+] 576 edge orientation

±[O × T ] 23. (O/O;T/T ) [[+3, 4, 3+]]L 576 diagonal marking

±[T ×O] 23. (T/T ;O/O) [[+3, 4, 3+]]R 576 diagonal marking

±[T × T ] 20. (T/T ;T/T ) [+3, 4, 3+] 288 2 dual edge orientations

symmetries of the hypercube {4, 3, 3} / the cross-polytope {3, 3, 4}
± 1

6 [O ×O] · 2 47. (O/V ;O/V )∗ [3, 3, 4] 384

± 1
6 [O ×O] 27. (O/V ;O/V ) [3, 3, 4]+ 192 chiral part

± 1
3 [T × T ] · 2 41. (T/V ;T/V )∗ [+3, 3, 4] 192 even permutations

± 1
3 [T × T ] · 2 42. (T/V ;T/V )∗− [3, 3, 4+] 192 2-coloring

± 1
3 [T × T ] 22. (T/V ;T/V ) [+3, 3, 4+] 96 2-coloring & chiral

symmetries of the simplex {3, 3, 3} and its polar

± 1
60 [I × I] · 2 51. (I†/C2; I/C2)

†∗ [[3, 3, 3]] 240

± 1
60 [I × I] 32. (I†/C2; I/C2)

† [[3, 3, 3]]+ 120 chiral part

+ 1
60 [I × I] · 21 51′. (I†/C1; I/C1)

†∗ [3, 3, 3] 120 nonswapping

+ 1
60 [I × I] · 23 51′. (I†/C1; I/C1)

†∗
− [[3, 3, 3]+] 120 swap with mirror

+ 1
60 [I × I] 32′. (I†/C1; I/C1)

† [3, 3, 3]+ 60 chiral & nonswapping

Table 10: The polyhedral groups.
The second colum give a cross-reference to the classification of Du Val [15]. We remark that, in
Du Val’s enumeration of the achiral groups [15, p. 61], the descriptions of the orientation-reversing
elements of the groups #41 (T/V ;T/V )∗ and #42 (T/V ;T/V )∗− are swapped by mistake. We
follow Goursat and Hurley and go with the convention that the group with the more natural
choice of elements should be associated to the name without a distinguishing subscript. Du
Val himself, in the detailed discussion of these groups [15, p. 73], follows the same (correct)
interpretation.
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8.1 The Coxeter notation for groupsD2055

For the geometric description of the groups, we will use the notations of Coxeter, with adaptationsD2056

by Conway and Smith [8, §4.4].D2057

In the basic Coxeter group notation, a sequence of n − 1 numbers [p, q, . . . , r, s] stands forD2058

the symmetry group of a certain n-dimensional regular polytope (if it exists), which is denotedD2059

by {p, q, . . . , r, s}. (See the headings of Table 10 for the 4-dimensional regular polytopes.) ThisD2060

group is generated by n reflections R1, . . . , Rn. Each reflection is its own mirror: (Ri)
2 = 1,D2061

and any two adjacent reflections generate a rotation whose order is specified in the sequence:D2062

(R1R2)
p = (R2R3)

q = · · · = (Rn−1Rn)
s = 1. Nonadjacent mirrors are perpendicular: RiRj =D2063

RjRi for |i− j| ≥ 2.D2064

G+ denotes the chiral part of the group G, which contains products of an even number ofD2065

reflections. When just one of the numbers p, q, . . . , r, s is even, say that between Rk and Rk+1,D2066

there are three further subgroups. The two subgroups [+p, q, . . . , r, s] and [p, q, . . . , r, s+] consistD2067

of words that use respectively R1, . . . , Rk and Rk+1, . . . , Rn an even number of times. TheirD2068

intersection is the index-4 subgroup [+p, q, . . . , r, s+]. Coxeter’s original notation for [+p, q, . . .]D2069

is [p+, q, . . .].D2070

A second pair of brackets, like in [[3, 3, 3]], indicates a swap between a polytope and its polar,D2071

following [11]. Some further extensions of the notation will be needed for the axial groups inD2072

Section 9, see Table 15. In some cases, we have extended the Coxeter notations in an ad-hocD2073

manner, allowing us to avoid other ad-hoc extensions of [8].D2074

8.2 Strongly inscribed polytopesD2075

We say that a polytope P is strongly inscribed in a polytope Q if every vertex of P is a vertexD2076

of Q, and every facet of Q contains a facet of P . Figure 29 shows two three-dimensional examples.D2077

This relation between P and Q is reversed under polarity: With respect to an origin that liesD2078

inside P , the polar polytope Q∆ will be strongly inscribed in P∆.D2079

Figure 29: A cube with a strongly inscribed (non-regular) octahedron (left). A dodecahedron
with a strongly inscribed (non-regular) icosahedron (right).

In four dimensions, we will show two instances of this phenomenon where a rotated copy ofD2080

the polar polytope P∆ of a polytope P can be strongly inscribed into P . Among the regularD2081

polytopes in three dimensions, there are just some degenerate cases, where every facet of QD2082

contains only an edge of P : In a cube Q, a regular tetrahedron P can be inscribed, with the sixD2083

edges of P on the six square sides of Q. In a dodecahedron Q, a cube P can be inscribed, withD2084

its twelve edges on the twelve pentagons of Q. The tetrahedron inscribed in a dodecahedronD2085

does not fall in this category, since its edges go through the interior of the dodecahedron.D2086

8.3 Symmetries of the simplexD2087

The full symmetry group of the 4-simplex is [3, 3, 3]. The group [[3, 3, 3]] additionally swaps (byD2088

negation) the simplex with its polar. The chiral versions are [3, 3, 3]+ and [[3, 3, 3]]+. The groupD2089

[[3, 3, 3]+] allows the flip to the polar only in connection with a reversal of orientation.D2090

8.4 Symmetries of the hypercube (and its polar, the cross-polytope)D2091

The full symmetry group of the hypercube is [3, 3, 4]. It is isomorphic to the semidirect product ofD2092

coordinate permutations with sign flips {(±1,±1,±1,±1)}⋊S4. This group has four subgroups.D2093
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The cube has a natural 2-coloring of the vertices that gives alternating colors to adjacentD2094

vertices. One can check that the vertices of each color form a cross-polytope. This cross-polytopeD2095

is strongly inscribed in the cube: Each facet of the hypercube contains exactly one (tetrahedral)D2096

facet of that cross-polytope. The subgroup [3, 3, 4+] contains those elements that preserve theD2097

2-coloring. Equivalently, these are the elements that have an even number of sign changes.D2098

The subgroup [+3, 3, 4] contains those elements that have an even permutation of coordinates.D2099

It is isomorphic to {(±1,±1,±1,±1)}⋊ A4. The subgroup [+3, 3, 4+] is their intersection. TheD2100

subgroup [3, 3, 4]+ contains the orientation-preserving transformations. These are the transfor-D2101

mations where the parity of the sign changes matches the parity of the permutation.D2102

It is interesting to note that the 3-dimensional group [3, 4] closely mirrors the picture forD2103

[3, 3, 4], see Table 11. Both in three and four dimensions, the “half-cube” is itself a regularD2104

polytope: in 3 dimensions, it is the regular tetrahedron, while in 4 dimensions, it is the cross-D2105

polytope. The subgroup [3, 4+] = TO preserves the 2-coloring of the vertices, i.e. it contains allD2106

symmetries of the tetrahedron. Its subgroup [+3, 4+] = +T contains the orientation-preservingD2107

symmetries of the tetrahedron. The group [+3, 4] = ±T contains the orientation-preservingD2108

symmetries of the tetrahedron together with its central reflection. It is also characterized asD2109

those symmetries that subject the three space axes to an even permutation. The group [3, 4]+D2110

contains all orientation-preserving transformations in [3, 4]. For the groups +T and TO we haveD2111

used alternate Coxeter names, which are equivalent to the standard ones, in order to highlightD2112

the analogy with 4 dimensions, cf. [6, p. 390].D2113

4 dimensions order 3 dimensions order description
[3, 3, 4] 384 [3, 4] = ±O 48 the full symmetry group
[3, 3, 4]+ 192 [3, 4]+ = +O 24 chiral part (preserves orientation)
[+3, 3, 4] 192 [+3, 4] = ±T 24 even permutation of coordinates
[3, 3, 4+] 192 [3, 4+] = [3, 3] = TO 24 preserves the 2-coloring
[+3, 3, 4+] 96 [+3, 4+] = [3, 3]+ = +T 12 all three constraints above

Table 11: Analogy between symmetries of the four-dimensional and three-dimensional cube

8.5 Symmetries of the 600-cell (and its polar, the 120-cell)D2114

The 120 quaternions 2I form the vertices of a 600-cell P600 = {3, 3, 5}. These quaternions areD2115

the centers of the 120 dodecahedra of the polar 120-cell Q120 = {5, 3, 3}, which has 600 vertices.D2116

The full symmetry group of P600 (or Q120) is [3, 3, 5]. Its chiral version is [3, 3, 5]+.D2117

The group has four interesting subgroups, which come in enantiomorphic versions. Under theD2118

left rotations by elements of 2I, or in other words, under the group ±[I × C1], the 600 verticesD2119

of Q120 decompose into five orbits, as shown by the five labels A,B,C,D,E for the cell F0 inD2120

Figure 30a, cf. [15, Figure 22, p. 84]. We can regard this as a 5-coloring of the vertices. (TheD2121

points of each color are labeled X,X ′, X ′′, X ′′′ according to the horizontal levels in this picture,D2122

but this grouping has otherwise no significance.) One can indeed check that the mapping fromD2123

a pentagonal face to the opposite face with a left screw by π/5, as effected by the elements ofD2124

±[I × C1], preserves the coloring.D2125

The vertices of one color form a regular tetrahedron inscribed in a regular dodecahedron, andD2126

there are thus five ways inscribe such a “left” tetrahedron in a regular dodecahedron. There isD2127

an analogous “right” 5-coloring by the orbits under ±[C1 × I], and correspondingly, there areD2128

five ways of inscribing a “right” tetrahedron in a regular dodecahedron. One such tetrahedronD2129

is shown in Figure 30b.19 The left and right tetrahedra are mirrors of each other, and they canD2130

be distinguished by looking at the paths of length 3 on the dodecahedron between vertices of aD2131

tetrahedron: These paths are either S-shaped zigzag paths (for left tetrahedra) or they have theD2132

shape of an inverted S (for right tetrahedra).D2133

Every color class consists of the points 2I · p0 for some starting point p0, and hence itD2134

forms a rotated copy P ′
600 of the 600-cell P600. This polytope is strongly inscribed in Q120:D2135

For each dodecahedron of Q120, there is a unique left rotation in ±[I × C1] mapping F0 toD2136

this dodecahedron, and in this way we get 120 images of the starting tetrahedron. Figure 30aD2137

shows these tetrahedra in three adjacent dodecahedra. (As a sanity check, one can performD2138

19The unions of these five or ten tetrahedra inside a dodecahedron form nice nonconvex star-like polyhe-
dral compounds, see [15, Figures 14 and 15a–b]. See also https://blogs.ams.org/visualinsight/2015/05/15/

dodecahedron-with-5-tetrahedra/ from the AMS blog “Visual Insight”.

https://blogs.ams.org/visualinsight/2015/05/15/dodecahedron-with-5-tetrahedra/
https://blogs.ams.org/visualinsight/2015/05/15/dodecahedron-with-5-tetrahedra/
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Figure 30: A sequence of inscribed tetrahedra in three successive dodecahedra of the 120-cell
Q120. The red vertices form a 600-cell P ′

600. This is an orthogonal projection to the tangent
space in the center of the middle cell, and this is why the top and bottom cells are foreshortened.

a small calculation: A vertex is shared by four tetrahedra—one tetrahedron in each of theD2139

four dodecahedra meeting in the vertex—, and this gives a consistent vertex count, since everyD2140

tetrahedron has four vertices and 120 · 4/4 = 120.)D2141

The red points in Figure 30b form part of an analogous 600-cell P ′R
600 spanned by rightD2142

inscribed tetrahedra. Some additional edges of this P ′R
600, which don’t lie in the three dodecahedraD2143

that are shown, are drawn in brown.D2144

The group ±[I ×T ] consists of those symmetries of that simultaneously preserve the 120-cellD2145

Q120 and its strongly inscribed “left” 600-cell P ′
600. To see this, consider the dodecahedral cellD2146

F0 that is centered at the quaternion 1. As mentioned, each left multiplication by an element 2ID2147

maps F0, together with its inscribed tetrahedron AA′A′′A′′′ to a unique dodecahedral cell of Q120D2148

with the corresponding tetrahedron. To understand the full group, we have to consider thoseD2149

group elements that keep F0 fixed. ±[I × T ] consists of the elements [l, r] with (l, r) ∈ 2I × 2T .D2150

The transformation [l, r] keeps F0 fixed iff it maps 1 to 1, and this is the case iff l = r. TheseD2151

elements are the elements [r, r] = [r] with r ∈ 2T , in other words, they form the tetrahedralD2152

group ±T . And indeed, the symmetries of F0 that keep the tetrahedron AA′A′′A′′′ invariantD2153

form a tetrahedral group.D2154

We chose [3, 3, 5]+1
5L

as an ad-hoc extension of Coxeter’s notation for the group ±[I × T ], toD2155

indicate a 1/5 fraction of the group [3, 3, 5]+.D2156

Now, there is also the original 600-cell P600, the polar of the Q120, having one vertex in theD2157

center of each dodecahedron. This gives rise to a larger group [[3, 3, 5]+1
5L

] = ±[I ×O] where theD2158

two 600-cells P600 and P ′
600 (properly scaled) are swapped. This group is not a subgroup of anyD2159

other 4-dimensional point group.D2160

When the starting point s is chosen in the center of the dodecahedral cell of Q120, the polarD2161

orbit polytope of this group has 240 cells. Figure 31 shows such a cell C. The points of theD2162

orbit closest to s are four vertices of the dodecahedron (say, those of color A, the red pointsD2163

in Figure 30a). They form a tetrahedral cell of P ′
600, and they are responsible for the roughD2164

tetrahedral shape of C. The centers of the twelve neighboring dodecahedra in Q120 give riseD2165

to the twelve small triangular faces, which are the remainders of the twelve pentagons of theD2166

original dodecahedral cell, when the polar is not present. In addition, there are four neighboringD2167

cells that are adjacent through hexagonal faces, opposite the large 12-gons. They are centeredD2168

at vertices of P ′
600. Two of these are shown as red points in Figure 30a, the point adjacent toD2169

C in the lower cell F9, and the point adjacent to D′′′ in the upper cell F1. The cell has chiralD2170

tetrahedral symmetry +T . In particular, it is not mirror-symmetric. In [16, Figure 9], this cellD2171
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is shown together with a fundamental domain inside it. Incidentally, this cell (and the orbitD2172

polytope) coincides with that of the tubical group ±[I × C4] when the starting point is chosenD2173

on a two-fold rotation center (Figure 37).D2174

Figure 31: A cell C of the polar orbit polytope of the group ±[I ×O]

If we use the “right” 5-coloring we get the corresponding groups [3, 3, 5]+1
5R

= ±[T × I] andD2175

[[3, 3, 5]+1
5R

] = ±[O × I]. See Figure 30b. These four groups come in two enantiomorphic pairs.D2176

The two corresponding groups are mirrors of each other. (They are therefore metachiral groupsD2177

in the terminology of Conway and Smith [8, §4.6].)D2178

8.6 Symmetries of the 24-cellD2179

The set of 24 quaternions of 2T form the vertices of a regular 24-cell PT . The complete symmetryD2180

group of PT is [3, 4, 3], and its chiral version is [3, 4, 3]+.D2181

The points of PT can be 3-colored: There are 8 vertices of PT whose coordinates are theD2182

permutations of (±1, 0, 0, 0). They form a cross-polytope. The 16 remaining vertices are of theD2183

form (±1/2,±1/2,±1/2,±1/2). They are the vertices of a 4-cube, and they can be naturallyD2184

divided into two color groups of 8, as mentioned in Section 8.4. In total, we have three groups ofD2185

8 vertices, which we interpret as a 3-coloring of the vertices by the colors a, b, c, see Figure 32a.D2186

Every triangular face contains vertices from all three colors. Thus, every symmetry of PT inducesD2187

a permutation of the colors.D2188

We can look at those symmetries for which the permutations of the colors is even. In otherD2189

words, besides the identity, we allow only cyclic shifts. These form the subgroup [3, 4, 3+].D2190

Another way to express this is to establish an orientation of the edges according to some cyclicD2191

ordering of the colors a → b → c → a (a coherent orientation [10, §8.3]). The subgroupD2192

[3, 4, 3+] consists of those elements that preserve this edge orientation. (This is analogous toD2193

the pyritohedral group ±T in three dimensions, which can also be described as preserving theD2194

orientation of the edges of the octahedron shown in Figure 32a.)D2195

The 24-cell is a self-dual polytope. In fact, the vertices of the polar polytope PT1
(properlyD2196

scaled) are the quaternions in the coset of 2T in 2O. If we add to [3, 4, 3] the symmetries thatD2197

swap PT and PT1 , we get the group [[3, 4, 3]], the symmetry group of the joint configurationD2198

PO = PT ∪PT1 . Its chiral version is [[3, 4, 3]]+. The subgroup [[3, 4, 3]+] contains the symmetriesD2199

that exchange PT and PT1
only in combination with a reversal of orientation. This group isD2200

interesting, because it is achiral, but it contains no reflections.D2201

The polar polytope also has a three-coloring of its vertices. (One can give the partitionD2202

explicitly in terms of the coordinates, as for PT : The vertices of PT1
are the centers of theD2203

facets of PT , properly scaled, and their coordinates (x1, x2, x3, x4) are all permutations of theD2204

coordinates (±1,±1, 0, 0)/
√
2. The three color classes are characterized by the condition |x1| =D2205

|x2|, |x1| = |x3|, and |x1| = |x4|, respectively.) We can interpret this 3-coloring as a 3-coloring ofD2206

the cells of PT , which we denote by A,B,C. The group [+3, 4, 3] contains those symmetries of PTD2207

for which the permutation of the colors of the cells is even. This group is of course geometricallyD2208

the same as [3, 4, 3+], but we can also have both conditions: [+3, 4, 3+].D2209

8.6.1 A pair of enantiomorphic groupsD2210

Finally, we have two more groups, which are mirrors of each other. To understand these groups,D2211

let us look at the polar orbit polytope of PO = PT ∪ PT1 : The octahedral cells of the 24-cellD2212

shrink to truncated cubes with 6 regular octagons and 8 triangles as faces, see Figure 32b. ThisD2213

polytope is sometimes called the bitruncated 24-cell, or truncated-cubical tetracontaoctachoron.D2214
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Figure 32: (a) An octahedral cell of the 24-cell with a consistent edge orientation. (b) The 48-cell
consists of 48 truncated cubes.
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±[O × C1] (left multiplication with 2O)

We will simply refer to it as the 48-cell. The small triangles are remainders from the triangularD2215

faces of the original octahedral cells of the 24-cell, which are centered at the points PT .D2216

Figure 32b shows a cell of color A. The triangles lead to adjacent cells, colored B or C, andD2217

we have labeled the triangles accordingly. The octagons lead to cells centered at points of PT ,D2218

and we have labeled them with the corresponding color a, b, or c.D2219

Figure 32c shows an adjacent “dual” cell of the 48-cell, centered at a point of color c. NoteD2220

that these two cells are not attached in a straight way, but by a screw of 45◦. We can enforceD2221

the screw to be a left screw by decorating each of the six octagonal faces with a diagonal, asD2222

shown in Figure 33. The group ±[O × C1] will map one selected cell to each cell by a uniqueD2223

left multiplication with an element of 2O and hence will carry the diagonal pattern to everyD2224

truncated cube of the 48-cell. The diagonals on adjacent cells match: A left rotation that mapsD2225

a cell to the adjacent cell performs a left screw by 45◦, and one can check in Figure 33 thatD2226

the screw that maps an octagon to the opposite octagon while maintaining the diagonal is a leftD2227

screw.D2228

The group ±[O×T ] is the group that preserves the set of diagonals (ignoring the colors). ThisD2229

can be confirmed as in the case ±[I×T ] in Section 8.5: The group that fixes a cell should be theD2230

tetrahedral group +T , and indeed, the diagonal pattern of Figure 33 has tetrahedral symmetry:D2231

The diagonals connect only the B-triangles, and the B-triangles form a tetrahedral pattern. WeD2232

have chosen the ad-hoc extension of Coxeter’s notation [[+3, 4, 3+]]L for the group ±[O × T ] toD2233

indicate that it extends the operations [+3, 4, 3+] by a swap between PT and the polar polytopeD2234

PT1
, and this swap is effected by left rotations.D2235

Of course, there is a mirror pattern of Figure 33, which leads to the mirror group ±[T ×O] =D2236

[[+3, 4, 3+]]R, and these two groups are enantiomorphic.D2237



72 Laith Rastanawi and Günter Rote: 4-Dimensional Point Groups

R1

R1

R1

R1

B2

B1

(a) (b) (c)

B1

B2

B2

B2

B2
B2

B1

B1

B1

B1

Figure 35: Facets inscribed in the truncated cube

Analogies with three dimensions. As pointed out by Du Val [15, p. 71], there is a strongD2238

analogy between the symmetries of the different self-dual polytopes in three and in four dimen-D2239

sions, as shown in Table 12. The simplex is a self-dual regular polytope, both in 4 dimensionsD2240

(Section 8.3) and in 3 dimensions. In 3 dimensions, moreover, the simplex and its polar form theD2241

cube, and thus we have used alternate Coxeter notations to highlight the analogy (opposite onesD2242

from Table 11, where the analogy with the cube is emphasized). Only five of the symmetries ofD2243

the 24-cell and its polar are used.D2244

From the viewpoint of the cross-polytope, one could also match the group ±[T × T ] · 2 =D2245

[3, 4, 3+] = [+3, 4, 3] of order 576 with the pyritohedral group ±T = [+3, 4] of order 24, becauseD2246

they are both based on consistent edge orientations.D2247

4-simplex order 24-cell order 3-simplex order description
[[3, 3, 3]] 240 [[3, 4, 3]] 2304 [[3, 3]] = [3, 4] = ±O 48 all symmetries
[[3, 3, 3]]+ 120 [[3, 4, 3]]+ 1152 [[3, 3]]+ = [3, 4]+ = +O 24 chiral part
[3, 3, 3] 120 [3, 4, 3] 1152 [3, 3] = TO 24 nonswapping
[[3, 3, 3]+] 120 [[3, 4, 3]+] 1152 [[3, 3]+] = [+3, 4] = ±T 24 swap with mirror
[3, 3, 3]+ 60 [3, 4, 3]+ 576 [3, 3]+ = +T 12 chiral & nonswapping

Table 12: Analogies between symmetries of self-dual polytopes

A strongly inscribed polar polytope. The convex hull of the points PO = PT ∪ PT1 is aD2248

polytope with 288 equal tetrahedral facets, which we call the 288-cell. It is polar to the 48-cell.D2249

We perform the same procedure as in Section 8.5 and split the vertices of the 48-cell into orbitsD2250

under the action of ±[O×C1]. We will see that this leads to another instance of a polytope withD2251

a strongly inscribed copy of its polar. However, we won’t get any new groups.D2252

The 48-cell has 288 vertices, and they are partitioned into 6 orbits of size 48, as shown inD2253

Figure 34, cf. Du Val [15, Figure 24, p. 85]: There is a natural partition of the colors into threeD2254

pairs R1, R2; G1, G2; and B1, B2, according to the opposite octagons to which the colors belong.D2255

(The partition of each pair into R1 and R2, etc., is arbitrary.) Indeed, one can check that theD2256

transition from an octagon to the opposite octagon with a left screw of 45◦ preserves the sixD2257

colors (indicated for the red colors by two corresponding crosses.) Likewise, the transition fromD2258

a triangle to the opposite triangle with a left screw of 60◦ preserves the colors.D2259

Now, as in Section 8.5, the points of one color form a right coset of 2O, and hence they form aD2260

rotated and scaled copy P ′
O of the 288-cell PO. This polytope is strongly inscribed in the 48-cell:D2261

Each truncated cube of the 48-cell contains one tetrahedron of P ′
O. Figure 35a shows one suchD2262

tetrahedron, spanned by the vertices of color R1.D2263

The geometry of this tetrahedron becomes clearer after rotating it by 45◦ around the mid-D2264

points of the front and back octagons, as in Figure 35b. We see that the tetrahedron has fourD2265

equal edges, whose length is the diagonal of the octagons, and two opposite edges of larger length,D2266

equal to the diagonal of a circumscribed square. The 2-faces are therefore congruent isoscelesD2267

triangles. Such a tetrahedron is called a tetragonal disphenoid.20D2268

20The side length of the “untruncated” cube is
√
8−2 ≈ 0.8, which equals the edge length of a circumscribed 8-

gon around a unit circle. Hence the two long edges of the tetrahedra, highlighted in bold, have length
√
2(
√
8−2) =
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The symmetry group of the 48-cell together with its strongly inscribed 288-cell P ′
O is theD2269

tubical group ±[O × D4], because the symmetry group of the disphenoid inside the truncatedD2270

cube is only the vierergruppe D4, consisting of half-turns through edge midpoints.D2271

We can try to start with the rotated tetrahedra of Figure 35b, spanned by two oppositeD2272

diagonals used for the decoration in Figure 34, hoping to recover the group ±[O× T ]. However,D2273

this tetrahedron contains vertices of two colors B1 and B2, and its orbit will thus contain theD2274

union of the orbits B1 and B2. Inside each truncated cube, the convex hull forms a quadraticD2275

antiprism, as shown Figure 35c. (The convex hull contains 48 such antiprisms plus 192 tetrahedralD2276

cells, for a total of 240 facets.)D2277

9 The axial groupsD2278

These are the finite subgroups of the direct product O(3) × O(1). The subgroup O(1) operatesD2279

on the 4-th coordinate x4, and we denote its elements by O(1) = {+x4,−x4}. Here +x4 is theD2280

identity, and −x4 denotes the reflection of the 4-th coordinate.D2281

Let G be such an axial group. Let G3 ∈ O(3) be the “projection” of G on O(3). That is,

G3 := { g ∈ O(3) | (g,+x4) ∈ G or (g,−x4) ∈ G }.

If G3 itself is a 3-dimensional axial group, i.e. G ⩽ O(2)×O(1), then we may call G a doubly axialD2282

group. In this case, we prefer to regard G as a toroidal group in O(2)×O(1)×O(1) ⩽ O(2)×O(2)D2283

and classify it as such. (These groups are the subgroups of +p2mm
m,2 .) Hence from now on, weD2284

assume that G3 is not an axial 3-dimensional group, i.e., we assume that G3 ⩽ O(3) is one of theD2285

seven polyhedral 3-dimensional groups (see Section 3.6). These are well-understood, and thusD2286

the axial groups are quite easy to classify. There are 21 axial groups (excluding the doubly axialD2287

groups), and their full list is given below in Table 15, with references to other classifications fromD2288

the literature. Together with the polyhedral groups in Table 10, these groups exhaust all entriesD2289

in [8, Tables 4.2 and 4.3] except the toroidal groups. Table 16 in Appendix A lists them withD2290

generators and cross-references to other classifications.D2291

Note that the product O(3) × O(1) used here is different from the product ±[L × R] onD2292

which the classic classification is based. Both are direct products in the group-theoretic sense,D2293

but O(3) × O(1) is a direct sum, a “Cartesian” product in a straightforward geometric sense,D2294

consisting of pairs of independent transformations in orthogonal subspaces, whereas the productD2295

±[L × R], which is specific to SO(4), refers to the representation [l, r] by pairs of quaternions,D2296

which have by themselves a significance as operations [l] and [r] in SO(3).D2297

We will now derive the axial groups systematically. Let G+x4
3 ⩽ O(3) be the subgroup of G3

of those elements that don’t negate the 4-th coordinate. That is,

G+x4
3 := { g ∈ O(3) | (g,+x4) ∈ G }.

The subgroup G+x4
3 is either equal to G3, or it is an index-2 subgroup of G3.D2298

If G+x4
3 = G3, there are two cases, which are both easy: we can form the “pyramidal”D2299

group G3 ×{+x4}, which does not move the 4-th dimension at all, or the full “prismatic” groupD2300

G3 × {+x4,−x4}. This gives two axial groups for each three-dimensional polyhedral groupD2301

G3 ⩽ SO(3), and they are listed in Table 13, together with their “CS names” following ConwayD2302

and Smith [8], and their “Coxeter names”, which are explained in Table 15. The pyramidal groupsD2303

are just the common 3-dimensional polyhedral groups, interpreted as operating in 4 dimensions.D2304

The prismatic groups are never chiral. The pyramidal group G3 × {+x4} is chiral iff G3 is:D2305

These are the groups +I, +O, and +T .D2306

We are left with the case that G+x4
3 is an index-2 subgroup H of G3. In this case, the group GD2307

is uniquely determined by H and G3: It consists of the elements (g,+x4) for g ∈ H and (g,−x4)D2308

for g ∈ G3 − H. We denote this group as “H in G3”. As an abstract group, it is isomorphicD2309

to G3. There are seven index-2 containments among the three-dimensional polyhedral groups.D2310

(See [8, Figures 3.9 and 3.10] for an overview about all index-2 containments in O(3).) TheyD2311

lead to seven “hybrid axial groups”, which are listed in Table 14.D2312

There are several methods by which such an index-2 containment can be constructed, andD2313

we indicate in the table which methods are applicable:D2314

4 −
√
8 ≈ 1.17. The four short edges have length

√
8(10−

√
98) ≈ 0.9, and the edge length of the 48-cell is

6−
√
32 ≈ 0.34.
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G3 pyramidal groups G3 × {+x4} prismatic groups G3 × {+x4,−x4}
name orbitope I.T. CS name Cox. order CS name Cox. name order

±I ∗532 53m + 1
60 [I × I] · 23 [3, 5] 120 ± 1

60 [I × I] · 2 2.[3, 5] 240

+I 532 532 + 1
60 [I × I] [3, 5]+ 60 + 1

60 [I × I] · 21 [3, 5]◦ 120

±O ∗432 m3m + 1
24 [O ×O] · 23 [3, 4] 48 ± 1

24 [O ×O] · 2 2.[3, 4] 96

+O 432 432 + 1
24 [O ×O] [3, 4]+ 24 + 1

24 [O ×O] · 21 [3, 4]◦ 48

TO ∗332 4̄3m + 1
12 [T × T ] · 21 [3, 3] 24 + 1

24 [O ×O] · 21 [2, 3, 3] 48

±T 3∗2 m3 + 1
12 [T × T ] · 23 [+3, 4] 24 ± 1

12 [T × T ] · 2 2.[+3, 4] 48

+T 332 23 + 1
12 [T × T ] [3, 3]+ 12 + 1

12 [T × T ] · 21 [+3, 4]◦ 24

Table 13: Pyramidal and prismatic axial groups (except doubly axial groups)

hybrid axial groups

G+x4
3 in G3 CS name Coxeter name order methods

+I in ±I ± 1
60 [I × I] 2.[3, 5]+ 120 center, chirality

±T in ±O + 1
24 [O ×O] · 23 [2, 3, 3]◦ 48 edge orientation

+O in ±O ± 1
24 [O ×O] 2.[3, 4]+ 48 center, chirality

TO in ±O ± 1
12 [T × T ] · 2 2.[3, 3] 48 center, alternation

+T in ±T ± 1
12 [T × T ] 2.[3, 3]+ 24 center, chirality

+T in +O + 1
12 [T × T ] · 23 [3, 3]◦ 24 alternation

+T in TO + 1
24 [O ×O] [2, 3, 3]+ 24 chirality

Table 14: Hybrid axial groups (except doubly axial groups)

1. Chirality: G+x4
3 is the chiral part of an achiral group G3. In this case, the resultingD2315

group will be chiral, because the orientation-reversing elements of G3 are composed withD2316

the reflection of the axis. In other words, G is the chiral part (G3 × {x4,−x4})+ of theD2317

prismatic group G3 × {x4,−x4}.D2318

2. Center: G+x4
3 does not contain the central reflection. In this case, an index-2 extension G3D2319

of G+x4
3 can always be obtained by adjoining the central reflection (in R3). The resultingD2320

group “G+x4
3 in G3” is equivalently thought of as simply adjoining the central reflection (inD2321

R4) to G+x4
3 . These groups can be recognized as having their Coxeter names prefixed withD2322

“2.”. G is achiral iff G+x4
3 is achiral, and in this case, the construction is simultaneously aD2323

case of the chirality method.D2324

3. Alternation: This applies to the octahedral groups, which are symmetries of the cube. TheD2325

vertices of the cube can be two-colored. The subgroup consists of those transformationsD2326

that preserve the coloring.D2327

4. Edge orientation: There is only one case where this applies, namely the pyritohedral groupD2328

±T as a subgroup of the full octahedral group ±O. The edges of the octahedron can beD2329

coherently oriented in such a way that the boundary of every face is a directed cycle. TheD2330

subgroup consists of those transformations that preserve this orientation (cf. the use of theD2331

edge orientation for the 24-cell and its polar, Section 8.6).D2332

Often, the same result can be obtained by two methods. For example, TO in ±O resultsD2333

both from alternation and from center.D2334

The group “G+x4
3 in G3” is chiral if and only if G+x4

3 is chiral and G3 is achiral, because theD2335

elements of G3 \ G+x4
3 are flipped by the x4-reflection. These are the case of the form “+G inD2336

±G” in the table, plus the group “+T in TO”.D2337

The situation is very much analogous to the construction of the achiral groups in O(3) fromD2338

the chiral groups in SO(3) and their index-2 subgroups in [8, §3.8], except that Conway and SmithD2339

prefer to extend by the algebraically simpler central inversion −id instead of the geometricallyD2340

more natural reflection of the axial coordinate.D2341

The maximal axial groups are ± 1
60 [I×I] ·2 = 2.[3, 5] and ± 1

24 [O×O] ·2 = 2.[3, 4]. Hence, theD2342

axial groups can be characterized as the symmetries of a 4-dimensional prism over an icosahedronD2343
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The 21 axial groups

pyramidal groups G3 × {+x4}
G3 CS name Du Val # and name Cox. BBNZW order

±I + 1
60 [I × I] · 23 49′. (I/C1; I/C1)

∗ [3, 5] n.cryst. 120

+I + 1
60 [I × I] 31′. (I/C1; I/C1) [3, 5]+ n.cryst. 60

±O + 1
24 [O ×O] · 23 44′. (O/C1;O/C1)

∗′ [3, 4] 25/10 48

+O + 1
24 [O ×O] 26′. (O/C1;O/C1)

′ [3, 4]+ 25/03 24

TO + 1
12 [T × T ] · 21 40′. (T/C1;T/C1)

∗ [3, 3] 24/04 24

±T + 1
12 [T × T ] · 23 39′. (T/C1;T/C1)

∗
c [+3, 4] 25/02 24

+T + 1
12 [T × T ] 21′. (T/C1;T/C1) [3, 3]+ 24/01 12

prismatic groups G3 × {+x4,−x4}
G3 CS name Du Val # and name Cox. BBNZW order

±I ± 1
60 [I × I] · 2 49. (I/C2; I/C2)

∗ 2.[3, 5] n.cryst. 240

+I + 1
60 [I × I] · 21 49′. (I/C1; I/C1)

∗
− [3, 5]◦ n.cryst. 120

±O ± 1
24 [O ×O] · 2 44. (O/C2;O/C2)

∗ 2.[3, 4] 25/11 96

+O + 1
24 [O ×O] · 21 44′. (O/C1;O/C1)

∗′
− [3, 4]◦ 25/07 48

TO + 1
24 [O ×O] · 21 44′′. (O/C1;O/C1)

∗′′
− [2, 3, 3] 25/08 48

±T ± 1
12 [T × T ] · 2 39. (T/C2;T/C2)

∗
c 2.[+3, 4] 25/05 48

+T + 1
12 [T × T ] · 21 39′. (T/C1;T/C1)

∗
c− [+3, 4]◦ 25/01 24

hybrid axial groups G+x4
3 in G3

G+x4
3 in G3 CS name Du Val # and name Cox. BBNZW order

+I in ±I ± 1
60 [I × I] 31. (I/C2; I/C2) 2.[3, 5]+ n.cryst. 120

±T in ±O + 1
24 [O ×O] · 23 44′′. (O/C1;O/C1)

∗′′ [2, 3, 3]◦ 25/09 48

+O in ±O ± 1
24 [O ×O] 26. (O/C2;O/C2) 2.[3, 4]+ 25/06 48

TO in ±O ± 1
12 [T × T ] · 2 40. (T/C2;T/C2)

∗ 2.[3, 3] 24/05 48

+T in ±T ± 1
12 [T × T ] 21. (T/C2;T/C2) 2.[3, 3]+ 24/02 24

+T in +O + 1
12 [T × T ] · 23 40′. (T/C1;T/C1)

∗
− [3, 3]◦ 24/03 24

+T in TO + 1
24 [O ×O] 26′′. (O/C1;O/C1)

′′ [2, 3, 3]+ 25/04 24

Table 15: Summary of the 21 axial groups (except doubly axial groups). We have included
references to the list of crystallographic 4-dimensional groups by Brown, Bülow, Neubüser, Won-
dratschek, Zassenhaus (BBNWZ) [4], and the names of Du Val [15], together with his numbering
which extends the numbering of Goursat.
We use two further adaptations of Coxeter’s notation, following [8]: G◦ is obtained by replacing
the orientation-reversing elements g of G by −g. An initial “2.” indicates doubling the group by
adjoining negatives. The 2 in [2, 3, 3] indicates the presence of an extra “perpendicular” mirror
R1 that commutes with the other reflections.
In Du Val’s notation, achiral groups can be recognized by the ∗ superscript. Haploid groups
(those whose CS name begins with a +) were not considered by Goursat, and Du Val denotes
them by adding primes to the numbers of the corresponding diploid groups, such as 44′ and 44′′.
Variations are indicated by various subscript and superscript decorations of the group names. In
some cases, a unique notation is only achieved by considering the number and the name together.
Thus, we are deviating from Du Val’s notation by attaching the primes also to the names. For
example, Du Val distinguishes two groups 26′ and 26′′ with the same name (O/C1;O/C1). Ac-
cordingly, although this is overlooked in Du Val [15, p. 61], one must also make a distinction
between the corresponding achiral groups 44′ and 44′′. Each of these two achiral extensions
comes in two variations: (O/C1;O/C1)

∗ and (O/C1;O/C1)
∗
−. This omission in Du Val’s list was

already noted by Dunbar [16, p. 141, last paragraph].
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or over an octahedron, and the subgroups of these. (This includes, however, the doubly axialD2344

groups, which we have classified under the toroidal groups.)D2345

Numerology. Among the 3 × 7 = 21 axial groups, there are 7 chiral ones and 14 achiralD2346

ones. Among the polyhedral groups, there are 14 chiral ones. In addition, there are 14 types ofD2347

three-dimensional point groups, which split into 7 polyhedral groups and 7 infinite axial familiesD2348

(which correspond to the 7 frieze groups). We have no explanation for the frequent appearanceD2349

of the magic number 7 and its multiples.D2350

10 Computer calculationsD2351

We used the help of computers for investigating the groups and checking the results, as well asD2352

for the preparation of the figures and tables. We used SageMath [34] and its interface to theD2353

GAP [19] software for group-theoretic calculations. The computer code is available in https:D2354

//github.com/LaisRast/point-groups.D2355

10.1 Representation of transformations and groupsD2356

We represent the orthogonal transformations [l, r] and ∗[l, r] by the quaternion pair (l, r) and aD2357

bit for indicating orientation reversal. In a group, each transformation is represented twice, byD2358

the equivalent pairs (l, r) and (−l,−r).D2359

We used two different representations for quaternions: For the elements of 2I, 2O, and 2T ,D2360

the quaternions x1 + x2i + x3j + x4 are represented in the natural way with precise algebraicD2361

coefficients, using SageMath’s support for algebraic extension fields. For the elements of 2D2n,D2362

we used a tailored representation: These elements are of the form esn or esnj, and we representD2363

and manipulate them using the fraction s/n, and a bit that indicates whether the factor j isD2364

present. (An exact algebraic representation would have required extension fields of arbitrarilyD2365

high degree.)D2366

The left group and the right group don’t have to use the same representation: For elementsD2367

of tubical groups, like [l, r] ∈ ±[I ×Cn], each of l and r uses its own appropriate representation.D2368

10.2 FingerprintingD2369

For preparing a catalog of groups, it is useful to have some easily computable invariants. WeD2370

used the number of elements of each geometric type as a fingerprint. This technique was initiatedD2371

by Hurley [23] in his classification of the 4-dimensional crystallographic groups.D2372

We first discuss the classification of the individual 4-dimensional orthogonal transformations,D2373

as introduced in Section 3.1. Every orientation-preserving orthogonal transformation can beD2374

written as a block diagonal matrix Rα1,α2
of two rotation matrices (1). We must be aware of otherD2375

angle parameters Rα′
1,α

′
2
that describe geometrically the same operation, in other words, that areD2376

conjugate by an orientation-preserving transformation (see Section 7.3.3). If we swap the twoD2377

invariant coordinate planes (x1, x2) ↔ (x3, x4), this is an orientation-preserving transformation,D2378

and it turns Rα1,α2
into Rα2,α1

. A simultaneous reflection in both coordinate planes (x1 ↔ x2D2379

and x3 ↔ x4) is also orientation-preserving, and it turns Rα1,α2
into R−α1,−α2

.D2380

Thus, Rα1,α2

.
= Rα2,α1

.
= R−α1,−α2

.
= R−α2,−α1

. On the other hand, Rα1,α2
and Rα1,−α2

areD2381

distinct unless one of the angles is 0 or ±π. They are mirrors of each other.D2382

The orientation-reversing transformations R̄α of (2) are characterized by a single angle α.D2383

Since the simultaneous negation of x1 and x4 turns R̄α into R̄−α, the parameter α can beD2384

normalized to the range 0 ≤ α ≤ π/2.D2385

Since the angles are rational multiples of π, it is possible to encode the data about theD2386

operation into a short code. By collecting the codes of the elements in a group into a string, weD2387

obtained a “fingerprint” of the group, which we used as a key for our catalog.21 Experimentally,D2388

21Here are some details: We actually use the quaternion pair [l, r] for computing the code for a rotation: If [l, 1]
and [1, r] are rotations by aπ and bπ, respectively, we use the pair of rational numbers (a, b) with 0 ≤ a, b ≤ 1.
The pair [−l,−r], which represents the same rotation, gives the pair (1 − a, 1 − b), and hence we normalize by
requiring that a < b or a = b ≤ 1/2.

For example, the group pg
2,4 has the fingerprint 0|0:2 0|1:2 1|1/4:4 1|3/4:4 1|1/2:4 *1/2:16. We tried

to make the code concise while keeping it readable. The term /4 in 1|3/4:4 is a common denominator for both
components, and hence 1|3/4 stands for the pair (a, b) = ( 1

4
, 3
4
), denoting a rotation of the form [exp π

4
, exp 3π

4
]
.
=

R−π/2,π . The number :4 after the colon denotes the multiplicity. Since our group representation contains both

https://github.com/LaisRast/point-groups
https://github.com/LaisRast/point-groups
https://github.com/LaisRast/point-groups
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in all cases that we encountered, this method was sufficient to distinguish groups up to conjugacy.D2389

(As reported below, we considered, from the infinite families of groups, at least all groups of orderD2390

up to 100.)D2391

The classification of the elements by Hurley [23] is almost equivalent, except that it disregardsD2392

the orientation: He classified a transformation by the triplet of coefficients (c3, c2, c0) of itsD2393

characteristic equation λ4 − c3λ
3 + c2λ

2 − c1λ + c0 = 0: the trace c3, the second invariant c2,D2394

and the determinant c0. Since all eigenvalues have absolute value 1, the linear coefficient c1 isD2395

determined by the others through the formula c1 = −c0c3. The Hurley triplet determines theD2396

eigenvalues and thus the geometric conjugacy type and the rotation angles α1, α2, but only upD2397

to orientation. Rα1,α2
and Rα1,−α2

have the same spectrum and the same Hurley symbol.D2398

The Hurley symbol. Hurley was interested in the crystallographic groups, and the operationsD2399

in these groups must have integer coefficients in their characteristic polynomial. This restrictsD2400

the operations to a finite set. Hurley denoted them by 24 letters (the Hurley symbols).D2401

They were also used in the monumental classification of the four-dimensional crystallographicD2402

space groups by Brown, Bülow, Neubüser, Wondratschek, Zassenhaus [4]. Brown et al. refined theD2403

classification by splitting the groups into conjugacy classes under the group operations, resultingD2404

in the Hurley pattern. It may happen that several operations are geometrically the same but notD2405

conjugate to each other by a transformation of the group that is under consideration.22D2406

Brown et al. [4, p. 9] report that their classification, which is more refined than ours but inD2407

another respect coarser, since it does not distinguish enantiomorphic groups, was also found to beD2408

sufficient to characterize the crystallographic point groups uniquely (up to mirror congruence).D2409

We could use the data in the Tables of [4] to match them with our classification. The resultsD2410

are tabulated in Tables 17–18 in Appendix D.D2411

10.3 Computer checksD2412

As mentioned, the classic approach to the classification following Goursat’s method yields theD2413

chiral groups, and with the exception of the toroidal groups, they are obtained quite painlessly.D2414

However, the achiral groups must be found and classified as index-2 extensions of the chiralD2415

groups.D2416

This task has been carried out by Du Val [15] and Conway and Smith [8], but they only gaveD2417

the results. Du Val [15, p. 61] explicitly lists the orientation-reversing elements of each achiralD2418

group. Conway and Smith [8, Tables 4.1–4.3] provide generating elements for each group.D2419

A detailed derivation is not presented in the literature. The considerations about the ex-D2420

tension from chiral groups to achiral ones are only briefly sketched by Conway and Smith [8,D2421

p. 51–52], see Figures 54–55. Since we found this situation unsatisfactory, we ran a brute-forceD2422

computer check. We generated all subgroups of the groups ±[I × I], ±[O×O] and ±[T ×T ] andD2423

their achiral extensions. No missing groups were discovered. More details are given below.D2424

For the achiral extension of the subgroups of ±[Cn × Cn], and ±[D2n ×D2n], we have sup-D2425

planted the classic classification by our own classification as toroidal groups. Nevertheless, weD2426

ran some computer checks also for these groups, see Section 10.5.D2427

10.4 Checking the achiral polyhedral and axial groupsD2428

For each group ±[I×I], ±[O×O] and ±[T×T ] in turn, we generated all subgroups. We kept onlyD2429

those subgroups for which the left and right subgroup is the full group 2I, 2O, or 2T respectively.D2430

(For an achiral group, we must extend a group whose left group is equal to its right group.)D2431

pairs [l, r] and [−l,−r] for each rotation, the multiplicity is always overcounted by a factor of 2. The group actually
contains only two operations R−π/2,π . (The reader may wish to identify them as particular torus translations
of this group, see Figure 23.) The symbol 0|0 denotes the identity. The orientation-reversing transformations
are written with a star. The sign *a with a fraction a denotes R̄(1−a)π . In our example, *1/2:16 denotes eight

operations of the form R̄π/2. The sum of the written multiplicities is 32, in accordance with the fact that the
group has order 32/2 = 16.

22For example, the group 21/03 in [4] of order 12 has the Hurley pattern 1*1I, 1*1E, 2*3E, 1*2S’, 1*2B;

in our classification, it corresponds to two enantiomorphic groups, × c2mm
1,3 and × c2mm

3,1 . The fingerprints of
these groups are 0|0:2 0|2/3:4 1|1/2:14 3|5/6:4 and 0|0:2 1|3/6:4 1|3/3:4 1|1/2:14. Both groups contain
7 half-turns (code 1|1/2, Hurley symbol E). The second group, for example, is actually also a torus flip group:
× c2mm

3,1
.
= · 3,2. In this representation, it has 6 flip operations, which are half-turns. In addition, it contains

the torus translation Rπ,0, which is another half-turn. This half-turn is not conjugate to the other half-turns
by operations of the group. It forms a conjugacy class of its own, as indicated by the code 1*1E in the Hurley
pattern. The 6 flip operations split into two conjugacy classes of size 3, as indicated by the code 2*3E.
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For each obtained subgroup, we identified the possible extending elements, using the consid-D2432

erations of Section 3.5. Each achiral group was classified by its fingerprint (the conjugacy typesD2433

of its elements), and for each class, we managed to find geometric conjugations to show that allD2434

groups with the same fingerprint are geometrically the same.D2435

We mention some details for the largest group [I × I]. The group ±[I × I] was representedD2436

by its double-cover 2I×2I, and converted to a permutation group, in order to let GAP generateD2437

the subgroups. There are 19,987 subgroups in total, and they were found in about 5 minutes.D2438

14,896 subgroups of them contain the pair (−1,−1), which is necessary to have a double coverD2439

of a rotation group in ±[I × I], and only 241 of these groups have the left and right subgroupsD2440

equal to 2I. These represented the group ±[I × I] itself, and 60 different copies of each groupD2441

± 1
60 [I × I], ± 1

60 [I × Ī], + 1
60 [I × I], + 1

60 [I × Ī].D2442

For each of the 241 groups, we tried to extend it by an element ∗[1, c] in all possible ways,D2443

following Proposition 3.2. Actually, it is easy to see that elements c and c′ = cx that are relatedD2444

by an element x in the kernel lead to the same extension, and thus they need not be triedD2445

separately.D2446

This leads to 361 distinct groups. Again there are 60 representatives of each of the six achiralD2447

groups with fraction 1
60 , plus one for the group ±[I × I] · 2 itself.D2448

Since we searched for conjugacies in a systematic but somewhat ad-hoc manner, it took aboutD2449

half a week for the computer to show that all 60 groups in each class are geometrically the same.D2450

With hindsight, the multiplicity 60 is not surprising, since there are 60 conjugacies that map theD2451

elements of 2I to themselves.D2452

10.5 Checking the toroidal groupsD2453

The toroidal groups form an infinite family, and hence we can only generate them up to someD2454

limit. We set the goal of checking all chiral toroidal groups up to order 200 and all achiral groupsD2455

up to order 400. For this purpose, we generated all groups ±[Dn × Dn] · 2 (for even n) andD2456

±[Cn × Cn] · 2 in the range 100 < n ≤ 200, together with their subgroups.D2457

For generating the subgroups, we took a different approach than for the polyhedral groups:D2458

We constructed a permutation group representation of the achiral group and computed all itsD2459

subgroups. We took all subgroups, regardless of whether the left and right group is the full groupD2460

Cn or Dn. For each chiral group up to order 200 and each achiral group up to order 400 that wasD2461

generated, we checked that it is conjugate to one on the known groups according to our classifi-D2462

cation. We also checked whether all known toroidal groups within these size bounds are found.D2463

This turned out to be the case with a few exceptions. The exceptions were the chiral groupsD2464
cm
m,n,

cm
n,m

cm
m,n, and

cm
n,m, for 14 pairs (m,n) = (3, 17), (3, 19), (3, 23), . . . , (7, 13), (9, 11) ofD2465

relatively prime odd numbers m and n, of orders 2mn between 100 and 200. The reason thatD2466

these groups were missed is that they are of the form +1
2 [D2m×C2n] ⩽ + 1

2 [D2m×D4n], and theD2467

smallest group ±[Dn′ ×Dn′ ] · 2 that contains them has n′ = 4 · lcm(m,n), which exceeds 200.D2468

This computation requires a workstation with large memory. The group with the largestD2469

number of subgroups was ±[D192 × D192] · 2. It has 1,361,642 subgroups. For 1,249,563 ofD2470

these groups, the order was within the limits. The whole computation took about 10 days on aD2471

computer with 256 gigabytes of main memory.D2472

11 Higher dimensionsD2473

In the classification of Theorem 1.1, there are categories that we expect in any dimension: theD2474

polyhedral groups, which are related to the regular polytopes, the toroidal groups, and the axialD2475

groups, which come from direct sums of lower-dimensional groups. On the other hand, theD2476

tubical groups are more surprising. They rely on the covering SO(3)× SO(3)
2:1−→ SO(4), whichD2477

provides a different product structure in terms of lower-dimensional groups than the direct sum.D2478

The scarcity of regular polytopes in high dimensions might be an indication that these groupsD2479

are not very exciting. On the other hand, the root systems E6, E7, and E8 in 6, 7, and 8D2480

dimensions promise some richer structure in certain dimensions.D2481

In five dimensions, the orientation-preserving case has been settled by Mecchia and Zimmer-D2482

mann [30], see [37, Corollary 2]:D2483

Theorem 11.1. The finite subgroups of the orthogonal group SO(5) areD2484

(i) subgroups of O(4)×O(1) or O(3)×O(2) (the reducible case);D2485
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(ii) subgroups of the symmetry group (Z2)
5 ⋊ S5 of the hypercube;D2486

(iii) or isomorphic to A5, S5, A6 or S6. (This includes symmetries of the simplex and its polar.)D2487

The irreducible representations of the groups in (iii) can be looked up in the character tablesD2488

of the books on Representation Theory. It would be interesting to know what the 5-dimensionalD2489

representations are in geometric terms (besides the symmetries of the simplex).D2490

This theorem gives only the chiral groups, but in odd dimensions like 5, it is in principleD2491

straightforward to derive the achiral groups from the chiral ones: All one needs to know are theD2492

chiral groups and their index-2 subgroups. See [8, §3.8] for the three-dimensional case. Briefly,D2493

one can say that nothing unexpected happens for the point groups in 5 dimensions.D2494

Six dimensions. The richest part of the 4-dimensional groups were the toroidal groups, whichD2495

have an invariant Clifford torus. The sphere S5 contains an analogous three-dimensional torus:D2496

x2
1 + x2

2 = x2
3 + x2

4 = x2
5 + x2

6 = 1/3

A group that leaves this torus invariant behaves similarly to a three-dimensional space group, in-D2497

volving translations, reflections, and rotations in terms of torus coordinates φ1, φ2, φ3. Thus, theD2498

three-dimensional space groups will make their appearance in the classification of 6-dimensionalD2499

point groups.D2500

The situation in 4 dimensions was similar: We have studied the toroidal groups in analogyD2501

to the wallpaper groups (the two-dimensional space groups). In contrast to the situation in theD2502

plane, a 6-fold rotation in 3-space is not inconsistent with the requirement that the lattice ofD2503

translations contains a cubical lattice. Thus, we may expect that all of the 230 three-dimensionalD2504

space groups show up in the 6-dimensional point groups. (In one dimension lower, we haveD2505

another instance of this phenomenon: The frieze groups appear as the 3-dimensional axial pointD2506

groups.)D2507

Thus, a classification of the point groups in 6 dimensions will be much more laborious thanD2508

in 5 dimensions. It has already been observed by Carl Hermann in 1952 [22, p. 33], in connectionD2509

with the crystallographic groups, that “going up from an odd dimension to the next higher evenD2510

one leads by far to more surprises than the opposite case”.D2511
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A Generators for the polyhedral and axial groupsD2600

Table 16 gives a complete summary of the polyhedral (Table 10) and axial groups (Table 15),D2601

following the numbering by Goursat [20], as extended to the haploid groups by Du Val [15],D2602

together with a set of generators for each group. The axial groups can be recognized as havingD2603

only two numbers different from 2 in their Coxeter name. Our adaptations of Du Val’s namesD2604

was explained in Tables 10 (p. 66) and 15 (p. 75). The top part contains the chiral groupsD2605

(#20–#32) and the bottom part the achiral ones (#39–#51).23D2606

Where appropriate, we include a reference to the numbering of crystallographic point groupsD2607

according to Brown, Bülow, Neubüser, Wondratschek, Zassenhaus (BBNWZ) [4], see also Ap-D2608

pendix D.D2609

In addition to the quaternions defined in (6) in Section 3.7, the following elements are usedD2610

for generating the groups:D2611

ω̄ = 1
2 (−1− i− j − k) (order 3)

i†I = 1
2

(
i+ −

√
5−1
2 j + −

√
5+1
2 k

)
(order 4) (26)

i′I = 1
2

(
−

√
5−1
2 i−

√
5+1
2 j + k

)
(order 4) (27)

ω̄ is simply the conjugate quaternion of ω. We tried to reduce the number of generators by trialD2612

and error, confirming by computer whether the generated groups did not change.D2613

For a few groups, the groups given by Conway and Smith are not identical to the groups ofD2614

Du Val, and our table lists both possibilities.D2615

Conway and Smith [8, Tables 4.2–4.3] specified the five groups of type [I× Ī] (#32, #32′ andD2616

#51–#51′′) by the generating set “[ω, ω], [iI ,±i′I ]”, possibly extended by ∗ or −∗ for the achiralD2617

23A similar table, containing some four-dimensional reflection groups and their subgroups, appears in Cox-
eter [11, p. 571], with correspondences between Coxeter’s own notation and Du Val’s names. The very first entry
in that table, [3, 3, 2]+, mistakenly refers to Du Val’s group #21 (T/C2;T/C2) = ± 1

12
[T × T ], while it is actually

#26′′ (O/C1;O/C1)′′ = + 1
24

[O × O]. The fifth entry, [3, 3, 2], refers to Du Val’s group (O/C1;O/C1)∗, while it

should actually be (O/C1;O/C1)∗−, or more precisely #44′′ (O/C1;O/C1)∗′′− = + 1
24

[O × O] · 21. The confusing
ambiguity of Du Val’s names for the groups 44′ and 44′′ mentioned in the caption of Table 15 was apparently not
realized by Coxeter.
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Du Val # & name CS name generators Cox. name order BBNWZ

20. (T/T ;T/T ) ±[T × T ] [i, ω], [ω, i] [+3, 4, 3+] 288 33/13
21. (T/C2;T/C2) ± 1

12 [T × T ] [ω,−ω], [i, i] 2.[3, 3]+ 24 24/02
21′. (T/C1;T/C1) + 1

12 [T × T ] [ω, ω], [i, i] [3, 3]+ 12 24/01
22. (T/V ;T/V ) ± 1

3 [T × T ] [i, 1], [1, i], [ω, ω] [+3, 3, 4+] 96 32/16
23. (O/O;T/T ) ±[O × T ] [iO, ω], [ω, i] [[+3, 4, 3+]]L 576 not cryst.
23. (T/T ;O/O) ±[T ×O] [i, ω], [ω, iO] [[+3, 4, 3+]]R 576 not cryst.
24. (I/I;T/T ) ±[I × T ] [iI , ω], [ω, i] [3, 3, 5]+1

5L
1440 not cryst.

24. (T/T ; I/I) ±[T × I] [i, ω], [ω, iI ] [3, 3, 5]+1
5R

1440 not cryst.

25. (O/O;O/O) ±[O ×O] [iO, ω], [ω, iO] [[3, 4, 3]]+ 1152 not cryst.
26. (O/C2;O/C2) ± 1

24 [O ×O] [ω,−ω], [iO, iO] 2.[3, 4]+ 48 25/06
26′. (O/C1;O/C1)

′ + 1
24 [O ×O] [ω, ω], [iO, iO] [3, 4]+ 24 25/03

26′′. (O/C1;O/C1)
′′ + 1

24 [O ×O] [ω, ω], [iO,−iO] [2, 3, 3]+ 24 25/04
27. (O/V ;O/V ) ± 1

6 [O ×O] [i, j], [ω, ω], [iO, iO] [3, 3, 4]+ 192 32/20
28. (O/T ;O/T ) ± 1

2 [O ×O] [ω, 1], [1, ω], [iO, iO] [3, 4, 3]+ 576 33/15
29. (I/I;O/O) ±[I ×O] [iI , ω], [ω, iO] [[3, 3, 5]+1

5L
] 2880 not cryst.

29. (O/O; I/I) ±[O × I] [iO, ω], [ω, iI ] [[3, 3, 5]+1
5R

] 2880 not cryst.

30. (I/I; I/I) ±[I × I] [iI , ω], [ω, iI ] [3, 3, 5]+ 7200 not cryst.
31. (I/C2; I/C2) ± 1

60 [I × I] [ω, ω], [iI ,−iI ] 2.[3, 5]+ 120 not cryst.
31′. (I/C1; I/C1) + 1

60 [I × I] [ω, ω], [iI , iI ] [3, 5]+ 60 not cryst.

32. (I†/C2; I/C2)
† [ω, ω], [iI ,−i†I ]

}
[[3, 3, 3]]+ 120 31/06± 1

60 [I × I] [ω, ω], [iI ,−i′I ]
32′. (I†/C1; I/C1)

† [ω, ω], [iI , i
†
I ]

}
[3, 3, 3]+ 60 31/03

+ 1
60 [I × I] [ω, ω], [iI , i

′
I ]

39. (T/C2;T/C2)
∗
c ± 1

12 [T × T ] · 2 [ω,−ω], ∗[i,−i] 2.[+3, 4] 48 25/05
39′. (T/C1;T/C1)

∗
c + 1

12 [T × T ] · 23 [ω, ω], ∗[i, i] [+3, 4] 24 25/02
39′. (T/C1;T/C1)

∗
c− + 1

12 [T × T ] · 21 [ω, ω], ∗[i,−i] [+3, 4]◦ 24 25/01
40. (T/C2;T/C2)

∗ [ω,−ω], ∗[iO,−iO]
}

2.[3, 3] 48 24/05± 1
12 [T × T ] · 2 [ω,−ω], ∗[i,−i]

40′. (T/C1;T/C1)
∗ [ω, ω], ∗[iO, iO]

}
[3, 3] 24 24/04

+ 1
12 [T × T ] · 21 [ω, ω], ∗[i, i]

40′. (T/C1;T/C1)
∗
− [ω, ω], ∗[iO,−iO]

}
[3, 3]◦ 24 24/03

+ 1
12 [T × T ] · 23 [ω, ω], ∗[i,−i]

41. (T/V ;T/V )∗ ± 1
3 [T × T ] · 2 ∗[i, 1], [ω, ω] [+3, 3, 4] 192 32/18

42. (T/V ;T/V )∗− ± 1
3 [T × T ] · 2 ∗[i, 1], [ω, ω] [3, 3, 4+] 192 32/19

43. (T/T ;T/T )∗ ±[T × T ] · 2 [i, ω], ∗[ω, i] [3, 4, 3+] 576 33/14
44. (O/C2;O/C2)

∗ ± 1
24 [O ×O] · 2 [ω,−ω], [iO, iO],−∗ 2.[3, 4] 96 25/11

44′. (O/C1;O/C1)
∗′ + 1

24 [O ×O] · 23 [ω, ω], [iO, iO], ∗ [3, 4] 48 25/10
44′. (O/C1;O/C1)

∗′
− + 1

24 [O ×O] · 21 [ω, ω], [iO, iO],−∗ [3, 4]◦ 48 25/07
44′′. (O/C1;O/C1)

∗′′ + 1
24 [O ×O] · 23 [ω, ω], [iO,−iO], ∗ [2, 3, 3]◦ 48 25/09

44′′. (O/C1;O/C1)
∗′′
− + 1

24 [O ×O] · 21 [ω, ω], [iO,−iO],−∗ [2, 3, 3] 48 25/08
45. (O/T ;O/T )∗ ± 1

2 [O ×O] · 2 ∗[ω, 1], [iO, iO] [3, 4, 3] 1152 33/16
46. (O/T ;O/T )∗− ± 1

2 [O ×O] · 2̄ [ω, 1], ∗[1, iO] [[3, 4, 3]+] 1152 not cryst.
47. (O/V ;O/V )∗ ± 1

6 [O ×O] · 2 ∗[iω, ω], [iO, iO] [3, 3, 4] 384 32/21
48. (O/O;O/O)∗ ±[O ×O] · 2 ∗[1, ω], [ω, iO] [[3, 4, 3]] 2304 not cryst.
49. (I/C2; I/C2)

∗ ± 1
60 [I × I] · 2 [ω,−ω], ∗[iI ,−iI ] 2.[3, 5] 240 not cryst.

49′. (I/C1; I/C1)
∗ + 1

60 [I × I] · 23 [ω, ω], ∗[iI , iI ] [3, 5] 120 not cryst.
49′. (I/C1; I/C1)

∗
− + 1

60 [I × I] · 21 [ω, ω], ∗[iI ,−iI ] [3, 5]◦ 120 not cryst.
50. (I/I; I/I)∗ ±[I × I] · 2 [iI , ω], [ω, iI ], ∗ [3, 3, 5] 14400 not cryst.

51. (I†/C2; I/C2)
†∗ [ω,−ω], ∗[iI iOi, i†I iOi]

}
[[3, 3, 3]] 240 31/07± 1

60 [I × I] · 2 [ω,−ω], ∗[iI , i′I ]
51′. (I†/C1; I/C1)

†∗ [ω, ω], ∗[iI iOi, i†I iOi]
}

[3, 3, 3] 120 31/05
+ 1

60 [I × I] · 21 [ω, ω], [iI , i
′
I ],−∗

51′. (I†/C1; I/C1)
†∗
− [ω, ω], ∗[iI iOi,−i†I iOi]

}
[[3, 3, 3]+] 120 31/04

+ 1
60 [I × I] · 23 [ω, ω], ∗[iI , i′I ]

Table 16: Polyhedral and axial groups with generators
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groups, but they did not define what i′I is.24 We tried all 120 elements of 2I, and it turned outD2618

that (27) is the only value that works in this way. We don’t see how we could have predictedD2619

precisely this element, and we have no explanation for it.D2620

Du Val [15], on the other hand, specifies generators for these five groups in terms of theD2621

quaternion i†I defined in (26), which is obtained by flipping the sign of
√
5 in the expressionD2622

for iI = 1
2 (i +

√
5−1
2 j +

√
5+1
2 k). This alternative choice generates a group 2I† that is differentD2623

from 2I. With this setup, it is not possible to use the simple extending elements ∗ and −∗ for theD2624

three achiral extensions #51–#51′′: For example, the square of the element ∗[i†I , iI ] is [iI i†I , i†I iI ]D2625

with iI i
†
I = 1

4 +
√
5
4 (i + j − k), and this element is in neither of the groups 2I or 2I†. Du ValD2626

[15, p. 55–56] gives a thorough and transparent exposition of these groups and explains why theyD2627

represent the symmetries of the 4-simplex.D2628

For the axial groups of type 1
12 [T × T̄ ] (#40 and #40′), the natural generators from anD2629

algebraic viewpoint involve the quaternion ω̄, and these were chosen by Conway and Smith.D2630

However, the axis that is kept invariant by the groups is then spanned by the quaternion j − k.D2631

With ∗[iO,±iO] as the orientation-reversing generator, the invariant axis becomes the real axis,D2632

and only in this representation, the groups are subgroups of the larger axial group ± 1
24 [O × O]D2633

(#44).D2634

B Orbit polytopes for tubical groups with special startingD2635

pointsD2636

We show polar orbit polytopes for the tubical groups of cyclic type with all choices of specialD2637

starting points.D2638

Each subsection considers a left tubical group G together with a representative f -fold rotationD2639

center p of Gh, corresponding to an entry in Table 3. The particular data are given in the caption.D2640

In addition, we indicate the subgroup H of G of elements that preserve Kp. An alternate groupD2641

refers to an index-2 dihedral-type supergroup of G that, for an appropriate starting point on Kp,D2642

produces the same orbit as G.D2643

Two of these groups were already illustrated in the main text (Figures 12 and 13), and weD2644

follow the same conventions as in these figures: On the top left, we show the Gh-orbit polytopeD2645

of p, and on the top right the spherical Voronoi diagram of that orbit. Then we show the cellsD2646

of the polar G-orbit polytopes of a starting point on Kp, for different values of n, in increasingD2647

order of the size of the orbit. For each cell, we indicate the values of n, and in addition, theD2648

counterclockwise angle (as seen from the top) by which the group rotates the cell as it proceedsD2649

to the next cell above. A blue vertical line indicates the cell axis, the direction towards the nextD2650

cell along Kp. For small values of n, this axis sometimes exits through a vertex or an edge of theD2651

cell, but for large enough n it goes through the top face where the next cell is attached.D2652

When the same orbit arises for several values of n, then the specified rotation angle is theD2653

unique valid angle only for the smallest value n0 that is given. For a larger value n = n0f , thisD2654

can be combined with arbitrary multiples of an f -fold rotation. For example, in Figure 36, weD2655

have the same cell for n = 5 and n = 15. The specified rotation angle ( 13 +
1
30 ) · 2π is the uniqueD2656

valid angle between consecutive cells in the group ±[I ×C5], but in the larger group ±[I ×C15],D2657

it can be combined with all multiples of 2
3π. That is, all three rotation angles 1

15π, (
2
3 + 1

15 )π,D2658

and ( 43 + 1
15 )π are valid. In some cases, such as n = 18, the angle is never unique, and this isD2659

indicated by a free parameter k in the angle specification, which can take any integer value.D2660

By observing the rotation angles for the successive cells in the figures, one can recognize theD2661

pattern that they follow.D2662

24Five years later, the tables were almost literally reproduced in another book [6, Chapter 26], still without a
definition of i′I .
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B.1 ±[I × Cn]D2663

B.1.1 ±[I × Cn], 3-fold rotation centerD2664

D2665

n = 1, 3
( 23 + 1

6 ) · 2π
n = 2, 6

( 13 + 1
12 ) · 2π

n = 9
(k3 + 1

18 ) · 2π

D2666

n = 4, 12
( 23 + 1

24 ) · 2π
n = 5, 15

( 13 + 1
30 ) · 2π

n = 18
(k3 + 1

36 ) · 2π

D2667

n = 7, 21
( 23 + 1

42 ) · 2π
n = 8, 24

( 13 + 1
48 ) · 2π

n = 27
(k3 + 1

54 ) · 2π

D2668

n = 10, 30
( 23 + 1

60 ) · 2π
n = 11, 33

( 13 + 1
66 ) · 2π

n = 36
(k3 + 1

72 ) · 2π

D2669

n = 13, 39
( 23 + 1

78 ) · 2π
n = 14, 42

( 13 + 1
84 ) · 2π

n = 45
(k3 + 1

90 ) · 2π

D2670

Figure 36: G = ±[I × Cn], Gh = +I, 3-fold rotation center p = 1√
3
(−1,−1,−1). H =

⟨[−ω, 1], [1, en]⟩. 20 tubes, each with lcm(2n, 6) cells. Alternate group: ±[I × D2n]. When
n = 1 or n = 3, the cells of a tube are disconnected from each other.

https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/3/120cells_20tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/3/240cells_20tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/3/360cells_20tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/3/480cells_20tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/3/600cells_20tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/3/720cells_20tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/3/840cells_20tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/3/960cells_20tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/3/1080cells_20tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/3/1200cells_20tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/3/1320cells_20tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/3/1440cells_20tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/3/1560cells_20tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/3/1680cells_20tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/3/1800cells_20tubes
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B.1.2 ±[I × Cn], 2-fold rotation centerD2671

D2672

n = 1, 2
( 12 + 1

4 ) · 2π
n = 4

(k2 + 1
8 ) · 2π

n = 3, 6
( 12 + 1

12 ) · 2π

D2673

n = 8
(k2 + 1

16 ) · 2π
n = 5, 10

( 12 + 1
20 ) · 2π

n = 12
(k2 + 1

24 ) · 2π

D2674

n = 7, 14
( 12 + 1

28 ) · 2π
n = 16

(k2 + 1
32 ) · 2π

n = 9, 18
( 12 + 1

36 ) · 2π

D2675

n = 20
(k2 + 1

40 ) · 2π
n = 11, 22

( 12 + 1
44 ) · 2π

n = 24
(k2 + 1

48 ) · 2π

D2676

n = 13, 26
( 12 + 1

52 ) · 2π
n = 28

(k2 + 1
56 ) · 2π

n = 15, 30
( 12 + 1

60 ) · 2π

D2677

Figure 37: G = ±[I × Cn], G
h = +I, 2-fold rotation center p = 1

2 (1,
1
φ , φ), where φ = 1+

√
5

2 .

The Gh-orbit polytope is an icosidodecahedron. The corresponding Voronoi diagram on the
2-sphere has the structure of a rhombic triacontahedron. H = ⟨[iI , 1], [1, en]⟩. 30 tubes, each
with lcm(2n, 4) cells. Alternate group: ±[I ×D2n]. When n = 1, 2, or 4, the cells of a tube are
disconnected from each other.

https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/2/120cells_30tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/2/240cells_30tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/2/360cells_30tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/2/480cells_30tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/2/600cells_30tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/2/720cells_30tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/2/840cells_30tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/2/960cells_30tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/2/1080cells_30tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/2/1200cells_30tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/2/1320cells_30tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/2/1440cells_30tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/2/1560cells_30tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/2/1680cells_30tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=IxCn/2/1800cells_30tubes
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B.2 ±[O × Cn]D2678

B.2.1 ±[O × Cn], 4-fold rotation centerD2679
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Figure 38: G = ±[O×Cn], G
h = +O, 4-fold rotation center p = (0, 1, 0). H = ⟨[−ωiO, 1], [1, en]⟩.

6 tubes, each with lcm(2n, 8) cells. Alternate group: ±[O ×D2n].

https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/4/48cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/4/96cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/4/144cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/4/192cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/4/240cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/4/288cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/4/336cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/4/384cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/4/432cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/4/480cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/4/528cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/4/576cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/4/624cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/4/672cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/4/720cells_6tubes
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B.2.2 ±[O × Cn], 3-fold rotation centerD2686
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Figure 39: G = ±[O × Cn], Gh = +O, 3-fold rotation center p = 1√
3
(−1,−1,−1). H =

⟨[−ω, 1], [1, en]⟩. 8 tubes, each with lcm(2n, 4) cells. Alternate group: ±[O ×D2n].

https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/3/48cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/3/96cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/3/144cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/3/192cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/3/240cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/3/288cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/3/336cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/3/384cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/3/432cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/3/480cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/3/528cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/3/576cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/3/624cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/3/672cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/3/720cells_8tubes
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B.2.3 ±[O × Cn], 2-fold rotation centerD2693
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Figure 40: G = ±[O×Cn], G
h = +O, 2-fold rotation center p = 1√

2
(0, 1, 1). H = ⟨[iO, 1], [1, en]⟩.

12 tubes, each with lcm(2n, 4) cells. Alternate group: ±[O ×D2n]. When n = 1 or n = 2, the
cells of a tube are disconnected from each other. For n = 4, we have drawn squares in the planes
around the top and bottom face, to indicate that these faces are horizontal and parallel.

https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/2/48cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/2/96cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/2/144cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/2/192cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/2/240cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/2/288cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/2/336cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/2/384cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/2/432cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/2/480cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/2/528cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/2/576cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/2/624cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/2/672cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=OxCn/2/720cells_12tubes
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B.3 ±1
2
[O × C2n]D2700

B.3.1 ± 1
2 [O × C2n], 3-fold rotation centerD2701
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Figure 41: G = ± 1
2 [O × C2n], Gh = +O, 3-fold rotation center p = 1√

3
(−1,−1,−1). H =

⟨[−ω, 1], [1, en]⟩. 8 tubes, each with lcm(2n, 6) cells. Alternate group: ± 1
2 [O ×D4n].

https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/3/48cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/3/96cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/3/144cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/3/192cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/3/240cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/3/288cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/3/336cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/3/384cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/3/432cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/3/480cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/3/528cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/3/576cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/3/624cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/3/672cells_8tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/3/720cells_8tubes
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B.3.2 ± 1
2 [O × C2n], 2-fold rotation centerD2708
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Figure 42: G = ± 1
2 [O × C2n], Gh = +O, 2-fold rotation center p = 1√

2
(0, 1, 1). The Gh-

orbit polytope is a cuboctahedron. The corresponding Voronoi diagram on the 2-sphere has the
structure of a rhombic dodecahedron. H = ⟨[iO, e2n], [1, en]⟩. 12 tubes, each with 4n

gcd(n−1,2)

cells. Alternate group: ± 1
2 [O × D4n]. When n = 1, the cells of a tube are disconnected from

each other. For n = 2 and n = 3, we have drawn squares in the planes around the top and
bottom face, to indicate that these faces are horizontal and parallel.

https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/2/24cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/2/72cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/2/96cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/2/120cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/2/168cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/2/192cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/2/216cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/2/264cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/2/288cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/2/312cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/2/360cells_12tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=hOxC2n/2/384cells_12tubes
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B.4 ±[T × Cn]D2714

B.4.1 ±[T × Cn], 3-fold rotation centerD2715
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Figure 43: G = ±[T × Cn], Gh = +T , 3-fold (type I) rotation center p = 1√
3
(−1,−1,−1).

H = ⟨[−ω, 1], [1, en]⟩. 4 tubes, each with lcm(2n, 6) cells. Alternate group: ± 1
2 [O ×D2n].

https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/3/24cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/3/48cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/3/72cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/3/96cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/3/120cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/3/144cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/3/168cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/3/192cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/3/216cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/3/240cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/3/264cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/3/288cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/3/312cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/3/336cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/3/360cells_4tubes
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B.4.2 ±[T × Cn], 2-fold rotation centerD2722
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Figure 44: G = ±[T × Cn], G
h = +T , 2-fold rotation center p = (1, 0, 0). H = ⟨[i, 1], [1, en]⟩.

6 tubes, each with lcm(2n, 4) cells. Alternate groups: ±[T × D2n] and ± 1
2 [O × D2n] (also

their common supergroup ±[O × D2n]) if n ≡ 0 mod 4, else ±[T × D2n] (and its supergroup
± 1

2 [O ×D4n]). When n = 1 or n = 2, consecutive cells of a tube touch only via vertices.

https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/2/24cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/2/48cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/2/72cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/2/96cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/2/120cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/2/144cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/2/168cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/2/192cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/2/216cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/2/240cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/2/264cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/2/288cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/2/312cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/2/336cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=TxCn/2/360cells_6tubes
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B.5 ±1
3
[T × C3n]D2729

B.5.1 ± 1
3 [T × C3n], 3-fold (type I) rotation centerD2730

D2731

n = 1
(k3 + 1

2 ) · 2π
n = 4

(k3 + 1
8 ) · 2π

n = 2
( 23 + 1

12 ) · 2π

D2732

n = 7
(k3 + 1

14 ) · 2π
n = 3

( 13 + 1
18 ) · 2π

n = 10
(k3 + 1

20 ) · 2π

D2733

n = 13
(k3 + 1

26 ) · 2π
n = 5

( 23 + 1
30 ) · 2π

n = 16
(k3 + 1

32 ) · 2π

D2734

n = 6
( 13 + 1

36 ) · 2π
n = 19

(k3 + 1
38 ) · 2π

n = 22
(k3 + 1

44 ) · 2π

D2735

Figure 45: G = ± 1
3 [T × C3n], G

h = +T , 3-fold (type I) rotation center p = 1√
3
(−1,−1,−1).

H = ⟨[−ω, e3n], [1, en]⟩. 4 tubes, each with 6n
gcd(n−1,3) cells. Alternate groups: ± 1

6 [O×D6n] (and

its supergroup ± 1
2 [O ×D6n] if n ̸≡ 1 mod 3). When n = 1, the cells of a tube are disconnected

from each other.

https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3/8cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3/32cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3/48cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3/56cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3/72cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3/80cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3/104cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3/120cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3/128cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3/144cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3/152cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3/176cells_4tubes
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B.5.2 ± 1
3 [T × C3n], 3-fold (type II) rotation centerD2736

D2737

n = 2
(k3 + 1

4 ) · 2π
n = 1

( 13 + 1
6 ) · 2π

n = 5
(k3 + 1

10 ) · 2π

D2738

n = 8
(k3 + 1

16 ) · 2π
n = 3

( 23 + 1
18 ) · 2π

n = 11
(k3 + 1

22 ) · 2π

D2739

n = 4
( 13 + 1

24 ) · 2π
n = 14

(k3 + 1
28 ) · 2π

n = 17
(k3 + 1

34 ) · 2π

D2740

n = 6
( 23 + 1

36 ) · 2π
n = 20

(k3 + 1
40 ) · 2π

n = 7
( 13 + 1

42 ) · 2π

D2741

Figure 46: G = ± 1
3 [T × C3n], Gh = +T , 3-fold (type II) rotation center p = 1√

3
(1, 1, 1).

H = ⟨[−ω2, e23n], [1, en]⟩. 4 tubes, each with 6n
gcd(n−2,3) cells. Alternate groups: ± 1

6 [O × D6n]

(and its supergroup ± 1
2 [O ×D6n] if n ̸≡ 2 mod 3).

https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3p/16cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3p/24cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3p/40cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3p/64cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3p/72cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3p/88cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3p/96cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3p/112cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3p/136cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3p/144cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3p/160cells_4tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/3p/168cells_4tubes
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B.5.3 ± 1
3 [T × C3n], 2-fold rotation centerD2742

D2743

n = 1, 2
( 12 + 1

4 ) · 2π
n = 4

(k2 + 1
8 ) · 2π

n = 3, 6
( 12 + 1

12 ) · 2π

D2744

n = 8
(k2 + 1

16 ) · 2π
n = 5, 10

( 12 + 1
20 ) · 2π

n = 12
(k2 + 1

24 ) · 2π

D2745

n = 7, 14
( 12 + 1

28 ) · 2π
n = 16

(k2 + 1
32 ) · 2π

n = 9, 18
( 12 + 1

36 ) · 2π

D2746

n = 20
(k2 + 1

40 ) · 2π
n = 11, 22

( 12 + 1
44 ) · 2π

n = 24
(k2 + 1

48 ) · 2π

D2747

Figure 47: G = ± 1
3 [T × C3n], G

h = +T , 2-fold rotation center p = (1, 0, 0). H = ⟨[i, 1], [1, en]⟩.
6 tubes, each with lcm(2n, 4) cells. Alternate group: ± 1

6 [O × D6n]. For n = 1 and n = 2, we
have drawn squares in the planes around the top and bottom face, to indicate that these faces
are horizontal and parallel.

https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/2/24cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/2/48cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/2/72cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/2/96cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/2/120cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/2/144cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/2/168cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/2/192cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/2/216cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/2/240cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/2/264cells_6tubes
https://www.inf.fu-berlin.de/inst/ag-ti/software/DiscreteHopfFibration/gallery.html?f=tTxC3n/2/288cells_6tubes
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C The number of groups of given orderD2748

We will see that the number of groups of order N is always at least N/2, and less than O(N2).D2749

If N is an odd prime, there are exactly (N + 3)/2 groups, namely the torus translation groupsD2750
(s)
1,N for 0 ≤ s ≤ (N − 1)/2 and

((1−N)/2)
N,1 .D2751

The richest class of groups are the toroidal groups, and among them, the most numerousD2752

groups are the torus translation groups, of type : For each divisor m of N , there are ∼ n/2D2753

groups
(s)
m,n, where n = N/m. Thus, the number of groups is about 1/2 times the sum σ(N)D2754

of divisors of N , which is bounded by N1+
1+O(1/ log log n)

log2 lnN ≤ N2 [31]. The upper bound of O(N2)D2755

is very weak; the actual bound is slightly superlinear.D2756

The number of groups of type · is of similar magnitude, provided that N is even. For all theD2757

other types, there is at most one group for every divisor of N , except for the swapturn groups,D2758

whose number is related to the number of integer points on the circle a2 + b2 = N/4, and thisD2759

number is at most N .D2760

From all the remaining classes of groups (tubical, polyhedral, or axial), there can be only aD2761

constant number of groups of a given order.D2762

The number of groups of order 100. As an exercise, let us compute the number of pointD2763

groups of order N = 100.D2764

We proceed through the toroidal classes of groups in Table 6 one by one. For the pureD2765

translation groups of type , we can write 100 = mn = 1 ·100 = 2 ·50 = 4 ·25 = 5 ·20 = 10 ·10 =D2766

20·5 = 25·4 = 50·2 = 100·1 with accordingly 50+26+13+10+6+3+2+2+1 = 113 choices of s, seeD2767

the remark after (20) in Section 7.5. For the flip groups of type · of order 100 = 2mn, we haveD2768

to factor 50 instead of 100. The possibilities are 50 = 1 ·50 = 2 ·25 = 5 ·10 = 10 ·5 = 25 ·2 = 50 ·1D2769

with 25 + 13 + 5 + 3 + 1 + 1 = 48 choices of s.D2770

For the swap groups pm
m,n of order 4mn, we have to split 25 = mn into two factors mn largerD2771

than 1. There is one possibility: 25 = 5× 5. For the groups pg
m,n, only the first factor m mustD2772

be larger than 1. This gives 2 choices. For cm
m,n of order 2mn, mn = 50 must be split into twoD2773

factors of the same parity. This is impossible since mn ≡ 2 (mod 4). Thus, in total we have 3D2774

swap groups of type . Clearly, there is the same number of 3 swap groups of type .D2775

Finally, for the full torus swap groups, almost all types have order 8mn, which cannot equalD2776

100. We only need to consider the groups of type × c2mm
m,n , of order 4mn, We have to splitD2777

100/4 = 25 into two factors ≥ 3 of the same parity. There is one possibility: 25 = 5× 5.D2778

In total, we get 113 + 48 + 3 + 3 + 1 = 168 chiral toroidal groups of order 100.D2779

Let us turn to the achiral groups: For the reflection groups , we have to consider allD2780

factorizations 100 = 2mn (types pm and pg) or 100 = 4mn (type cm). This gives 2× σ0(50) +D2781

σ0(25) = 2× 6 + 3 = 15 groups, where σ0 denotes the number of divisors of a number.D2782

For the full reflection groups +, we have to consider all factorizations 100 = 4mn or 100 =D2783

8mn, respectively, where in one case (p2mg), we distinguish the order of the factors. We getD2784

2 + 3 + 2 + 0 = 7 possibilities. For general N , there are 2⌈σ0(
N
4 )/2⌉ + σ0(

N
4 ) + ⌈σ0(

N
8 )/2⌉ fullD2785

reflection groups of order N , where σ0(x) = 0 if x is not an integer.D2786

For ⟲ , we must have 100 = 4(a2 + b2) with a ≥ b ≥ 0. There are two possibilities: (a, b) =D2787

(5, 0) or (4, 3).D2788

For the full torus groups +× , the order would have to be a multiple of 8; so there are no suchD2789

groups of order 100.D2790

In total, we get 15 + 7+ 2 = 24 achiral toroidal groups of order 100, and 192 toroidal groupsD2791

altogether.D2792

N = 100 does not occur as the order of any of the other types of groups. So 192 is the totalD2793

number of 4-dimensional point groups of order 100.D2794

Enantiomorphic pairs. As an advanced exercise, we can ask, how many of the 168 chiralD2795

groups or order 100 are their own mirror image?D2796

For the groups of type , we are looking for a lattice of translations of size 100 that hasD2797

an orientation-reversing symmetry. If it is symmetric with respect to a horizontal axis, then,D2798

according to Lemma 7.7, the possibilities are an m×n rectangular grid of mn points or a rhombicD2799

grid of 2mn points. In this case, it is also symmetric with respect to a vertical axis.D2800

Thus, we have to split 100 = mn and 50 = mn into two factors m and n. The order ofD2801

the factors plays no role, because the reflection swaps the factors. We have 5 possibilities forD2802

100 = 1 · 100 = 2 · 50 = 4 · 25 = 5 · 20 = 10 · 10 and 3 possibilities for 50 = 1 · 50 = 2 · 25 = 5 · 10,D2803
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which gives 5+3 = 8 possibilities in total. (Alternatively, adding a vertical and horizontal mirrorD2804

to such a translational subgroup will produce a group of type +p2mm or + c2mm. So we canD2805

equivalently count the groups of these types of order 4N = 400.)D2806

There is also the possibility that the lattice is symmetric with respect to a swapturn opera-D2807

tion ⟲. The number of these groups equals the number of groups of type ⟲ of order 4N = 400. ItD2808

can be computed as the number of integer points (a, b) on the circle 100 = a2+b2 with a ≥ b ≥ 0.D2809

There are two possibilities: (10, 0) and (8, 6).D2810

We have overcounted the lattices that are symmetric with respect to both + and ⟲, in otherD2811

words, the upright or slanted square lattices. There is one lattice of this type: the 10×10 uprightD2812

lattice.D2813

In total, 8+2− 1 = 9 groups among the 113 groups of type are equal to their own mirror.D2814

For the groups of type · , we can repeat the same game, except that we are looking for aD2815

translation lattice of half the size, 50. For the lattices with + symmetry, we have 3 possibilitiesD2816

for 50 = 1 · 50 = 2 · 25 = 5 · 10, and 2 possibilities for 25 = 1 · 25 = 5 · 5, giving 3 + 2 = 5D2817

possibilities in total. There are two possibilities for 50 = a2+ b2 with a ≥ b ≥ 0: (7, 1) and (5, 5).D2818

We have to subtract 1 for the slanted 5× 5 grid, for a total of 5 + 2− 1 = 6 groups among theD2819

48 flip groups.D2820

The mirrors of the groups of type are the groups of type , and hence none of them isD2821

its own mirror. The groups of type × are easy to handle: The two parameters m and n mustD2822

be equal. We have one such group, × c2mm
5,5 . In total, 9 + 6+ 1 = 16 chiral groups are their ownD2823

mirror images. The remaining 168− 16 = 152 chiral groups consist of enantiomorphic pairs.D2824

The number of groups of order 7200. To look at a more interesting example, let usD2825

count the groups of order 7200. The count of toroidal groups follows the same calculation asD2826

above, and it amounts to 19,319 chiral and 216 achiral groups. In addition, we have 22 tubicalD2827

groups: ±[I × C60],±[I × D60],±[O × C150],±[O × D150],±[T × C300],±[T × D300],± 1
2 [O ×D2828

D300],± 1
2 [O×D300],± 1

2 [O×C300],± 1
6 [O×D900],± 1

3 [T ×C900], and their mirrors. Finally, thereD2829

is one polyhedral group ±[I × I]. In total, we have 19,319 + 22 + 1 = 19,342 chiral groups andD2830

216 achiral ones.D2831

The number of groups of order at most M . While the number of groups of a given order ND2832

fluctuates between a linear lower bound and a slightly superlinear upper bound, the “averageD2833

number” can be estimated quite precisely: We have seen that the number of groups of order ND2834

is of order Θ(σ(N)), where σ(N) is the sum of divisors of N . If we look at all groups of order atD2835

most M , we can sum over all potential divisors d and getD2836

M∑
N=1

σ(N) =

M∑
d=1

d⌊M/d⌋ = Θ(M2).

Thus, the number of four-dimensional groups of order at most M is Θ(M2). The majority ofD2837

these groups is chiral, but the achiral ones alone are already of the order Θ(M2): There isD2838

essentially one swapturn group for each integer point (a, b) in the disk a2 + b2 ≤ M/4, withD2839

roughly a factor 8 of overcounting of symmetric points, and this gives Θ(M2) chiral groups.D2840

D The crystallographic point groupsD2841

Brown, Bülow, Neubüser, Wondratschek, Zassenhaus classified the four-dimensional crystallo-D2842

graphic space groups in 1978 [4]. They grouped them by the underlying point groups (geometricD2843

crystal classes, or Q-classes), and assigned numbers to these groups. The crystallographic pointD2844

groups are characterized as having some lattice that they leave invariant.D2845

There are 227 crystallographic points groups, sorted into 33 crystal systems according to theD2846

holohedry, i.e., the symmetry group of the underlying lattice. Tables 17–18 give a reference fromD2847

the 227 groups in the list of [4, Table 1C, pp. 79–260] to our notation (for the toroidal groups)D2848

or Conway and Smith’s notation (for the remaining groups). When appropriate, we list twoD2849

enantiomorphic groups.D2850

The first classification of the four-dimensional crystallographic point groups was obtained byD2851

Hurley in 1951 [23], see Section 10.2. A few mistakes were later corrected [24].D2852
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order

01/01 1,1 1

01/02 2,1 2

02/01 pg
1,1 2

02/02 pm
1,1 2

02/03 cm
1,1 4

03/01 cm
1,1 2

03/02 pm
2,2 4

04/01 +p2gg
1,1 4

04/02 +p2mg
1,1 4

04/03 +p2mm
1,1 4

04/04 + c2mm
1,1 8

05/01 × c2mm
1,1 4

05/02 ×p2mm
2,2 8

06/01 +p2mg
2,1 8

06/02 +p2mm
2,1 8

06/03 +p2mm
2,2 16

07/01
(1)
1,4 4

07/02
(0)
1,4 4

07/03
(0)
2,4 8

07/04 cm
1,2 8

07/05 pm
1,4 8

07/06 pg
1,4 8

07/07 pm
2,4 16

08/01
(0)
1,3 3

08/02
(0)
2,3 6

08/03 pg
1,3 6

08/04 pm
1,3 6

08/05 cm
1,3 12

09/01
(0)
1,6 6

09/02
(2)
1,6 6

09/03
(0)
2,6 12

09/04 pg
1,6 12

09/05 pm
1,6 12

09/06 pm
2,3 12

09/07 pm
2,6 24

10/01 pg
2,2

∣∣ pg
2,2 4

11/01
(1)
1,3

∣∣
3,1 3

11/02
(−1)
2,3

∣∣
6,1 6

12/01 ⟲ 1,0 4

12/02 ⟲ 1,1 8

12/03 +×p4gmU
1 8

12/04 +×p4mmU
1 8

12/05 +×p4mmS
1 16

order

13/01 pm
4,1 8

13/02 cm
2,1 8

13/03 · (1)
1,4 8

13/04 · (0)
1,4 8

13/05 pm
4,2 16

13/06 +p2mg
4,1 16

13/07 + c2mm
2,1 16

13/08 +p2mm
4,1 16

13/09 · (0)
2,4 16

13/10 +p2mm
4,2 32

14/01 pm
3,1 6

14/02 pg
3,1 6

14/03 · (0)
1,3 6

14/04 cm
3,1 12

14/05 · (0)
2,3 12

14/06 +p2mg
3,1 12

14/07 +p2mm
3,1 12

14/08 +p2gg
3,1 12

14/09 +p2mg
1,3 12

14/10 + c2mm
3,1 24

15/01 pm
6,1 12

15/02 pg
3,2 12

15/03 pm
3,2 12

15/04 · (0)
1,6 12

15/05 · (2)
1,6 12

15/06 +p2mg
6,1 24

15/07 +p2mg
2,3 24

15/08 pm
6,2 24

15/09 +p2mm
6,1 24

15/10 +p2mm
3,2 24

15/11 · (0)
2,6 24

15/12 +p2mm
6,2 48

16/01 ×p2gm
2,2

∣∣ ×p2mg
2,2 8

17/01 cm
1,3

∣∣ cm
3,1 6

17/02 pm
2,6

∣∣ pm
6,2 12

18/01 ×p2gg
2,2 8

18/02 +×p4gmS
1 16

18/03 ⟲ 2,0 16

18/04 × c2mm
2,2 16

18/05 +×p4mmU
2 32

19/01 pg
2,4 16

19/02
(0)
4,4 16

19/03 pm
4,4 32

19/04 +p2mg
4,2 32

19/05 · (0)
4,4 32

19/06 +p2mm
4,4 64

order

20/01
(3)
1,12 12

20/02
(2)
1,12 12

20/03 pg
2,3 12

20/04 pm
4,3 24

20/05
(4)
2,12 24

20/06 pm
3,4 24

20/07 · (3)
1,12 24

20/08 pg
3,4 24

20/09 cm
2,3 24

20/10 cm
3,2 24

20/11 · (2)
1,12 24

20/12 +p2gg
3,2 24

20/13 +p2mg
3,2 24

20/14 pg
2,6 24

20/15 pm
4,6 48

20/16 +p2mm
4,3 48

20/17 +p2mg
4,3 48

20/18 pm
6,4 48

20/19 · (4)
2,12 48

20/20 + c2mm
3,2 48

20/21 +p2mg
6,2 48

20/22 +p2mm
6,4 96

21/01 cm
1,3

∣∣ cm
3,1 6

21/02 pm
2,6

∣∣ pm
6,2 12

21/03 × c2mm
1,3

∣∣ × c2mm
3,1 12

21/04 ×p2mm
2,6

∣∣ ×p2mm
6,2 24

22/01
(0)
3,3 9

22/02
(−3)
6,3 18

22/03 pg
3,3 18

22/04 pm
3,3 18

22/05 · (0)
3,3 18

22/06 cm
3,3 36

22/07 · (−3)
6,3 36

22/08 +p2gg
3,3 36

22/09 +p2mg
3,3 36

22/10 +p2mm
3,3 36

22/11 + c2mm
3,3 72

23/01
(0)
3,6 18

23/02
(0)
6,6 36

23/03 pm
3,6 36

23/04 pg
3,6 36

23/05 · (0)
3,6 36

23/06 pm
6,3 36

23/07 pm
6,6 72

23/08 · (0)
6,6 72

23/09 +p2mm
6,3 72

23/10 +p2mg
6,3 72

23/11 +p2mm
6,6 144

Table 17: The 227 crystallographic point groups in four dimensions, part 1
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order

24/01 + 1
12 [T × T ] 12

24/02 ± 1
12 [T × T ] 24

24/03 + 1
12 [T × T̄ ] · 23 24

24/04 + 1
12 [T × T̄ ] · 21 24

24/05 ± 1
12 [T × T̄ ] · 2 48

25/01 + 1
12 [T × T ] · 21 24

25/02 + 1
12 [T × T ] · 23 24

25/03 + 1
24 [O ×O] 24

25/04 + 1
24 [O × Ō] 24

25/05 ± 1
12 [T × T ] · 2 48

25/06 ± 1
24 [O ×O] 48

25/07 + 1
24 [O ×O] · 21 48

25/08 + 1
24 [O × Ō] · 21 48

25/09 + 1
24 [O × Ō] · 23 48

25/10 + 1
24 [O ×O] · 23 48

25/11 ± 1
24 [O ×O] · 2 96

26/01 pg
2,4

∣∣ pg
4,2 8

26/02 ×p2mg
2,4

∣∣ ×p2gm
4,2 16

27/01
(1)
1,5 5

27/02
(1)
2,5 10

27/03 · (1)
1,5 10

27/04 · (1)
2,5 20

28/01 pg
2,6

∣∣ pg
6,2 12

28/02 ×p2mg
2,6

∣∣ ×p2gm
6,2 24

29/01 cm
3,3

∣∣ cm
3,3 18

29/02 pm
6,6

∣∣ pm
6,6 36

29/03 × c2mm
3,3 36

29/04 ⟲ 3,0 36

29/05 ×p2mm
6,6 72

29/06 ⟲ 3,3 72

29/07 +×p4gmU
3 72

29/08 +×p4mmU
3 72

29/09 +×p4mmS
3 144

30/01 pg
2,6

∣∣ pg
6,2 12

30/02 ×p2gg
2,6

∣∣ ×p2gg
6,2 24

30/03 cm
2,6

∣∣ cm
6,2 24

30/04 ×p2gm
2,6

∣∣ ×p2mg
6,2 24

30/05 pg
6,6

∣∣ pg
6,6 36

30/06 × c2mm
2,6

∣∣ × c2mm
6,2 48

30/07 cm
6,6

∣∣ cm
6,6 72

30/08 ×p2mg
6,6

∣∣ ×p2gm
6,6 72

30/09 ×p2gg
6,6 72

30/10 × c2mm
6,6 144

30/11 ⟲ 6,0 144

30/12 +×p4gmS
3 144

30/13 +×p4mmU
6 288

order

31/01 ⟲ 2,1 20

31/02 ⟲ 3,1 40

31/03 + 1
60 [I × Ī] 60

31/04 + 1
60 [I × Ī] · 23 120

31/05 + 1
60 [I × Ī] · 21 120

31/06 ± 1
60 [I × Ī] 120

31/07 ± 1
60 [I × Ī] · 2 240

32/01 pg
2,4

∣∣ pg
4,2 8

32/02 cm
2,4

∣∣ cm
4,2 16

32/03 ×p2gg
2,4

∣∣ ×p2gg
4,2 16

32/04 ×p2mg
4,2

∣∣ ×p2gm
2,4 16

32/05 ± 1
3 [T × C3]

∣∣ ± 1
3 [C3 × T ] 24

32/06 × c2mm
2,4

∣∣ × c2mm
4,2 32

32/07 ×p2gg
4,4 32

32/08 cm
4,4

∣∣ cm
4,4 32

32/09 +×p4gmU
2 32

32/10 ×p2mm
4,4 32

32/11 ± 1
6 [O ×D6]

∣∣ ± 1
6 [D6 ×O] 48

32/12 × c2mm
4,4 64

32/13 +×p4gmS
2 64

32/14 +×p4mmS
2 64

32/15 ⟲ 4,0 64

32/16 ± 1
3 [T × T ] 96

32/17 +×p4mmU
4 128

32/18 ± 1
3 [T × T ] · 2 192

32/19 ± 1
3 [T × T̄ ] · 2 192

32/20 ± 1
6 [O ×O] 192

32/21 ± 1
6 [O ×O] · 2 384

33/01 pg
4,6

∣∣ pg
6,4 24

33/02 pg
4,6

∣∣ pg
6,4 24

33/03 ±[C1 × T ]
∣∣ ±[T × C1] 24

33/04 ×p2gg
4,6

∣∣ ×p2gg
6,4 48

33/05 ±[C2 × T ]
∣∣ ±[T × C2] 48

33/06 ± 1
2 [O × C2]

∣∣ ± 1
2 [C2 ×O] 48

33/07 ±[C3 × T ]
∣∣ ±[T × C3] 72

33/08 ±[D4 × T ]
∣∣ ±[T ×D4] 96

33/09 ± 1
2 [O ×D4]

∣∣ ± 1
2 [D4 ×O] 96

33/10 ± 1
2 [O × C4]

∣∣ ± 1
2 [C4 ×O] 96

33/11 ± 1
2 [O ×D6]

∣∣ ± 1
2 [D6 ×O] 144

33/12 ± 1
2 [O × D̄8]

∣∣ ± 1
2 [D̄8 ×O] 192

33/13 ±[T × T ] 288

33/14 ±[T × T ] · 2 576

33/15 ± 1
2 [O ×O] 576

33/16 ± 1
2 [O ×O] · 2 1152

— ×p2gm
4,6

∣∣ ×p2mg
6,4 48

— ×p2mg
4,6

∣∣ ×p2gm
6,4 48

— ±[D6 × T ]
∣∣ ±[T ×D6] 144

Table 18: The 227 crystallographic point groups, part 2, and three pseudo-crystal groups
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All these groups are subgroups of only four maximal groups:D2853

• 31/07 = ± 1
60 [I × Ī] · 2 = [[3, 3, 3]] (the simplex and its polar, order 240)D2854

• 33/16 = ± 1
2 [O × O] · 2 = [3, 4, 3] (the 24-cell, order 1152). Taking the permutations ofD2855

(±1,±1, 0, 0) as the vertices of a 24-cell, this set generates a lattice, and this lattice isD2856

invariant under the group. The symmetries of the hypercube/cross-polytope, 32/21 =D2857

± 1
6 [O ×O] · 2 = [3, 3, 4], are contained in this group as a subgroup.D2858

• 30/13 = +×p4mmU
6 = ± 1

2 [D̄12 × D̄12] · 2, order 288. The invariant lattice is the CartesianD2859

product of two hexagonal plane lattices.D2860

• 20/22 = +p2mm
6,4 = ± 1

24 [D24×D
(5)
24 ] ·2(0,0), order 96. The invariant lattice is the CartesianD2861

product of a hexagonal lattice and a square lattice.D2862

The last three items in Table 18 are the “pseudo crystal groups” of Hurley [24]: Each suchD2863

group consists of transformations that can individually occur in crystallographic groups, but asD2864

a whole, it is not a crystallographic group. All its proper subgroups are crystallographic groups.D2865

E Geometric interpretation of oriented great circlesD2866

Section 4.1.2 introduced the notation K⃗q
p to denote oriented great circles on S3. Here we giveD2867

a geometric interpretation of the orientation. In fact, we will give two equivalent geometricD2868

interpretations. However, at the boundary cases p = q and q = −p, one or the other of theD2869

interpretations loses its meaning, and only by combining both interpretations we get a consistentD2870

definition that covers all cases.D2871

N

p

q

B(p, q)

α

2π−α

π

π

near

far

Figure 48: The centers of the rotations mapping p to q lie on the bisecting circle B(p, q).

We start from the definition (7) of Kq
p as the set of rotations [x] that map p to q in S2. TheD2872

centers r of these rotations lie on the bisecting circle B(p, q) between p and q. In Figure 48, weD2873

have drawn p and q on the equator, with p east of q. If we observe the clockwise rotation angleD2874

φ as r moves along B(p, q), we see that φ has two extrema: If the angular distance between pD2875

and q is α, the minimum clockwise angle φ = α is achieved when r is at the North Pole. TheD2876

maximum 2π − α is achieved at the South Pole. The poles bisect B(p, q) into two semicircles,D2877

the near semicircle and the far semicircle, according to the distance from p and q.D2878

To define an orientation, we let r move continuously on B(p, q), see Figure 49 for an illustra-D2879

tion on a small patch of S2. We make the movement in such a way thatD2880

(i) the rotation center r moves in counterclockwise direction around p;D2881

(ii) simultaneously, the clockwise rotation angle φ increases when r is on the near semicircleD2882

and decreases when r is on the far semicircle.D2883
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p

q

r1

r2

ϕ1

ϕ2

B(p, q)

Figure 49: Orienting the great circle Kq
p

In Figure 49, as r moves from r1 to r2 along the thick arrow, the angle φ increases from φ1 to φ2.D2884

These rules define an orientation of B(p, q).D2885

When we want to transfer this orientation to Kq
p , we must be aware of the 2 : 1 relationD2886

between quaternions x = cos φ
2 + r · sin φ

2 and rotations [x] of S2. The angle φ is defined only upD2887

to multiples of 2π, and hence a rotation corresponds to two opposite quaternions x and −x. Thus,D2888

there are two ways of defining a continuous dependence from r via φ to x. Both possibilitiesD2889

lead to the same orientation of Kq
p , but we can select one of them by restricting φ to the intervalD2890

0 ≤ φ < 2π. Once this mapping is chosen, two opposite points r and −r on B(p, q), which defineD2891

the same rotation [r] of S2, correspond to opposite quaternions x and −x on Kq
p . (The easiestD2892

way to check this is for the midpoint of p and q in Figure 48 and the opposite point. Both haveD2893

the same rotation angle φ = π. Generally, the transition from φ to 2π − φ changes the sign ofD2894

cos φ
2 and leaves sin φ

2 unchanged.) Thus, as r traverses B(p, q), x traverses Kq
p once, and thisD2895

traversal defines the orientation K⃗q
p .D2896

The rules break down in the degenerate situations when q = ±p. Luckily, in each situation,D2897

there is one rule that works.D2898

• When p = q, the only rotations centers are r = p and r = −p. In this case, we can maintainD2899

rule (ii): We consider increasing rotation angles around r = p (or decreasing rotation anglesD2900

around r = −p, which corresponds to the far semicircle).D2901

• When p = −q, the rotation angle φ = 180◦ is constant, but we can stick to rule (i): TheD2902

rotation centers r lie on the circle B(p,−p) that has p and −p as poles, and we let themD2903

move counterclockwise around p.D2904

Considering the definition (7) of Kq
p , it is actually surprising that Kq

p makes a smooth transitionD2905

when q approaches p: The locus B(p, q) of rotation centers changes discontinuously from a circleD2906

to a set of opposite points.D2907

When p and q are exchanged with −p and −q, the circle Kq
p of rotations remains the same,D2908

but everything changes its direction: A counterclockwise movement of r around p becomes aD2909

clockwise movement when seen from −p, and r is on the near semicircle of p and q if it is on theD2910

far semicircle of −p and −q. Thus, K⃗−q
−p has the opposite orientation.D2911

F Subgroup relations between tubical groupsD2912

Figure 50 shows the subgroup structure between different tubical groups. Some types are includedD2913

multiple times with different parameters to indicate common supergroups. However, all the typesD2914

appear at least once with the parameter “n”. (Those are the ones in red.)D2915

G Conway and Smith’s classification of the toroidal groupsD2916

We describe the parameterization of the lattice translations for the Conway–Smith classificationD2917

of the groups of types ±[C × C] and +[C × C] in geometric terms and relate them to our torusD2918

translations groups (type ). This might be interesting for readers who want to study the classicD2919

classification for the toroidal groups and understand the connections.D2920

As before, we describe the groups in terms of the lattice of torus translations in the (α1, α2)D2921

coordinate system, see Figure 51. We put the origin at the top right corner (2π, 2π) because theD2922
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order

±[T × Cn] ± 1
3 [T × C3n] 24n

±[T ×D2n] ± 1
2 [O × C2n] ±[O × Cn] ± 1

2 [O ×D2n] ± 1
6 [O ×D6n] 48n

±[T × C3n] 72n

± 1
2 [O × D̄4n] ±[O × C2n] ±[O ×D2n] 96n

±[I × Cn] 120n

± 1
2 [O ×D6n] 144n

±[O ×D4n] 192n

±[I ×D2n] 240n

±[O ×D6n] 288n

±[O ×D12n] 576n

[iO, e2n]

[iO, 1]

[1, j]

[1, j]

[iO, 1]

[iO, 1]

[1, e2n] [1, j]

[1, e2n]

[1, j]

[1, j]

5, [iI , 1]

[iO, j]

[iO, 1]

[iO, j]

3, [w, 1]

3, [1, e3n]

3, [1, e3n]

[1, e2n]

3, [1, e3n]

5, [iI , 1]

[iO, e2n]

[iO, 1]

3, [ω, 1]

[iO, j]

[1, j]

3, [1, e3n]

Figure 50: Small-index containments between left tubical groups. Each arrow is marked with an
extending element. Single arrows indicate index-2 containments. Double arrows denote index-
3 or index-5 containments, as specified with the extending element. The red groups have the
“natural” parameter n (as in Table 2). Groups at the same horizontal level have the same order,
which is given in the rightmost column.

left rotations [em, 1] is a shift by π/m along the negative α1 = α2 axis. This is the axis for theD2923

left rotations, and we call it the L-axis. The right rotations move on the α2 = −α1 axis in theD2924

southeast direction, and we call this the R-axis.D2925

We first describe the diploid groups ± 1
f [C

(s)
m × Cn], and we related them to our groupsD2926

(s′)
m′,n. The left and right groups are determined by the grid formed by drawing ±45◦ linesD2927

through all points. If 2m grid lines cross the L-axis between (0, 0) and (2π, 2π), then the leftD2928

group is Cm. Similarly, if there are 2n grid intervals on the R-axis between (2π, 2π) and (4π, 0),D2929

(or equivalently, on the −45◦ diagonal of the square), the right group is Cn. The translationD2930

vectors on these diagonals form the left kernel Cm/f and the right kernel Cn/f . The factor fD2931

is determined by the number of grid steps along the diagonal from one point to the next. InD2932

the picture, these are f = 5 steps. The parameter m′ for our parameterization is hence 2m/f .D2933

The kernels span a slanted rectangular grid; one rectangular box of this grid is shaded in theD2934

picture. In terms of grid lines, the diagonal is an f × f square, and it contains exactly one pointD2935

per grid line of either direction, for a total of f points (counting the four corners only once).D2936

In geometric terms, Conway and Smith parameterize the lattice by looking at the first grid lineD2937

below the L-axis, as in our parameterization. They measure s as the number of grid steps toD2938

the first lattice point, starting from the R-axis in southwest direction. The number s must beD2939

relatively prime to f , because otherwise, additional points on the R-axis would be generated.D2940

By contrast, the parameter s′ in our setup (Figure 20) is effectively measured in the sameD2941

units along the same diagonal line, but starting from the intersection with the α1-axis, in theD2942

northeast direction. Our parameterization is simpler because we don’t specify in advance theD2943

number of points on the R-axis. This allows us to freely choose s′ within some range.D2944

The group ± 1
f [C

(s)
m × Cn] is therefore generated by the translation vectors [efm, 1] along theD2945

L-axis, [1, efn] along the R-axis, and the additional vector [esm, en]. (The second generator [1, efn]D2946
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α1
(0, 0)

( πm ,
π
m )

(πn ,−
π
n )

α2

(− sπ
m ,−

sπ
m )

(πn − sπ
m ,−

π
n − sπ

m )

(0, 2π) ≡ (0, 0)

−id −id

α2 = α1

α2 = −α1

(2π, 0) ≡ (0, 0)

L

R

Figure 51: Parameterization of the translation groups in Conway and Smith. The black and gray

points together form the diploid group ± 1
5 [C

(4)
15 × C5] =

(−2)
6,5 of order 30. The black points

alone form the haploid group + 1
5 [C

(9)
15 × C5] =

(−1)
3,5 of order 15.

is actually redundant because [esm, en]
f [efm, 1]−s = [1, efn].)D2947

For our group
(s′)
m′,n, the parameter n is the same, and m′ = 2m/f . The parameter s′ can beD2948

computed as follows. Choose generators for ± 1
f [C

(s)
m ×Cn] as in Figure 20. These generators areD2949

then t1 = ( fπm , fπ
m ) and t2 = (πn − sπ

m + fπ
m ,−π

n − sπ
m + fπ

m ). Comparing them with the generatorsD2950

in Proposition 7.5, we get s′ = −m+(f−s)n
f .D2951

As mentioned in footnote 14 on p. 51, we have swapped the roles of the left and right groupsD2952

with respect to Conway and Smith’s convention, to get a closer correspondence. In the originalD2953

convention of Conway and Smith, the group ± 1
f [Cm×C

(s)
n ] is considered, whose third generatorD2954

is [em, esn]. This group is the mirror of the group ± 1
f [C

(s)
n × Cm].D2955

A haploid group + 1
f [C

(s)
m × Cn] exists if both m/f and n/f are odd. We modify the firstD2956

generator to [e2fm , 1]. This omits every other point on the L-axis (and on every line parallel toD2957

it) and thus avoids the point (π, π) = −id. In addition to being relatively prime to f , s must beD2958

odd, because otherwise, since [esm, en]
n[e2fm , 1]−n/f ·s/2 = [1, enn] = [1,−1], we would neverthelessD2959

generate the point (π, π) = −id.D2960

Reflection in the L-axis gives the same group. Hence ± 1
5 [C

(4)
15 ×C5]

.
= ± 1

5 [C
(1)
15 ×C5] =

(1)
6,5,D2961

and + 1
5 [C

(9)
15 × C5]

.
= + 1

5 [C
(1)
15 × C5] =

(2)
3,5. This reflection changes the parameter s to f − sD2962

for the diploid groups and to 2f − s for the haploid groups. To eliminate these duplications,D2963

the parameter s should be constrained to the interval 0 ≤ s ≤ f/2 for the diploid groups andD2964

0 ≤ s ≤ f for the haploid groups. As mentioned in footnote 15 on p. 53, these constraints are notD2965

stated in Conway and Smith. This concerns the last four entries of [8, Table 4.2], see Figure 53.D2966

With the help of the geometric picture of Figure 51 for the parameterization of Conway andD2967

Smith, one can give a geometric interpretation to the conditions s = fg ± 1 of [8, pp. 52–53] forD2968

the last 4 lines of Table 4.3: The condition s = fg − 1 expresses the fact that a square latticeD2969

is generated, as is necessary for the torus swapturn groups ⟲ (type [D ×D] · 2̄). The conditionD2970

s = fg + 1 characterizes a rectangular lattice, as required for the groups of type and +.D2971

(Accordingly, for the two types of groups ±[C × C] · 2(γ) and +[C × C] · 2(γ) in the upper halfD2972

of [8, pp. 53], the condition s = fg − 1 must be corrected to s = fg + 1, see Figure 56.)D2973
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G.1 Index-4 subgroups of D4mD2974

There is one ambiguity that is notorious for causing oversights and omissions. It arises when theD2975

group Cm is used as an index-4 subgroup of D4m.D2976

D4m is the chiral symmetry group of a regular 2m-gon P2m in space. In Figure 52 we showD2977

such a 2m-gon with an alternating 2-coloring of its vertices. Cm is the normal subgroup ofD2978

rotations around the principal axis, perpendicular to the polygon, by multiples of 2π/m (thoseD2979

that respect the coloring). Cm has three cosets in D4m: The “cyclic coset” C ′
m of rotationsD2980

by odd multiples of π/m (those that swap the coloring), and two “half-turn cosets” C0
m andD2981

C1
m. One of these contains the half-turns through the vertices of P2m (the dashed axes, keepingD2982

the colors), and the other the half-turns through the edge midpoints of P2m (the dotted axes,D2983

swapping colors). However, when we rotate P2m by π/(2m), the involved groups and subgroupsD2984

don’t change, and hence we see that C0
m and C1

m are geometrically the same, whereas C ′
m isD2985

clearly distinguishable (unless m = 1).D2986

Figure 52: The operations of D20 on a regular 10-gon P10

The case of the index-4 subgroups Cm and Cn of D4m and D4n is denoted in Conway andD2987

Smith [8] by the notation 1
4 [D4m ×D4n], possibly with some decoration to distinguish differentD2988

cases.D2989

The actual group is determined by an isomorphism between the cosets of D4m/Cm andD2990

D4n/Cn. For this there are two possibilities.D2991

(a) The cyclic coset C ′
m is matched with the cyclic coset C ′

n.D2992

(b) The cyclic coset C ′
m and the cyclic coset C ′

n are not matched to each other.D2993

Goursat’s omission. In the earliest enumeration by Goursat from 1889, the less naturalD2994

possibility (b) has been overlooked. This was noted by Threlfall and Seifert in 1931, [35, footnoteD2995

9 on p. 14]25 and by Hurley in 1951 [23, bottom of p. 652],26 who consequently extended theD2996

classification by adding an additional class XIII′ of groups to Goursat’s list. Du Val [15] followedD2997

Goursat and omitted case (b) again.D2998

A missed duplication in Conway and Smith. Conway and Smith [8] denote case (b) byD2999

adding a bar to the second factor as follows:D3000

± 1
4 [D4m × D̄4n] or + 1

4 [D4m × D̄4n]

When n = 1, the distinction between case (a) and (b) disappears. D4 is the Vierergruppe,D3001

whose nontrivial operations are half-turns around three perpendicular axes, and these elementsD3002

are geometrically indistinguishable.D3003

Conway and Smith express this succinctly in the concluding sentence of their classificationD3004

(see Figure 56): “In the last eight lines, it is always permissible to replace D2 by C2 and D̄4D3005

by D4.” However, this formulation in connection with the choice of notation might lead anD3006

25Referring to Goursat’s work: “Gruppen dieser Substitutionen – mit unseren Paargruppen 1-isomorph – sind
mit einer Ausnahme (§ 4 S. 18 Fußnote und § 4 S. 22) vollständig angegeben.” (Groups of these substitutions –
which are 1-isomorphic to our pair groups – are completely specified with one exception, see § 4 p. 18 footnote
13 and § 4 p. 22.) In fact, in footnote 13 on p. 18, they use two such groups as an example of groups with equal
normal subgroups L0 and R0 that are different already as abstract groups. It is curious that Threlfall and Seifert,
in the same paper, when they came to the actual classification, overlooked this class of groups again. They noted
the gap themselves and filled it in part II [36, pp. 585–586, Appendix II, Note 5].

26“In the course of this calculation we find that Goursat has omitted one family of groups. This omission
appears to have passed unnoticed by subsequent writers.”
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unwary reader into a trap:27 The choice (b) of an alternative mapping between the index-4D3007

cosets in 1
4 [D4m × D4n] is not a property associated to D4n and its chosen normal subgroup,D3008

and it would more appropriate to add the bar to the × operator or the whole expression. TheD3009

distinction disappears when at least one of D4m and D4n is D4, and hence, the bar can also beD3010

removed in a case like [D4× D̄4n] when the first factor is D4. This duplication example has beenD3011

treated in detail in Section 7.11.2.D3012

Conway and Smith use the bar notation D̄4n also for something different, namely in theD3013

index-2 case, for example in ± 1
2 [O× D̄4n], see Table 2. It indicates that, as the kernel R0 (or L0)D3014

of D4n, the normal subgroup D2n is used, as opposed to C2n. Also in this case, the distinctionD3015

disappears for n = 1, but this time, it is a property of the group D4n and its normal subgroup,D3016

and hence the notation of attaching the bar to D4n causes no confusion.D3017

Another duplication in Conway and Smith. Our computer check unveiled another dupli-D3018

cation in Conway and Smith’s classification. It concerns the groups +p2mg
m,n for m = n:D3019

+p2mg
n,n

.
= ± 1

4 [D2n ×D
(1)
2n ] · 2(1,0)

.
= ± 1

4 [D2n ×D
(1)
2n ] · 2(1,1) for even n

+p2mg
n,n

.
= + 1

2 [D2n ×D
(1)
2n ] · 2(0,0)

.
= + 1

2 [D2n ×D
(1)
2n ] · 2(0,2) for odd n

Neither of these duplications is warranted according to the equalities listed in [8, pp. 52–53]. ForD3020

example, for ± 1
4 [D2n ×D

(s)
2n ] · 2(α,β) in the first line, we need a transition from (α, β) = (1, 0) toD3021

(α, β) = (1, 1). In this example, f = 2 and g = 0. The only rule according to [8, bottom of p. 52]D3022

that allows this change is the transition from ⟨s, α, β⟩ to ⟨s+ f, α, β − α⟩ (see Figure 55), but itD3023

comes with a simultaneous change of s from s = 1 to s + f = 3. The parameter s is regardedD3024

modulo 2f = 4.D3025

We did not investigate the reason for this duplication. Since f = 2 in both cases, it may haveD3026

to do with “. . . the easy cases when f ≤ 2, which we exclude” [8, p. 52, line 2], see Figure 55.D3027

The book of Conway and Smith [8] is otherwise a very nice book on topics related to quater-D3028

nions and octonions, but it suffers from a concentration of mistakes near the end of Chapter 4, inD3029

particular, concerning the achiral groups. As an “erratum” to [8, §4], we attach in Figures 53–56D3030

the Tables 4.1–4.2 and the last three pages of Chapter 4 of [8] with our additional explanationsD3031

and corrections, as far as we could ascertain them, but we certainly did not fix all problems.D3032

27Besides, the rule should also apply to entries that are not in the last eight lines of the tables. Accordingly,
the constraint n ≥ 2, which is stated for five of the eleven tubical groups in Table 2, should also be applied to the
corresponding groups in [8, Table 4.1]. For the group + 1

2
[D2m × C2n] in the penultimate line of Table 4.1, the

obvious condition that m and n should be odd was forgotten. This omission has already been noted by Medeiros
and Figueroa-O’Farrill [14, p. 1405].
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Group Generators

±[I ×O] [iI , 1], [ω, 1], [1, iO], [1, ω];

±[I ×T ] [iI , 1], [ω, 1], [1, i], [1, ω];

±[I ×D2n] [iI , 1], [ω, 1], [1, en], [1, j];

±[I ×Cn] [iI , 1], [ω, 1], [1, en];

±[O×T ] [iO, 1], [ω, 1], [1, i], [1, ω];

±[O×D2n] [iO, 1], [ω, 1], [1, en], [1, j];

± 1
2 [O ×D2n] [i, 1], [ω, 1], [1, en];[iO, j]

± 1
2 [O ×D4n] [i, 1], [ω, 1], [1, en], [1, j];[iO, e2n]

± 1
6 [O ×D6n] [i, 1], [j, 1], [1, en];[iO, j], [ω, e3n]

±[O×Cn] [iO, 1], [ω, 1], [1, en];

± 1
2 [O ×C2n] [i, 1], [ω, 1], [1, en];[iO, e2n]

±[T ×D2n] [i, 1], [ω, 1], [1, en], [1, j];

±[T ×Cn] [i, 1], [ω, 1], [1, en];

± 1
3 [T ×C3n] [i, 1], [1, en];[ω, e3n]

± 1
2 [D2m ×D4n] [em, 1], [1, en], [1, j];[j, e2n]

±[D2m ×Cn] [em, 1], [j, 1], [1, en];

± 1
2 [D2m ×C2n] [em, 1], [1, en];[j, e2n]

+ 1
2 [D2m ×C2n] − , − ; +

± 1
2 [D4m ×C2n] [em, 1], [j, 1], [1, en];[e2m, e2n]

Table 4.1. Chiral groups, I. These are most of the “metachiral” groups—see section
4.6—some others appear in the last few lines of Table 4.2.

Group Generators Coxeter Name

±[I ×I ] [iI , 1], [ω, 1], [1, iI ], [1, ω]; [3, 3, 5]+

± 1
60

[I ×I ] ;[ω, ω], [iI , iI ] 2.[3, 5]+

+ 1
60

[I ×I ] ; + , + [3, 5]+

± 1
60

[I ×I] ;[ω, ω], [iI , i�I ] 2.[3, 3, 3]+

+ 1
60

[I ×I] ; + , + [3, 3, 3]+

±[O×O] [iO , 1], [ω, 1], [1, iO], [1, ω]; [3, 4, 3]+ : 2

± 1
2
[O×O] [i, 1], [ω, 1], [1, i], [1, ω];[iO, iO] [3, 4, 3]+

± 1
6
[O×O] [i, 1], [j, 1], [1, i], [1, j];[ω, ω], [iO, iO] [3, 3, 4]+

± 1
24

[O×O] ;[ω, ω], [iO , iO ] 2.[3, 4]+

+ 1
24

[O×O] ; + , + [3, 4]+

+ 1
24

[O×O] ; + , − [2, 3, 3]+

±[T ×T ] [i, 1], [ω, 1], [1, i], [1, ω]; [+3, 4, 3+]

± 1
3
[T ×T ] [i, 1], [j, 1], [1, i], [1, j];[ω, ω] [+3, 3, 4+]

∼= ± 1
3
[T ×T ] [i, 1], [j, 1], [1, i], [1, j];[ω, ω] ”

± 1
12

[T ×T ] ;[ω, ω], [i, i] 2.[3, 3]+

∼= ± 1
12

[T ×T ] ;[ω, ω], [i,−i] ”

+ 1
12

[T ×T ] ; + , + [3, 3]+

∼= + 1
12

[T ×T ] ; + , + ”

±[D2m ×D2n] [em, 1], [j, 1], [1, en], [1, j];

± 1
2
[D4m ×D4n] [em, 1], [j, 1], [1, en], [1, j];[e2m, e2n]

± 1
4
[D4m ×D4n] [em, 1], [1, en];[e2m, j], [j, e2n] Conditions

+ 1
4
[D4m ×D4n] − , − ; + , + m, n odd

± 1
2f

[D2mf ×D
(s)
2nf ] [em, 1], [1, en];[emf , es

nf ], [j, j] (s, f) = 1

+ 1
2f

[D2mf ×D
(s)
2nf ] − , − ; + , + m,n odd, (s, 2f) = 1

± 1
f
[Cmf ×C

(s)
nf ] [em, 1], [1, en];[emf , es

nf ] (s, f) = 1

+ 1
f
[Cmf ×C

(s)
nf ] − , − ; + m,n odd, (s, 2f) = 1

Table 4.2. Chiral groups, II. These groups are mostly “orthochiral,” with a few
“parachiral” groups in the last few lines. The generators should be taken with both
signs except in the haploid cases, for which we just indicate the proper choice of
sign. The “Coxeter names” are explained in Section 4.4.

Figure 53: Corrections and remarks for [8, Tables 4.1 and 4.2, p. 44 and 46].
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Appendix: Completeness of the Tables 51

The Completeness of Table 4.3

Here we obtain G from the “half-group” H corresponding to some isomor-
phism L/L0

∼= R/R0 by adjoining an extending element ∗[a, b], which must
normalize H . We shall show that (at some cost) the extending element may
be reduced to the form ∗[1, c], and also that (at no cost) c can be multiplied
by any element of R0, or altered by any inner automorphism of R, while
finally c must be in the part of R that is fixed (mod R0) by the isomorphism
(since (∗[1, c])2 = [c, c] must be in H).

For, conjugation by [1, a] replaces ∗[a, b] by

(∗[a, b])[1,a] = [1, a] ∗ [a, b][1, a] = ∗[aa, ba] = ∗[1, c], say,

at the cost of replacing [l, r] by [l, ara], which changes the isomorphism
to a geometrically equivalent one. If r0 ∈ R0, ∗[1, cr0] defines the same
group as does ∗[l1, cr1] for any [l1, r1] ∈ H , and this reduces to ∗[1, cr1l1]
on conjugation by [1, l1], which replaces the r in [l, r] by l1rl1, its image
under an arbitrary inner automorphism of R.

These considerations almost always suffice to restrict the extending el-
ement to

∗[1, ±1] = ∗ or − ∗,

notated respectively by ·23 or ·21 (the subscript being the dimension of the
negated space). The exceptions are the “D × D” and “C × C” cases, for
which Table 4.3 lists every c, and just two more cases, denoted

±1

2
[O × O] · 2 and ± 1

4
[D4n × D4n] · 2

in which we can take c = iO and e2n, respectively.
As we remarked, the reduction to the form ∗[1, c] comes at the cost of

replacing the isomorphism by a geometrically equivalent one, and in the
“T ×T ” case, this sometimes replaces the identity isomorphism by the one
we indicate by T , namely

ω → ω and i → i = −i.

The Last Eight Lines of Table 4.3

For ±[D × D] · 2, we start from the fact that the extending element ∗[a, b]
may be reduced (mod H) and must normalize H , and therefore also E, the

Figure 54: Correction for [8, p. 51].
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52 44 4
4 4 Quaternions and 4-Dimensional Groups

subgroup of elements of the form [eγ , eδ], in H , since E is a characteristic
subgroup of H (except in the easy cases when f ≤ 2, which we exclude).
This puts a and b in eR(1 or j), and so (since [j, j] ∈ H) we can take
∗[a, b] = ∗[eλ, eμ] (leading to ±[D×D]·2(α,β)) or ∗[a, b] = ∗[eλ, eμj] (leading
to ±[D × D] · 2—see footnote 4.) In the first case, we must have

[j, j]∗[e
λ,eμ] = [j, j][e

λ,eμ] = [je2λ, je2μ] ∈ H,

which forces λ = α
2 and μ = αs+βf

s , where α, β ∈ Z. The fact that the
square of this is in H imposes the condition αg + βf ≡ 0 (mod 2).

G is unaltered when we increase α or β by 2 since [e, es], [1, ef ] ∈ H .
For a similar reason, s is initially only defined (mod f), but the equation

∗[eα
2 , e

αs+βf
2 ] = ∗[eα

2 , e
α(s+f)+(β−α)f

2 ]

shows that

�s, α, β� ≈ �s + f, α, β − α�,

so from now on it is better to regard s as defined mod 2f . Since [es, s] =

[e, es]∗[a,b] and [e, es2

] are both in H , we must have s2 = fg + 1 for some
integer g ∈ Z.

To discuss equalities, we must consider all possibilities for an element
that transforms this group �s, α, β� to a similar one �s�, α�, β��. The trans-
forming element can also be reduced mod H and after taking account of ∗
and [1, j] (which takes �s, α, β� to itself or �−s, α,−β�), can be supposed

to normalize H and therefore have the form [e
a
2 , e

as+bf
2 ], with a, b ∈ Z. We

find that transforming by this adds some multiple (which can be odd) of
(f, g) to (α, β), so the only further relation is �s, α, β� ≈ �s, α + f, β + g�.

To summarize, we have for this group

Variables Conditions Equalities

α (mod 2) s2 = fg + 1 �s, α, β�
β (mod 2) αg + βf ≡ 0 (mod 2) ≈ �−s, α,−β�
s (mod 2f) ≈ �s + f, α, β − α�

≈ �s, α + f, β + g�,

4 In the second case we can choose new generators to simplify the group; namely,
conjugation by [1, eλ] fixes E and replaces ∗[eλ, eμj] by ∗[1, eμ−λj] = ∗[1, J ], and then
J can replace j, since (∗[1, J ])2 = [J, J ] must be in H.

Figure 55: Corrections and remarks for [8, p. 52].
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Appendix: Completeness of the Tables 53

while for ±[D × D(s)] · 2 we have

Variables Conditions Equalities

s (mod f) s2 = fg − 1 �s� ≈ �−s�.

Equalities in the other cases are summarized as:

Group Variables Conditions Equalities

+[D × D(s)] · 2(α,β) α (mod 2) s2 = fg + 1 �s, α, β�
β (mod 4) αg ≡ 0 (mod 4) ≈ �−s, α,−β�
s (mod 4f) n odd, g even ≈ �s + 2f, α, β − 2α�

≈ �s, α, β + 2h�

+[D × D] · 2 s (mod 2f) s2 = fg − 1, g = 2h even �s� ≈ �−s�

±[C × C] · 2(γ) s (mod f) s2 = fg − 1 �s, γ�
γ (mod 2) (g, s − 1)γ ≡ 0 (mod 2) ≈ �s,−γ�

∗[1, e
γ(f,s+1)

2 ] (f, s + 1)γ ≡ 0 (mod 2)
g even

+[C × C] · 2(γ) s (mod 2f) s2 = fg − 1 �s, γ�
γ (mod 2d) (g, s − 1)γ ≡ 0 (mod 4) ≈ �s,−γ�

∗[1, e
γ(f,s+1)

2 ] (f, s + 1)γ ≡ 0 (mod 2)

d = (2f,s+1)
(f,s+1)

n odd, g = 2h even

Table 4.4 summarizes the different achiral groups among the last four
lines of Table 4.3. In the last eight lines, it is always permissible to replace
D2 by C2 and D4 by D4.

f, g even : ·2(0,0), ·2(0,1), ·2(1,0), ·2(1,1) and · 2
else ·2 and · 2

f, h even : ·2(0,0), ·2(0,2), ·2(1,0), ·2(1,2) and · 2
else ·2 and · 2

g even : ·2(0), ·2(1) and · 2
else ·2 and · 2

h even : ·2(0), ·2(d) and · 2 d = (2f,s+1)
(f,s+1)

else ·2 and · 2

Table 4.4. Different achiral groups.

Figure 56: Corrections and remarks for [8, p. 53].
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