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Three-Clustering of Points in the Plane

Johann Hagauer� and G�unter Rotey

October 2, 1996

Abstract

Given n points in the plane, we partition them into three classes such that the

maximum distance between two points in the same class is minimized. The

algorithm takes O(n2 log2 n) time.

Keywords: geometric clustering; diameter; constraint propagation

1 Introduction

Overview and Statement of Results. In the classical area of cluster analysis,

a given set of items is to be classi�ed into groups (so-called clusters), such that

\similar" items belong to the same group and \di�erent" items go into di�erent

groups.

A speci�c case of these problems deals with geometric clustering problems, where

the items can be represented as points in the plane (or some higher-dimensional

space). In these problems the number k of clusters is �xed. Typical clustering crite-

ria are the diameter of a cluster (the maximum distance between two points) or the

radius of the smallest enclosing ball. Some previous results include an O(n log n) al-

gorithm for �nding a 2-clustering of a planar point set which minimizes the maximum

diameter (Asano, Bhattacharya, Keil, and Yao 1988) and an O(n log2 n= log log n)

time algorithm for �nding a 2-clustering which minimizes the sum of the two diam-

eters (Hershberger 1992). The related k-center problem, where the points have to

be covered by k circles whose maximum radius is to be minimized, is more di�cult:

the 2-center problem has only recently been solved in less than quadratic time, by

an algorithm of Sharir (1996) which takes O(n log9 n) time.

In the present paper we focus on 3-clustering. We present an O(n2 log2 n) al-

gorithm for �nding a 3-clustering which minimizes the maximum diameter. These

results were presented at the First Annual European Symposium on Algorithms

(Hagauer and Rote 1993).
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Problem Setting. Capoyleas, Rote, and Woeginger (1991) have shown that any

two clusters in an optimal k-clustering are linearly separable, for a wide variety

of clustering criteria, including the maximum diameter criterion. Since there are

only O(n2) ways to partition an n-point set by a line, this immediately implies

polynomial k-clustering algorithms for any �xed value of k. Three clusters can be

pairwise separated from each other by three lines. The straightforward application

of this fact leads to an O(n7 log n) time algorithm which checks O(n6) possibilities.

A less straightforward approach considers all O(n4) ways in which a cluster can be

separated from the rest by two rays meeting at a common point, and solving a two-

clustering problem for the remaining points by the algorithm of Asano et al. (1988).

This would still lead to a complexity of O(n5 log n) for �nding a 3-clustering which

minimizes the maximum diameter. We will use a more direct approach.

Overview of the algorithm. The maximum diameter can only be one of the
�
n

2

�

distances between the n given points. By a binary search among these values we

can therefore reduce the optimization problem to the decision problem of testing the

existence of a 3-clustering with a given upper bound � on the maximum diameter.

The cluster which contains the leftmost point P is denoted by A. We test every

possible choice for the rightmost point of A separately. This requires some insight

into the structure of optimal clusterings and is described in the sequel.

2 Preliminaries

The given set of n points in the plane will be denoted by P . We denote the co-

ordinates of a point u by u = (ux; uy). For ease of exposition we assume that no

two given points have the same x- or y-coordinate. (This can be achieved by an

appropriate rotation.) The line segment joining two points u and v is denoted by

uv, and d(u; v) =
q
(ux � vx)2 + (uy � vy)2 denotes their Euclidean distance. Two

sets of points in the plane are said to be linearly separable if they can be strictly

separated by a straight line. For a point set S, diam(S) denotes its diameter, i. e.,

the maximum distance between two points in S. Our algorithm relies on the the

following result of Capoyleas, Rote, and Woeginger (1991).

Proposition 1 Consider the k-clustering problem of minimizing the maximum di-

ameter. For every point set in the plane, there exists an optimal k-clustering such

that each pair of clusters is linearly separable. 2

Our approach will be to specify a parameter � and test for the existence of a

3-partitioning such that each cluster has diameter at most �. We need another easy

lemma:

Proposition 2 (Capoyleas, Rote, and Woeginger 1991, proposition 1.) Let � be a

positive real number, let u and v be two points in the plane at distance less than or

equal to �. Let C1 and C2 be the circles with radius � centered at u and v, let D

denote the points in the vertical strip between u and v. Then the part of the region

C1 \ C2 \ D that lies above the line segment uv has diameter � �. 2
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3 Geometric Properties of a Solution

The algorithm to be described searches for all possible linearly separable solutions

A; B; C in the following way. The point a with minimum x-coordinate is placed

in A. Each point a0 2 P satisfying d(a; a0) � � is tested as a candidate for being the

rightmost point in A. That is, we will only allow a point u to be assigned to A if

its x-coordinate ux < a0

x
. For every point a0 we will test in O(n log n) time whether

there is a solution or not. This yields an overall time complexity of O(n2 log n) for

the decision problem and of O(n2 log2 n) for the optimization problem.

The pair (a; a0) gives rise to the following partition of the point set P � fa; a0g,

see �gure 1.

NORTH := fu 2 P j ux < a0

x
and u is above the segment aa0 g.

SOUTH := fu 2 P j ux < a0

x
and u is below the segment aa0 g.

EAST := fu 2 P j ux > a0

x
g.

Acand := fu 2 P j d(a; u) � �; d(a0; u) � � g.

r�����
���

���
�r

p p p p
p p p p
p p p p
p p p p
p p p p
p p p p
p p p p
p p r

r

a0

a

NORTH

SOUTH

EAST u

v

r

r ~v 2 C

~u 2 Br
r

r

rr

r

r

r

r

r

r

r

Figure 1: The partition into NORTH, SOUTH, and EAST.

The following lemma is an immediate consequence of proposition 2.

Lemma 3

diam(Acand \ NORTH) � �

diam(Acand \ SOUTH) � � 2

We call a partition A;B;C of P an (a; a0)-solution if a 2 A is the leftmost point

in P , a0 the rightmost point in A, diam(A) � �, diam(B) � �, and diam(C) � �,

and A, B, and C are linearly separable. In order to �nd an (a; a0)-solution A;B;C

we consider three di�erent cases.
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Case 1: NORTH � A.

Case 2: SOUTH � A.

Case 3: NORTH 6� A and SOUTH 6� A.

Case 1 can be treated in the following way. We de�ne A := fa; a0g[NORTH[M ,

where

M := fu 2 SOUTH \ Acand j d(u; v) � � for all v 2 NORTH g :

By lemma 3, diam(SOUTH \ Acand) � � which implies diam(M) � �. Therefore

placing any point u 2 SOUTH\Acand in A does not impose any restriction for other

points in SOUTH \Acand. Each of these points can be assigned to A independently

of the others. Therefore the maximal feasible set A is uniquely de�ned. We are left

with a two-clustering problem for the set of points P � A, which can be solved in

O(n log n) time by the algorithm of Asano et al. (1988). Case 2 is treated analogously.

3.1 Case 3: The Initial Classi�cation of Points

Case 3 turns out to be the most di�cult case. Since we are looking for separable

solutions, it is clear that neitherB nor C may contain a point both from NORTH and

from SOUTH. Therefore we assume w. l. o. g. B\SOUTH = ; and C\NORTH = ;.

Consider now the set EAST. All points from EAST will be placed either in B or

C. The following lemma allows us to make this decision for point pairs which have

large distance.

Lemma 4 Let A;B;C be an (a; a0)-solution with B\NORTH 6= ; and C\SOUTH 6=

;. Then for each pair of points u; v 2 EAST with distance d(u; v) > � the following

holds: If uy > vy then u 2 B and v 2 C.

Proof. By assumption there are points ~u 2 NORTH \ B and ~v 2 SOUTH \ C

(see �gure 1). Assume w. l. o. g. ux > vx. If ~vy < vy then d(~v; u) > d(v; u) > �.

Therefore u must be in B. Otherwise, ~vy � vy, and the segment ~uv crosses either

the segment ~vu or the segment aa0. Either possibility would contradict u 2 C and

v 2 B together with the separability assumption. 2

The above lemma and the previous discussion justi�es the following initial clas-

si�cation of points:

A0 := fa; a0g.

B0 := fu 2 NORTH j d(u; a) > � or d(u; a0) > � g [

fu 2 EAST j there exists a point v 2 EAST, d(u; v) > � and uy > vy g.

C0 := fu 2 SOUTH j d(u; a) > � or d(u; a0) > � g [

fu 2 EAST j there exists a point v 2 EAST, d(u; v) > � and uy < vy g.

ABcand := NORTH�B0.

CAcand := SOUTH� C0.

BCcand := EAST �B0 � C0.

A0, B0, and C0 will be called the initial sets, the other three sets the candidate sets.

We will use the generic terms X0 and XYcand to refer to any of the respective initial

or candidate sets. Note that if B0 and C0 are not disjoint, then case 3 cannot lead

to a solution, and we may stop immediately.
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Lemma 5 The diameter of all candidate sets is at most �.

Proof. The inequalities diam(ABcand) � � and diam(CAcand) � � follow from

lemma 3. The relation diam(BCcand) � � follows from the de�nitions of B0, C0,

and BCcand. 2

3.2 Propagation of Constraints

Every (a; a0)-solution A;B;C must satisfy C \ ABcand = ;, B \ CAcand = ;, and

A\BCcand = ;. So far, the placement of points of the initial sets is �xed, whereas the

placement of points in candidate sets is not yet �xed. Some point in an initial set may

force certain points in a candidate set to be assigned to A, B, or C. Such constraints

imposed by the initial assignment may propagate. We describe this situation by two

directed graphs G1 := (V;E1) and G2 := (V;E2) with vertex set V = P . There is an

arc (u; v) in E1 if d(u; v) > � and one of the following �ve conditions holds:

1. u 2 B0, v 2 ABcand

2. u 2 C0, v 2 BCcand

3. u 2 ABcand, v 2 CAcand

4. u 2 CAcand, v 2 BCcand

5. u 2 BCcand, v 2 ABcand

Similarly, there is an arc (u; v) in E2 if d(u; v) > � and one of the following conditions

holds:

1. u 2 B0, v 2 BCcand

2. u 2 C0, v 2 CAcand

3. u 2 ABcand, v 2 BCcand

4. u 2 BCcand, v 2 CAcand

5. u 2 CAcand, v 2 ABcand

Figure 2 gives a schematic representation of these graphs. The two graphs corre-

spond to \counter-clockwise" propagation (A!C!B!A) and to \clockwise" prop-

agation of constraints (A!B!C!A), respectively. (The constraints imposed by

the initial set A0 = fa; a0g have already explicitly been taken care of in the de�nition

of B0 and C0.) Note that every pair of points u; v 2 ABcand [BCcand [ CAcand with

d(u; v) > � gives rise to two arcs, one in each graph.

Let Forced1 denote the set of points inABcand [ CAcand [BCcand which are reach-

able by some path in G1 starting at a vertex in B0 [ C0, and Forced2 the analogous

set for G2.

Lemma 6 There is an (a; a0)-solution A;B;C with B \ NORTH 6= ; and C \

SOUTH 6= ; (corresponding to case 3) if and only if

(i) diam(B0) � �,
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Figure 2: Schematic representation of the constraint propagation graphs G1 and G2.

G1 is shown with thick arcs and G2 with thin arcs.

(ii) diam(C0) � �, and

(iii) the sets Forced1 and Forced2 are disjoint.

Proof. Assume �rst that the conditions hold. We construct a solution by the

following rules. Initially A = A0, B = B0, and C = C0.

Rule 1: If u 2 Forced1 then u is assigned to A if u 2 ABcand,

u is assigned to C if u 2 CAcand,

u is assigned to B if u 2 BCcand.

Rule 2: If u 2 Forced2 then u is assigned to B if u 2 ABcand,

u is assigned to A if u 2 CAcand,

u is assigned to C if u 2 BCcand.

Rule 3: If u 2 (ABcand [ CAcand [BCcand)� (Forced1 [ Forced2) then classify u as

in rule 1.

Rules 1 and 2 express the necessary assignment for the sets A, B, or C that follow

from propagating assignments through the graphs, as can be seen by induction on

the path length leading to a point u 2 Forced1 [ Forced2. Rule 3 is an arbitrary

decision. The points that fall under this rule could either be handled (consistently)

as in rule 1 or as in rule 2. A concise statement of the result of applying the three

rules is as follows:

A = A0 [ (CAcand \ Forced2) [ (ABcand � Forced2)

B = B0 [ (ABcand \ Forced2) [ (BCcand� Forced2)

C = C0 [ (BCcand \ Forced2) [ (CAcand� Forced2)

As every point is placed by exactly one rule, the sets A;B and C form a partition

of P . To show that we have a valid solution we have to prove that the diameters do

not exceed �. Consider two points u; v with d(u; v) > �. If both are in initial sets,

they cannot be in the same initial set, by conditions (i) and (ii). Therefore they end

up in di�erent sets A, B, or C. If at least one of the two points is in a candidate
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set, lemma 5 implies that they are not in the same candidate set. Therefore one

of the arcs (u; v) and (v; u) is either in E1 or in E2. Therefore u and v are either

both in Forced1 or in Forced2 or in neither set. This means that they are assigned

to di�erent sets A, B, or C by rule 1, by rule 2, or by rule 3, respectively.

On the other hand, failure of any of the conditions of the lemma would lead to

a contradiction: Conditions (i) and (ii) are necessary by lemma 4. If (iii) does not

hold, rules 1 and 2 lead to incompatible conclusions about the assignment of a point

u 2 Forced1[Forced2. By the above discussion this makes a solution impossible. 2

4 The Tripartition Algorithm

The algorithm follows the outline in the previous section. We have to test all points

a0
2 P as possible rightmost points of A. For each a0 we determine the sets NORTH,

SOUTH, and EAST in linear time, and we test cases 1, 2 and 3 of section 3 (following

lemma 3). Let us �rst look at case 3: After the determination of initial and candidate

sets we call the procedures rule1 and rule2 below, which in turn rely on the procedure

distribute. These procedures explore the graphs G1 and G2 as they construct them,

assigning the points to the sets A, B, or C and propagating constraints as soon as

possible.

procedure rule1

Cforced := C0;

distribute(C;B);

Bforced := Bforced [B0;

while Bforced 6= ; do

distribute(B;A);

distribute(A;C);

distribute(C;B);

end procedure

procedure rule2

Bforced := B0;

distribute(B;C);

Cforced := Cforced [ C0;

while Cforced 6= ; do

distribute(C;A);

distribute(A;B);

distribute(B;C);

end procedure

procedure distribute(X;Y )

Yforced := ;;

for all points u 2 Xforced do

X := X [ fug;

New := f v 2 XYcand j d(u; v) > � g;

Yforced := Yforced [ New;

XYcand := XYcand � New;

end procedure

(A literal interpretation of the procedure distribute refers to sets such as BAcand.

This is the same as the set ABcand, and in general XYcand and YXcand are identical.)

Rule 3 just assigns the remaining points as follows: A := A [ ABcand, B :=

B [BCcand, and C := C [ CAcand. We �nally compute the diameters of A, B, and C

in O(n log n) time to check that we really have a solution.

In order to implement the procedure distribute e�ciently we use the circular hull

introduced by Hershberger and Suri (1991). Let � be �xed. The circular hull of
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a set of points U is the common intersection of all disks of radius � containing U .

(Circular hulls are also known as �-hulls, see Edelsbrunner, Kirkpatrick, and Sei-

del 1983.) Circular hulls can be constructed in O(n log n) time. The data structure

of Hershberger and Suri (1991) supports the following two main operations:

1. Given a query point u, determine in time O(log n) a point v 2 U such that

d(u; v) > �, if such a point exists.

2. Delete a point from U and update the circular hull in an amortized cost of

O(log n).

The procedures rule1, rule2, and distribute are implemented in the following way:

First the circular hulls for the candidate sets XYcand are constructed. For a point

u 2 Xforced in the procedure distribute we can use the circular hull of XYcand to check

whether a point v 2 XYcand exists with d(u; v) > �. Such a point v is deleted from

the circular hull of the point set XYcand and inserted in Yforced. Then u is repeatedly

used as a query to the circular hull until no more points v are found. The point u is

�nally removed from XYcand and assigned to X, and it will never again act as query

to some circular hull. Therefore the number of queries is bounded by the number of

deletions plus the number of points in the initial sets. Since no point is inserted in

a circular hull, the overall complexity for deletions and queries is O(n log n). Thus

the time bound for the procedures rule1 and rule2 is O(n log n).

Circular hulls can also be used to carry out the remaining operations in O(n log n)

time: the computation of B0 and C0 and the treatment of cases 1 and 2. (These

tasks can also be solved in O(n log n) time with furthest-point Voronoi diagrams, a

more standard data structure.)

Therefore our tripartition algorithm takes O(n2 log n) time, for �xed �.

Theorem 7 Given a set of n points in the plane and a real number �, we can

determine in O(n2 log n) time whether there is a partition of P into sets A;B;C

with diameters at most �. 2

Theorem 8 Given a set of n points in the plane, we can in O(n2 log2 n) time con-

struct a partition of P into sets A;B;C such that the largest of the three diameters

is as small as possible.

Proof. We carry out a binary search on the
�
n

2

�
distances occurring in a point set

of cardinality n, using the tripartition algorithm. 2

5 Applications to More Than Three Clusters

By the separability result of Capoyleas, Rote, and Woeginger (1991), the k-clustering

problem can be solved in polynomial time for every �xed value of k. We will now show

that our 3-clustering algorithm can be used as a subroutine to speed up k-clustering

algorithms for k � 4.

In the case of 4-clusterings, there is always an optimal clustering in which two

of the clusters can be separated from the remaining two by a polygonal chain with
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at most four straight pieces (see Edelsbrunner, Robison, and Shen 1990, lemmas 1

and 2, or Capoyleas et al. 1991, lemma 8). Accordingly, Capoyleas et al. proposed to

divide the problem into two 2-clustering problems, trying all O(n8) ways to separate

the point set into two parts using a polygonal chain with four straight pieces. Each

of the 2-clustering problems can be solved in O(n log n) time by the method of Asano

et al. (1988), yielding an overall complexity of O(n9 log n). Using our 3-clustering

algorithm, this can be speeded up to O(n8 log2 n): we know that each cluster can be

separated from the remaining three by a polygonal chain with at most three straight

pieces. This gives O(n6) choices, and for each choice, an associated 3-clustering

problem must be solved.

For 5-clusterings, two clusters can be separated from the remaining three by

5 straight pieces, and this can be done in O(n10) possible ways, which leads to a

complexity of O(n12 log2 n). For 6-clusterings, three clusters can be separated from

the remaining three by 6 straight pieces, yielding a total complexity of O(n14 log2 n).

Analogously, problems with a larger number of clusters can be treated, but already

for 4-clusterings, there is ample space for improvement.
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