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Abstract:

. Systens'df linear extremal equations over Llinearly
ordered sets are considered. These systems include
“maxsum” and "na;nin" equation.sygtens. Their solution
sets will be characterized in several ways. The
Conbinatoriai str;ctﬁre of fﬁese charact?rizations can

" be described b} a generalized set covering problem. We
give algorithms for enumerating al! minimal solutions

_of these generalized set covering problems.
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1. Introduction

Systeéms of ext}enal equations, 1. e. equations involving max or min
operations, have found considerable interest in the Literature, both
theoretical(y and from practical vieupoints (cf. the examples below and the

r§f§n¢nces given there; see also the nononrnnh'by U. Zimmermann [19811).

In this paper systems of equations of the following form shall be
considered. | » ‘

Let 81, B2, «.., By, and X1, xz, esss Xp be linearly crdered sets; Given
bjeB; - (1=1,2,...,n) and isotone functions fi)’ X3 ->B1 (i=1,2,0..,W;
§j=1,2,...,n), find the set X of all !?('10*2’---r*n) € XqxXX...xX,, for
which

(4 D) max fiJ(XJ) = bi', for i21,2,.e.,M,
18i8n

. This linear system of extremal equations can be interpreted as a vector
_equation F-x=b, where in the matrix-vector product Fex multiplication is
replaced by applying a function to an argument and addition is replaced by

‘the max operation.
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In the examples considered we have By=...=By=Xq=. .. =X, =:B and
f1j(x) = 2i5 ® x for some isotone algebrnfi'opirition :8xB>B and n{veh

elements 3;j¢B. Then the system (1) takes the form

") nax .ij"j = bi' for 1'1"2'--.'--

1£j8n

With different algebraic structures (B,®) one obtains differént

specializltfons of the original proﬁlea:

(a) (8,8) is a linarly ordered group, for example the group (R,+).
Applications include for example machine-scheduling problems. Such
systems have been studied extensively by Cuninghame-6reen [1979,
chapters 14 and 151 and K. Zimmermann [1976]1 and have previously
been dealt with by Vorob'ev E1963, 19671, K. Zimmermann [e. g. |
1973-a, 1973-b, 1974-a, 1974-b] and U. Zimmermann [1979]

(b) ® {s the min-operation. Such systems arise in connection with fuzzy
relation equations on fuzzy sets [Czogala, Drewniak, and Pedrycz
19821, (Sanchez 19761.

(c) B=(0,1)} and @ is the iin—operation (equations in the two—element
Boolean algebri). This is a spebialbéase of (b). Inkthis case Fhe
system (1") describés fhe feﬁsible solutidns of the sef coveriﬁg
-problem, which is ; funda;ental conbfnatoriai problel with many
applications (see e. g. [6arfinkel and Nemhauser 1972, especially
chapter 8: the set covering and partitioning problems)). An
overview of results concernipg general systems of equations in
Boolean algebras can be found in [Hammer and Rudeanu 1968,

chapter 11].
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Most of the cited l1tornturo.(cf. also K. Zimaersann £1982, 1984)) deals
with optimization problems over the set of feasible solutions described by
a system of type (1). This paper 1s restricted to describing the entire set
of solutions of tﬁe system (1), Several elementary characterizations of the
solution set ;ill be derived in séction 2. It turns out that essentially

- the solution set has one maximal element but in general several ninimal
elements. The set of minimal elements will be characterized combinatori-
cally as corresponding to the minimal solutions of some sort of peneralized
set covering problem. For the spectal case of the group (R*,) of positive
real numbers {Pf. section &), the connection between extremal squation
systeas lnd'set'coverings has been known for a long time (cf. Vorob'ev
L1963, 1967]; K; Zimmermann £1973~b, 1974~a, 1974-b] used this coqnectibn
algorithnical(; to solve optimization problems for which the set of
feasible solutions is describgd by systems of extremal equations and
inequalities). K. Zimmermann [1976] and K. Zimwermann and Juhnke [1979]
considered systems of extremal equations and‘ineqqalities over linearly
ordered monoids. The Latter paper is entirely devoted to characterizing the
set of_véctors defined by a system of extrelal‘equations or inequalities.
Section 3 contains two algorithms for enumerating all these n{n{-al
solutions. These algorithms are not fast for the general case, and they are .
included only for the sake of completeness and since they are Later
specialized for the above examples (a)-(c) in sections 4-6. According to
Lawler, Lénstra, and Rinnooy Kan [1980], no algorithm for enumerating the
minimal set coverings the running time of which is polynomial in the
problem size and in the number of minimal coverings is known, nor has it
been proved that the existence of s&ch an aldorith- would imply P=NP.
Hence, for the time being, it seems justified to write such exponential
algorithms.

For the second example (maxmin equations) the given algorithm is very
efficient unless the problem dggeneratet too much (i, e. if many of the by
values on the right-hand side are equal). For maxmin equations, bounds on

the nusber of minimal elements are deriyed, which seem to be quite tight.
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2. The set of solutions of the system (1)

By the fsotonicity of fyj, the solution set 145 of the squation
fi3(x) = by,
i3 a convex subset of Xj and may be represented us’thekdlfference of two

initial segments of Xj:

Iij = Uij \ l1j,

with  ugq = {xeXy | £55008b52, and
l1j = {xer | fij(‘)<bi}'

’lij and uij cbuld be replaced by the greatest lower bound or the least
upper bound of i{j, respectively, if these were knoﬁn to exist. It might
help the reader to assume that the infima and suprema exist and to read the
phrases xeu;j, x€ujj, xeljj, x€l;j, which shall occur frequently in the
sequel, as denoting xSujj or x<ujj, ®uyj or x2ujj, x<lijj of xSlyj, *x2l4j
or x>lij, as appropriate, depending on whether the supremum or infimum is
attained.or not,and to read L1Cus5 and "ijs;lij as Ly;58u45 and lyjd>uygy or
Ljj<uij and L;;2uij, as appropriate. . |

(The Symbol Q denotes set inclusion, and C denotes proper set inclusion. " 4
is the negation of S;. For initial segments a and b Llike the sets d*j and

L5, agb is equivalent to bCa.)



Now, for all 1=1,2,...,m:

max fi5(xy) = by <=> ‘max fij(x;) $ by and max figtxpd 2 b{ .

W 15 1515n
Since
nax fij!xj’ g bj <=>
18§8n
for all 1§j&n: f13¢x;) $ by <
for all 155%n: x; € uyj,
and since

max f50x;) 2 bj <=>
155sn
’ for some 15jSn: £1;(x;) 2 by <=>

for some 1§j§q: xi € 4,

.we get the following characterization of the solution set X of (1):

@ X =L (Xqeee,xy) | for all 15jSn: Xj € uj; and
~ for all 15i$m there is some 18§Sn such that

where uj = n Ujj -
15i%e
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The first condition, u’cuj, for all 1", 1: easy- 0 chcck, to visualize the
. -second condition, Let us construct an mxn 0-1-utr1: l(x) = (r,,tx)), uhoro
rij¢xd=1 it and only if xj€ly5. The second condition states then that each
row of this matrix must contain at Least one 1. For this aitultion we shall
also say that the sots Pj(x)-(ilrgj(x)-1) corrn:ponding to the eolunns
§=1,2,.c0.,n form a ovorigg of the set of rous €1,2,c00,0), Note thnt the
§th column of the matrix R(x) and with it the set Pi(x) depends only on the
‘component x; of x. vk - :

For a given problem the columns of the matrix R(x) cannot be arbitrary 0-1
columns, since ry,j(x)=1 implies rypj Q=1 if l11j:h125. Rather, we have
at most a+1 possibilities for each column of the matrix, ranging from the
zero column (unless some lij'.)o to the column contdfnfﬁg only'onei; As x§
increases, the set P’(g) increases with it stipuise at certain points,
either by one element at a time or by several elements at a time, if the
éorresponding sets L;; are equal.

Given a matrix Ry uhiéh fulfills the above condition that 'i1j'1 implies
rip5=t if ti1i;?t12j' 1nvall columns j, it is easy to see that (with two
exceptions) an element x can be constructed such that R(x)=Rp: xj must be
contained in all sets ljj with rjj=0 but in none of the sets Lijj with
ryj=1. The condition ensures that there is such an xj, unless colusn j
contains only zeros or only ones. In the first case it is necessary in
addition that no lij in the jtP colusn is empty, in the second case it is

required that no l,j‘is equai to the whote set x,.

1f uﬁ;lij for some pair (i,j) then it is clear that for a vector xeX,
rij(x) cannot be 1, In other words, the "1" elements of the matrix R(x) are
a subset of the "1" elements of the matrix R=(ry;) where

rijs‘l <=> l‘ljc"‘j <=> Ujﬁlij.

(Shortly, we will say that the O-1-matrix R(x) is included in the

0-1-matrix R, or that R is greater that R(x), R2R(x).)
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Deciding whether the system (1) 1is solvable

From the above remarks it follows that there can be no solution of (1) 4f R

contains a zero row. Furthermore, 1f uy=8 forrs'on j, then X s empty |§

well. On _the other hand, if neither of these conditions hold, then, Like in
" the case that has been diic‘uued, an x can be-constructed such that R(x)=R

‘and xjeuj for all j (see the example below).

Thus, the existence of a solution of (15 can be decided by checking

7 n relations uj#d and an relations L33Cuy'.

'_ Ve define U := {Uxq,eaepxy) | for all 1$58n: Xj € uj} ® ugxUX...XU,. Thus

U is the set of solutions of the system

max fij(x;) £ by, for i=1,2,...,m.

15jSn
Let L == {(X1,...,Xn) I'fOf atl 1%j&n: xj € lij} = Ljgxlypx..exlyy,, for
all 1$iSm; then we get »

(X1,eeepxp)ely <=> there is no j such that fi;(x;) 2 bj,

<=> max fij(xj) < bj.
1558n

- Thus Ly contains exactly those elements of U which violate the ith equation

... of the system (1), and possibly additional elements which are not contained

in U. Hence we get



Characterization 1:

x =y \ v L‘-
1518m

The set X1xxzx.;.ixn with the partial order which §s the product of the '
Linear orders on the sets Xj is a lattice; all of the m+1 sets L{ and U in
_ the theorem are ideals in this lattice. They are cartesian products of
initial seguents of the sets X;. B '

Example 1:

. Let n=2, x1=x2=m’u{0} and consider the following set of equai;ions:

max { min(x4-1,0), min(x3-5,0) )

=0
max ( min(x¢-3,0), min(x,~3,00 ) = 0
max ( min(xq-2,0), min{xy-1,00 ) = 0
max ( max(xy~5,0), x-7 ) = 0

We obtain the following values for liio ujj, and uj:

ie ] 3: i Tujin L2 fuje
1 to,» ®R* . 10,5 R
2 0,3 =t - [0,4) R*
3 0, ®* . [0, r*
& 9 0,53 - ‘to,7» (0,73
uj: 0,53 10,71

Ly is empty. The sets U,‘L{, Lé, Lz, and X are shown in figu&e 1.
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Figure 1 - the sets X, Ly, Ly, and Ly for example 1; $9=x¢2,2,2,1),

5p=x(1,2,2,1) ang s3=X€1,1,1,1); the set U is the big rectangle.
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The combinatorial structure of the problem- (for example the fact that
LsCL, but Ly and Ly are incomparsble, or that there are three minimal
solutions) would not change if for example 122=00,4) were replaced by
L22=00,3). Only the order among the Liz is relevant. To emphasize these

combinatorial properties of the problem the matrices l(!) have been

fntroduced above. For example, for the pdints‘ly(z,b)cu and x=(2,2)eV we
get o

10 10 '
01 0g¢

R(2,4) = 144 R(2,2) = 01l*
10 10

Thus (2,4)eX, but (2,2)éX. The matrix R defined above is the full matrix

-t ad b
- ad b b

To construct an xeU sucht that R(x)=R, as was asserted to be possible if
U#3, xq must be an elesent of uj but it must not be contained in ljq for
all i for which rjq=1, that is, for all i-1,2,3,4. We get x1:[3,5];
Similarly, we get xp=7, Thus, for all xel3,51x{7}, R(x)=R.

A second representation of X can be dariﬁed from (2):

We can rewrite (2) as fqllous:

X = (xq,00e,xp) | for all 15§$n: xj € uj; and
for all 1§iSm there is some k¢i), 1Sk(D)§n
‘such that Xicq ¢ l“i } =

= { (xq,eeepxy) | for alt 18jsn: X§ € uj; and
there ii.sone sequence

k=Ckq k2,000 kg) € {1,...,00%, such that
f 1 ¢ .
or a s‘i‘. in l‘iki b J
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Let k = Ckykg,neesky) € C,uue,md®, :

Ve detine T |

XK 2= Cxq,eaerky) | tor all 1§§Sn: xj € uj} and
for all 154Sm: TR Likgd-

(&3]

In other words, ki=j states that for every xexk the ith row of the matrix
R(x) will contain a 1 in the place ryj(0).

The following characterization is now an 1niediate consequence:

Characterization 2:

X = v xk,
ke€t, oo, n}"

Notational remark:

The names i,p,q, possibly subscripted, shall be reserved for row indices in
the range [1,m] or [0,m], whereas the names j,k, and of course also ki ',

etc., shall denote colusn indices in the range [1,n] (and so-etiies tO,nj).
Likewise p,k, etc. denote vectors of indices of the respective types,

P.K, etc. denote sets of such indices, and P,K', etc. denote sets‘of

veétors of such indices.

From the definition (3) it follows that XK can also be written as:

xk = ¢ (x1,000,%y) | for atll 15jsn: xj € uj \ l!j } =
= (ug \ Ky) x -oe x (uy \ LEﬁ),

where t!d = U L= U 5.
k=i ki)
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© Such a set LLj 1s equal to some Ly (n_unoly _the-' Largest one with ky=j) or
enpty.

Thus each Xk hl:-the form

W Xp = @y \ Lpaq) x oot x Cup \ Lol

for some sequence p=(pj,...,p,) with OpjSm, 1f we set loj=® for all j.
P is called the sequence generated by k.

This is the point where the isotonicity of the functions f55 is crucial,

Example

With the data of example 1 above, we obtain
x0 10 Dax o 0y = B,50x00,70 X211 Dax, 4y = [3,5Ix(5,72
X LD, 4y = 03,5073 X2, Dex, 4y = 03,5047
x1,1,2,Vax(; 5y = [3,51x01,73 x2,1,2,Max(; 1y = [3,51x05,7)
X112, Dax(; 4y = 13,507 X@,2,ux5 4y = [3,51x(7)
X(1,2,9, Dag ez 5y = [2,5)x4,72 x2,2,9,Dax(3 4y = 2,5Ix05,73
X0,2,0,Dux (3 ) = 2,53 x2,2,1,Dax(3 4y = 12,5147
x(1,2,2,Dax(4 5y = [1,51x04,73 X2,2,2,Vax¢0 4y = £0,51xL5,72
x0:2,2,Dax(y ¢y = 01,5047 x2,2,2, 225 4y = £0,5Ix(7)

'The solution set X is the union of these sets. ALl of them are Cartesian
products of convex subsets of X4 and XZ,'respectivély, and are themselves
convex. We see that many sets XK gre éontained 1n:others but there are
three sets which are maximal with respect to set 1nclq;ion:

- 51:=x(22,2,Vax g 4y=00,53x(5,73, Sp:2x¢1,2,2,ux (3 2)=l1,51xL4,73, and
s;:-x(1r1o1:1>=x(2,o,=ts,53xto,7n. X can be represented as the union of
these three sets only (see figure 1). It is clear that the union in

_Vchlracterization 2 may be restricted to include only those sets which are

maximal among atl XK. The following proposition states the converse of this

© statement.



Prggsiﬂon: No set which is maximal among all XK can be removed from the . -

union in characterization 2 without making the characterizetion invalid.

Proof: The sets XK are dual ideals. in the sublattice U of xi,x---xx,,. Ve
shall show that this fmsplies that if some set XK {s contained in the union
Qfl several other sets $1,520+++,5q (and can hence be removed from the union
“4n characterization 2) then it must be contained in one of these iets, and
hence it cannot be maximal. Assume the contrary: for each set §,,

: _Qﬂ,l,...,d, there is an element x,eXK\S,. The the infimum xg of these
elements x, is also contained in XK but it is contained in none of the Ses

since xo2xpeSe would hply _ees,.
Thus it makes sense to speak of ‘the minimal set K'C01,...,m* for which
characterization 2 1s still true when t_he'index k ranges only over K'.

Except for equal sets XK, this set K' is unique.

We have shown:

thaflcteriz_ation 2':

X = u xk,
ke{1,...,n)", and
xk i3 a maximal set

The XK which are empty can of course all be omitted from the union. If U=
i then X=0 _and atl XK are empty as well; when this case is' excluded, tﬁen
those k, for which xk = @, can be easily identified: if l“i:ukvi, 1:l'um;q“i

- cannot fulfﬂl both defining conditions in the definition of the set L", on
t.hev other hand, if for each i likic'-‘kir then XE is not empty. Therefore the

set of those k, for which XX contains an element is
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K = KqxKoxeeixKy, -
vhere

Ky = €k | LQupd = €k | rygp=1d

The sets Ky are of course just another way to describe the ‘1"'elelents in

the rows of the U-1-matrix R.

If each set XK has a smallest element LK (in the partial order on the
Lattice X1x°~'-xX6), 1. e. if the sets uj\ljj have smallest elements, then

these smallest elements LK correspond to their sets XK one-to-one by the

formula
xk = € x | xet and 2Lk 3,
or

xk = Cx | ks

}, if the set U has a greatest element u.

The above question for a representation of X as the union of the minimal

nusber of sets in the form of cartesian products is then equivalent to

asking for all minimal solutions of (1), which are just the elements iﬁ:for
kex'. |
In the given example, the elements (0,5), (1,43, and (3,0) are the minmal

solutions.
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a

We have seen (formula (4)) that all sets XK are of the form Xp for some

sequence p. Hence and from characterization 2 follows -

Characterization 3:

=" T | v
pe€0,1,...,030,

and lié;x

xa-

" Again, Llike above, we can prove that the maximal sets among those xe_uith

_ xé;x are essential but all other Xp can be omitted, and we have

Characterization 3':

pet0,1,...,m00,
ng, and

‘E is maximal

Here, "maximal™ means maximal with respect to set inclusion among all sets
{e_uhich are subsets of the solution set X. The set of subsets %E over
_which the union in the above formula is taken is equal to the set of sub-
sets xk, keK®, that are used in characterization 2°.

These characterization 3 and 3' of X are dual to the characterizations 2
and Z', respectively, iﬁ the sense that the sequences k which were used
there vere seguences assigning a column index k; to every row index i,
_whereas the sequences p used ﬁere specify a row index Pj (or no row index,

Cif pj=0) for each column j.
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The question left 1s hoq_;aq_1t be dgéiﬁed’whethcr for » givéhrgequgnce‘g
the set Xp 18 a subset of the solution set’ x.' We shall answer this
question in terms of the matrices tg;p. '

From (4) it follows that rpjjtl)-‘l for each j, if _g:xg, but also ryj(x)=1

“for all 1 for which 1,,§;tpj,, f. #. R(x) is greater than or equal to the
matrix Ry defined by L

(RB)”!‘I <=> lijglpj‘j.,
If gg is not contained -in the matrix R, this means that the requirement
) thlpjj is in conflict with the requirement XjEu;, for some j, and X, is

B
empty. Otherwise there is always some xeX, such that R(x)=R,. (The

23 ) A
definition of RE ensures that (qe?ij=1 if li5=ﬂ.) Thus, if the columns of
-!E do not cover the set {1,...,m}, then xegx. On the other hand, if they

do, then this holds a fortiori for all matrices R(x), xeX,, and %é;ﬂ.

Like in the case of the sets XE, the sequences p for which the sets XE are
empty and can surely be excluded, can be described concisely: We have just
seen that KE is non-empty if and only if %E;R’ i. e. if and only if

lpjj(: uj for all i, j. e, if rpjj=1 for all j. Therefore the set of those

p for which X, contains an element is
PqxP2x"**xPp,

where

PjS(pllpﬁuJ’}S(p'rpjfl ).

The sets Pj are again just another way to describe the matrix R.

Note that pePqx---xP, does not imply that xé;x.
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* Thus 1t the sets Wy(3) ;u ¢ 15475m | L424SLy5 2, OSiSm, are the possible
»eolyn_n sets corresponding to column §, 15jén, then P, the set over which
© - the unfon in characterization 3 is teken, can be characterized by a kind of

generalized set covering problem in the tollowing. way:

Seneralized set covering problem
For each 15jSn a chain 30 = ¢ ), M), ., l.j‘j) 3} of

subsets of {1,...,m} is given.

The sequence !2-("91(",sztz’,...,llpn(“)), which s associated
with the sequence r(m;pé,;..,pn), where 0§pj§nj, is called o
covering if ' '

Um0 = a, L,
1555n

(Here, a set M of sets is called a chain if in-each pair of sets from A one

set contajins the other.)

The_ feasible solutions of the ordinary set covering problem correspond to
the case: lj=1 and (w. L. 0. g.) u0‘1'>=u,~ for all j.

Fréquently, we shall also call the sequences P coverings.

With this definition, P is just the set of coverings, and we can re-

formulate characterization 3 as follows:

Characterization‘ﬂz

X = P | XB.
p is a covering
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. Since we want to express alsc ctharacterizetion 3' combinatorially, we ari
interested in coverings p, for which xg is meximal. The inclusion order for

the sets X, can be expressed in terms of the sequences p as follous:

x_,_g Xg <> for sl j: uj\t,j,'c Ujllgyy <=
<> Xo= or for all §r Lo ydly,y <==>
. €m> Xo=8 or for all 3: 'ﬂj(j)g"nj(” .

Thus; we are interested in cbver‘ings which are minimal with respect to the

_tol;ouing partisl order:

('91 Q )'_“"p-n(n)) £ ('q1 (1)’_._"qn(n))
itf for -;l j: npj(i>g;;qj(j> .

Ve shall also speak of the corresponding sequences p and g as ordered by
the retation &, although this. ordering is in general only a preorder since
different sequences p and g may yield the same sequences 52 and !!g'

Thus, if the sets m; () yith lUQUj, which yield empty sets X, are

removed from the chains B(J) in the given data of the generalized set

covering problem, we get

Characterization 4°':

X = u Xn.

p is a wminimal cdvering

Example:

For the system of equations of example 1, we obtain the following sets .

noti:

(1) (1) (1) 01 (D] () (D) () () (D)
I . L L L L

1 X X X X X

2 X X ) 4 X

3 X X X X X X

4 X X X X X X
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An X in Line § means that the element i is contained in the corrosponding
set. Since the element & is alvay covered by some lb“’, it need not be
considered. After eliminating it from theitab[e and after renumbering the

sets Hp(j); 0Spss, 1n~1ncrcasing order and identifying equal sets (for each
fixed ) the following table is obtained:

1) o (1) of1) L) ] 2(2) L(2) () ()]
o R . N L L I |
1 X X X X
2 X X X
3 X X X X X

which can be represented in a compact form as follows:

For example, the entry *2* in the third line, first column, means that
Hz“’ contains all those elements i for which the ith entry in the first

column is not greater than two, i. e. the elements 1 and 3.

The minimal coverings of this generalized set covering problem are (3,0),
€1,2), and (0,3), which yields by characterization 4' the following minimatl

representation of the solution set:

X = X(3,00 U X(1,2) VU X0,3) =
= [3,5Ix(0,7] y [1,51x[4,71 y [0,5Ix[5,7] .

Thus, the minimal elements of the solution set are (3,03, (1,4), and (0,5)
(see figure 1). (Remember that the sets have been renumbered, and therefore
x(3,°) is the set which was formerly called X(z’o), and so on; see the

values given after equation (4) for this example.)
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There 18 & voriation of ehancteriution 6, uMch is useful for munratine

all solutions of the system 1), since it repruents X as a h]oin union

of rectangular sets (sets in the fors of Certesisn products).
Assume that for all § the sets Ly, OSiSm, are relabeled such that

lngluC "‘Cl-,jCUj (equal sets Lyj occur only once in this sequence),
‘and that Lyzg (1. e, 1€P5) if D>my. Then we can write the set uj\lyy,

which occurs in fo_nuu €4), as 8 disjoint union

(5) uj \ lpj s “pﬂ,j \ tpj) U “D*z,j \ l'pﬂ,j) U ese U (uj \ l.jj),

provided that the set (uj \ Lpg) is not empty, 1. e. pSmj.

We define for each sequence p=(py,...,Pp) with OSij-j

X(g) = (lp1¢1,1 \ lP11) x (~lng1'2 \ lpzz) X seo (lpn*‘l,n \ lpnn),

where l.j+‘|’j is‘ set to uj, for all j.

Then it follows immediately from (4) and (5), that XE is representable as

a disjoint union:

XRS u X(n), where m=(mg,...,0).
psqgsa '

Characterization S:
X, the set of solutions: of (1), is representable as the disjoint
union of non—empty sets:
X = 9 X(E) .
. pep
20

Proof: peP and p<q implies geP (P is the set of coverings). That X is thus
representable follows then from characterization 4 and the preceding
equation. That the sets X(p) are non-empty and that the union is disjoint
follous from the definition of X(p). '
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A‘yotg‘thg sets in this representation are not the minimal number of disjoint
_rectangular sets (sets in the form of Cartestan products of intervals).

 Example

from the first table of the sets»lb(j’-given for the data’of'exanple 1
ufter characterization 4' wve obtain after identifying equal sets Ljj and

- reordering-and renumbering the sets lgj in increasing order in each column:

'61) .{1) .51)‘ '§1) ‘l0<2) '1(2) .2(2) "3(2) "‘(2)
1 XX X X X.
2 » ’ X  § X X
3 : X X X X X X
4 X X X X X
tij ’ tplls 10,2) 10,3)] © 10,1 10,4 10,5 10,7

n=3, m=b, Lgq=uq=00,5], Llgz=up=[0,7].

The set of all coverings is
p={ 3,00, 3,1, G,2), (3,35, a8, 2,2), 2,3, 2,8,
1,2, 1,3, 1,8, 0,3, (0,4 3,

and we get X represented as

X = 3,51x00,1) y [3,51x[1,4) y [3,51x[4,5) u [3,51x[5,7) u [3,5Ix(7} u
£2,3)xL4,5) y £2,3)x05,7) u [2,3)x{7> v [1,2)x[4,5) v [1,2)x(5,7) u
[1,2%(7} y [0,1)xL5,7). y [0,1)x{7).



3. Algorithms for
‘ covering problem

enumerating the minimal solutions of the

In this section, two algorithas for enumerating the ainimal solutions of
the generalized set covering problea are presented, and one of them will be
specialized for the set covering problem in section &4, The execution of the
algorithes is fllustrated by some examples. The set covering problem, 1. e.
the problem of minimizing a certain function over all possible coverings,
is a well-known problem. Since it is NP-hard LGarey and Johnson 19791, the
.nethods for its exact solution are basically (implicit) enumeration
methods, and therefore ideas from those methods can be used in the
algorithas of this section. For'exa-pli; in certain cases reductions caﬁ be
applied to the data of a given problem to transform it into a smaller
equivalent problel._fhe‘reduction rules shall not be treated here; they are
discussed in almost every text on covering problems (e. g. Garfinkel and k
Nemhauser (1972, section 8.3: reductions, in chapter 8: the set covering
_and partitioning problems]; or Syslo, Deo, and Kbvalik [1983, section 2.2:

covering algorithmsl).

3.1. An algorithm for enumerating the minimal solutions of the generalized
set covering problem -

In the following we shall assume that for all j the sets M (3) for which
lpj:“j are removed from n‘j), that the remaining sets in n(j) are
renusbered such that Mg<idCmy (”C...Cﬂ.j(”, and that mo¢i)=8, (Otherwise

~_the elements in Mg{J) are always covered and can be eliminated from the

ground set {1,...,m)).

€ach set ﬂp(i) for p>0 has a critical set of elements which distinguish ‘
this set from the next smaller set in m(i). qp(i)\np_1(i>, If in a covering
_p*(P1,.0.,Pp) each element in some critical set Mo 37\Mp 132 is covered

by at Least one other set than lbj‘j), then pj can be reduced and p cannot

be minimal. It is also clear that the converse of this condition is

sufficient for minimality.



Thus, we obtain

Lemma 1: (criterion for minimality of a covering g}='

A covering p=(pq,...,Py) is a minimal covering if and only if for
_each § with pj>0 the critical set Hpj‘i)\npj;{(j’_confqihs an
element vhich i3 not contained in any other 'Dj'(j') (18§*3n,
'),

' Thg algorithm is based on characterization &', and it is a variation of the
fbllouing program, which is a set of nested loops, which enumerates the

sequenc6§,gf(p1,...,pn) in Lexicographic order and selects the minimal

coverings.

for py from 0 to my do
for pp from 0 to m; do

for p, from 0 to m, do
if (p1seece,pp) is a covering
and if it is minimal
then print (pq,...,pp);
end if

end for;

end for;
end for.

The following recursive procedure represents one Level in the set of nested
for-loops of the above program. The test for minimality is gxecuted as
early as possible, and the algorithm attempts to exclude the non-coverings

at an early stage.
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procedure GSCPICY);
€At thh Level, (91,...,;:,.1) are tixed and the procedure will select
the vaiues for py. 2

for k from j to n do

pRaxy = my; :
€ pmaxy will be an upper bound on the pouiblt values of p,. )
end for;

Jor all ' with 1§j°<j and pj.'>o do
T s 3= .p G )\.p ._1(1 ),
( This is the critical set corresponding to j*.
S ecs mes\ gy £
1Sj'<i.°j
j"#i*

. € remove the elements which are already covered }
for k trom j to n do
it ﬂ.k“‘)2cs then .
gje := the smallest p, such that M (k) contains cs;
mp, (k) gust not cover cs, therefore Pk<akjes ¥
pmaxy = min(pmax,, q”--n,

end if;
end for;
end for;
\ . G4,
uncovered := {1,2,...,m \ ﬁj'qn,j it
{ This is the set of the elements uncovered so far. }
it Momax, K) 2 uncovered then

jiks
if j<n then |
pj = 0; GSCP1(jf1);
for pj from 1 to pmaxj do
cs 3= .Dj(j)\nqu ),
{ This is the critical set corresponding to j. )
if csiuncovered # @ then
eSCPICi+);
end if;
end for;
else € j=n ) ,
Pn := the smallest p such that lp(“) 2 uncovered;
~ print (py,eee,Pp);
end if;
else { There can be no minimal covering starting with (py,...,pj-9). 2

end if;
end 6SCP1; -

|
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. Exsmple 2:
_Consider the following peneralized set covering problem, which s presented
in tabular torm as was slready explained in eonnection with example 1:

i: | j: 123

: 45

e: 126
3: 234
&: 331

B H 312
6: -43

“(The entry "=* in the first column means that the element 6 is not covered
by any set\lp(1).)
Figure 2 shows the solution of this problem with the algorithm GSCP1.
There are six minimal coverings p; In lexicographic order, as they are
produced by the procedure, they are:

€0,0,6)
€0,2,5)
€0,4,0)
1,0,4)
1,3,3)
(2,0,3)

Example 3:
. The generalized set covering problem

] e

(1)

o

i B [
-2 W VN
(B R P

: 1
1
1
2

has six minimal coverings p; In lexicographic order, as they are produced
by the procedure 6SCP1 (see figure 3), they are:

€0,0,3,0) ey
€0,1,0,1) Co e
€0,1,2,0) S
€1,0,1,0) g - i
€1,1,0,0 :

2,0,0,0)



il

s 23 :
: =13
23 126 xq=3
3: 234 pmax =4
4: 331 pRax3=
S5: 312
6: -43
j=2:
py=1 py=3
covered: overed:
1,2 2,3,4,
csy={1,2} s1=(4,5
x2=3 pmaxgs2
x3=5 x3=0
j=3:
p2=0 P21 p2=2 p2=3 pa=4 p2=0 p2=1 p2=2 p2=3 p2=0 o=t || p2%2
covered:| |covered:| |covered:} [covered: | |covered: overed: | [covered: | [csp=(2)} | [covered: overed:| |covered:] lcsy=(2)
e 5 2,5 2,3,4,5 1,2,3,4,5,6 1,2 1,2,5 wvas | [1,2,3,4, 1,2,3 22,3,5 | was
csy= csq=® csy=d csy=® s1%0 $4%01,2} [csq4=(1,2)] f::;:::: s9=(1> 51233 | kesy=(® :;::::
csp=0 cs=(5) | lcsa=(2) | |cs=(3,4} [cs2=(1,6) | [cs2=d csp={5) °| [es2=43,4) jcspn® s2=(5) ‘
max3=6 P-nx3=1 pRax3=5 wax3=0 naxz=é x3=5 x3=1 STOP x3%3 x3=3 x3=1 310?-

M e B b P

Figure 2 - the tree of récurtive calls of the procedure 6SCP1 for example 2

1f the procedure has determined that there can be no complete covering with the sets
restricted by pmaxj, pmaxjiq, <., Pladxp, then this is not otherwise indicated except
that the respective node in the tree has no sons. If the procedure excludes some
value of py because the corresponding critical set is already covered, then this is
written in the nodes. (This occurs twice in this example. Actually, as the procedure
is written, this test is executed one Level higher than it is shown in the diagram.)

-92-



‘: | j:1 234
22 113~ =13
&H 211 -
j=2:
p1=0 p1=1
covered: overed: 1,2
jcsqy=0 csq=(1,2)
x2=1 pmaxp=1
x3=3 xz=2
x4=1 x4=1
j=3:
p2=0 p2=1 p2=0 py=1 p2=0
covered: overed: ‘covered: overed: ered:
o 2,3 1,2 1,2,3 1.2,3
csy=d 3% 8¢45(1,2) caqn{1) | csy=(3) |
csp=0 s3=(2,3) L 7 csy=(3) s2%8
pmax3=3 x3*2 pmaxz=2 xz=0 x3*0
pmax,=1 pmaxg=1 xg=1 x=0 xg=1
j=b:
p3=0 p3=1 p3z | [ p3=3 p3=0 p3=1 p3=2 p3=0 p3=0 p3=0
covered:| [covered:| |covered:| Jcovered:| |covered: | |cs3=(3) | lcovered:| lcovered: lcovered:} [covered:
8 3 1,3 1,2,3 2,3 was 1,2,3 1,2 1,2,3 1,2,3
’ Lready
csq=f csq=0 csq=@ csq=@ csq=0 csqy=@ csqy={1,2) csqo(1) | |cs1=(3)
Jcs2=8 cso=0 cso=l csp=l s2=(2,3} covered. csp={2) csa=d : cs2%(3) | [cs2%®
cs3=8 cs3={3) | lcsz={1) | |cs32(2) s3=0 - STOP | [cs3=(1) ]| |cs3=@ s3=8 cs3=P
pmaxg=1 maxg=1 | jomaxy=0 | pmaxy=l %=1 pmax,=0 pmaxyst x4=0 xy=1
| [ ,
P40 4= 40

figure 3 = the tree of recursive calls of the procedure aséri for example 3

The same conventions as in figure 2 are used.
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The procedure has becn.ur1tt§n in i.;ffte théh.r;thér aims to be under~
standable thaﬁ efficitnt;.lf it should bo‘iiptenonttd on a computer, many
simplifications can be made, ond the data structures for the representation
of the sets should be chosen qith'cari. For example, the critical sets cs |
need nog be recomputed each time, but are readily represintable as an array
¢Spj of<lists with Little storage expense. An array count; could be
maintained which counts by.hou many sets each element 1 has been covered‘so‘
far. To simplify the determination of qyj», there could be a two-
dimensional array plinij which stores for each i and j the smallest p such

~ that 1eﬂp(j) (or infinity, if there is no such p).

With these modifications, the Loop ™ for all j' with 15j'<j and pji>0 *

could be implemented as follows:

for atl j* with 1£§'<j and p;>0 do
for k from j to n do
q:=0;
for all i in cspj,j- do

if county=1 then .
q := max(q, p-inij-); -

end if;
end for;

pmaxy := min(pmaxy, q-1);
end for;

end for;

_This part of the program will then take at most 0(mn?) steps, taking the
upper bound of m for the number of elements of the critical sets. Neverthe-
less, the algorithm is not efficient. If the test

"if v "pmaxk(k) 2 uncovered "
jSksn

is passed it is not guaranteed that a minimal covering starting with

(p1,pz,...,pj-1) will be found, except in the case where all critical sets

" . are of cardinality 1. In this last case the algorithm cannot run into dead
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ends and the time can be bounded as follows: When the algoritha has been
successful in finding a minimal covering p, then at each level j§ (from 1 to
n=1) on the chain of recursive calls of the procedure, there have been at
wmost plaxj+1§l+1’recursive calls of GSCP1(j+1). One of them has lead to the
minimal covering p, the rest of the cells have either returned after the

failure of the test

“ift "P'“k(k) = uncovered *
jSksn

without any further recursive subcalls or they have lead to other minimal

coverings. Therefore, at most (n-1)(m+1) plus one (for the call at level
j=1) calls can be booked on the account of the minimal éovering p, each
call taking at most 0(n2) elementary steps. This yields a‘tiﬁe bound of
0tman>) per detected minimal covering. This time bound, which holds even
only in this special case, is very high, espécially when there are many
_minimal coverings. In this latter case, the ;nticipated test for covering,
which takes the most part of the work in the procedure, might be omitted,
since it will be satisfied anyway most of the times. In detail this means
that the two loobs " for k from j to n ", where the pmaxy, are determined,
are executed only * for k:=j ", and the test

"if v “pmaxk(k) = uncovered *
ik

A

n

is omitted except when j=n. The procedure takes now only 0(mn) elementary
steps. It is also conceivable to use both versions of the nrocedure
together: the abbreviated one for small j, and the extended ciie for the
Llast few levels (j=n-s, n-s+1, ..., n-1), when the work for the extended
version is not so targe (0(mns)), but the time savings through tﬁe anti-

cipated test can still be considerable.

The sequence in which the pj are considered in (pq,...,r,) may be chosen
arbitrarily, and it certzinly plays a role in the per -mar-e of the

algorithm.
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3.2. Another algorithm for snumerating the minimal solutions of the

generalized set covering problem

There is an algorithm based on chiracterization'Z', which is dual to the
algorithm in the preceding section. In principle one approaéhes the problem
as in the previous algorfthl {which is based on characterization 4'),

. -generating all sequences keK in a systematic way, and testing at the end
whether the generated solution set is maximal or notylﬁ.ie. whether the
generated covering is minimal or not). However, since each minimal covering
is to be enumerated only once, there should be a one-to-one correspondence

between the sequences k generated and the minimal coverings.

Let a minimal covering p=(pq,...,p,) be given. With this covering we can

uniquely associate a set of pairs

k() :=( (ij,j) | pj>0 ),
where, for each j with pj>0:

ij is the smallest number (the critical element ) among the

3 elements of the critical set "pj(j)\"pj'1(j) which are

covered only once.

(That there is such an index ij follows from the minimality of the
covering.)
(Since the ordering of the elements i is irrelevant, this condition is

somewhat arbitrary.)



Example:

In exemple 2, (1,3,3) and (1,0,4) are ainimal coverings, which can be

represented as follows:

Y
(7]
1]

it

]

'S

1: 1: X

2: Xo 2: X
-3 X - B X

&2 Xo &: o

5: oo 5: o

6: X 62 o

k{p)={1,1,03,2),(5,5)3 k(p)={(1,1),(,3)
gef(1,0,2,0,0,3) 5£f(1,0,3,0,0,0)

"Here. the three columns represent the elements pf the th}ee sets Hp1(1),
"92(2)' and ﬂ93(3), and the X's are thé critical elements of those sets. In
the fifst example, each set contains only one critical element that is
covered only once, and hence k(p) is uniquely defernined. In the second
example, the set Hp1(1) contains two such critical elements, and hence
(1,1) could be replaced by (2,1) in the set Eﬁg} if condition (8) did not

. ensure uniqueness by requiring to select the smallest possible 1j.
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For each 1, 151w, there s at most one pair (1,§) in kip). Thus, k(p)
could be regarded as lplrthi ‘sequence (C(4,k{)) of elements from
{1,...,n}. These partial iiqﬁcr_aus are l‘ljd given 4n the above example,
where entries ki which an,'mt present are represented as zeroes. With such
a partial sequence k, 2’ unique set XX canvbo associated juit as with
ordinary sequences ke(t,...,n}® (cbmaro (3)):
3 XK = (x1,.'..,x,,’) | for all 1§i8n: x5 € uj;‘and
' for all (i, kidek: xy; £ Ly, ).
_ Conversely, by formula (4), » sequence pe(0,1,...,m" s gerierated by a
partial sequence k and the set XK just as by a full sequence k. Thus, a
one-to-one correspondeﬁce between those sequences k and the’ desired‘
solution sets has been established. Wowever, not for all partial
‘sequences k, the sets xk are solution sets, or, equivalently, not every
sequence p generated by a partial sequence k is a covering. Even if p is a
covering, it need not be minimal, or k need not éonforn to condition (8).
Only when all these conditions are satisfied we can sccept k. Every partial
sequence k satisfying these conditions can be extended to a full sequence
by i:hoosing each of the remaining k; to be any j for which "Dj (3) covers i.
The set XK does not change when this extension is made. The set of all
those extended sequences k is just the minimal s?t K' (cf.

characterization 2° and the'discussion preceding 1t).

In the following algorithm, which is presented in a way analogous to 6SCP1,
the partial sequences k are represented as sequences ‘

(kq,..0,kg)€00,1,...,n3", utere ky is set to 0 if kj is not present in k.



procedure GSCP2(1);
€ At this level, (k,,....k,-1> are fixcd and the procoduro will select
the values for ky.
If i=m*1, however, the procedure tosts whether the segquence p

gencratod by k=(kq,...,kg) i3 & minimal covering and whether k
tonforms to condition (8). ) '

3t iSa then
Ific v ) then
T

kg s= 0; € { is already covered. )}
6SCP2(i+1);

else '
for all ki from 1 to n with kjélky,...,kj-13 do

if fen, 1‘*1’ then
Py :* the smallest p such that ie!p(ki)-
I Cit<ilkyorod nomp, (ki) = @ then
6SCP2(i+1);
else < 'pki(ki) would cover the critical element of
some other critical set. }
end if;

Pk := 0; { reset Pks to its previous value )}
end if;

end for;

ki :=0; yet-to-be-covered := yet-to-be-covered y £i};
GSCP2(i+1);
yet-to-be-covered = yet-to-be-covered \ {i);

{ restore previous value }
end if;

etse { i=m#1 )
for all i'eyet-to-be~covered do

it ¢1 u(nlpj(j) € in this case p is not a covering; )}

or if i' is contained in some critical set lpj(i’\npj-1(i)
for some 1$jdn with pi>0, but there is no other j',
15580, 3°#1, such that i'em, (37
{ in this case k does not conform to condition (8),
since i' is covered only once arg hencé the
critical element ij of Hpj‘j) is i' or smaller,
and p has already been output before with kij'j- }
then return from procedure;
end if;
A end for;
€ (py,+..,Py) has passed all tests. )
print (p1,.,.,pn);
end if; f

end €5CP2;
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- This procedure uses some global variables which must be initialized as

follows:

program initialize-for-6SCP2;
for § from 1 ton do
pj = 0;
end for;
yet-to-be-covered := §; { The set yet-to-be-covered will contain

those elements i which are left uncovered
4n the procedure at level i; these '
elements must eventually be tested for
being covered. )
6SCP2(1);
end.

The tree of calls - of the procedure for the data of example 3 is given in

figure 4.

What hés been said in connection with the programkin style and the
implementation of 6SCP1 on a computer applies also to 6SCP2. The tile can
be bounded by 0(mn) steps per call of the procedure and by 0(m) for the
final test (when i=m+1). The total tinerf the program can again only be

bounded exponentially, even in relation to the produced output.



1:1 p "1

k=1 | k2= =3 @ k=1 >3 [o=3 D
1=1 231 333 1:1 2:1 333
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covers overs

1, but , but

k1#0. | kq#0.

k3=2 3=3 kss } k3=0
z=1 3:1 ) o ¢

overs| [covers

1, but| |2, but
1”. 2’0- } @

figure 4 - the tree of recursive calls of the procedure 65CP2 for example 3

e 33 | 3=z | f3=3 E-o:] k3=C E g
=19 = 2= =1 "toe=2l b D
“0101" was| 3(3) (%’ Cs £ - S

If the procedure sets ki:=0, because the element i is already covered then the
corresponding node is drawn in a thick rectangle. The parallelograms are the nodes
where ki is set to 0, but i is not covered yet, but is included into the set
yet-to-be~covered. At the last level (i=3), these nodes are omitted (deviating from the
procedure as given in the text), becsuse if the element 3 is not covered at this level
then it will not be covered at all.

At the last level, the test on the elements in the set yet-to-be-covered are executed.
If the generated sequence p is not a covering, then this is indicated as "no c.”. In
one case (when gy(a,ot§;>, the previously uncovered element 2 is the smallest critical
element in the set My but kp=0, contradicting condition (8). The detected minimal
coverings p are given in the circles.
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4. Special case (a) laisun (minsum, resg;>'!ggofioni )

Nere we have Xq=...=X=Bqx...=By=:B, where (8,0,8) is a lineorly'ordored
group, and in (1) €4(x) = a4;¥x - for given elements ajjcB. The most
common examples are the real groups (R,+,S) and (R*,,$) and subgroups of

1 it;lpecialize the results of the preceding sections for this pfoblel we
~obtain | |

Iij = € xeB | agjoumb; 3 = C o557 e 3,
and, with cijztaij‘1|b1, o

ujj = CxeB | xScyg ), and

Ljj = € xeB i x<cyj 2o .

uj = N ujj = xed { xécj 3, where cj := ain c4j.
151%m 15isa

" For the sequences g_uiih non-empty %E (see the discussion after the
characterizations 3 and 3') we obtain

Py=Cp | lijUj y={p |'°pj§°j 3.
since aluays cpj2cj, we can write

_In the generalized set covering problem referred to in characterization &
there is only one set in each gfj)={¢,Pj}, apartvfrda thé empty set Ho(j).

M :={p 1 15pém, cpj = win c45 3,
’ 15i8m

writing Mj instead of H1(j).



Therefore, in this case, the oenornli:ed set eoverinq problen referred to

in characterization & reduces to the

Set covering problem
For each 15550 » subset My of {1,...,8) is given.

The set !S;(1,2,...,n} is called a govorigg if

u = {1 oo l'-}-
pcPN

We are interested in coverings which ire minimal with respect to

set inclusion.

In contrast with the formulation of the generalized §et covering problem,

we have written sets P§{1,...,n} instead of sequencés pef0,130,

Either of the algorithms for the generalized set cover{ng problem described
above can be specialized for fhe set covering problem, but there is a
simplification only for the program 65CP2, uﬁich witl be described now.

In its formulation the sets K; fron the discussion after

characterization 2' are used. We have (see also the remark after

characterization 3'):

K{'(j'cij§c1°}={_j|cijSCj}={j|i€Hj}.

A necessary and sufficient condition for the existence of a solution of the

system (1) is that no set K; is empty.

As a rather straightforward specialization of 6SCP2 with slight variations
in formulations, the following procedure should not be difficult to

understand.



procedure SCP({); ‘ : :
€ At this level, the values of k1,...,k1-1 are fixed and the procedure
will select the values for ky, and P1-1 is the set generated by
(ky,000,K§1,0,04:,0).
If i=m+1, however, the procedure tests whether the set P. generated by

k-(kg,...,k.) is a nininal covering and k conforas to condition (8). )
3t iSm then

31 Pio1n Ky # 0 then
ky :=0; € 1 is slready covered. )
Py == Pjuq;  SCPCUI®);
else
for all kyeKy do
it (1'<i|k1|¢0} n 'k = § then
Py = P{-1U(k1}, scPli+);
end if; '
end for;

ky := 0; yet-to-be-covered := yet-to-be-covered y {i};
Pj == Pjaq;  SCPCi+1);
yet-to~be~covered := yet-to~be-covered \ {i);
’ { restore previous value }
end if; - ,
else { i=m+1 }
for sll i'cyet-to-be-covered do
it lP.ﬂKi" < 2 then '
{ 4' is not covered at least twice in y LR
jep
return from procedure;
end if;

‘end for;
print (Pg);
end if;
end SCP;

Before'éalling SCP(1) initially, the sets yet-to-be-covered and Pg must be

set to 0.
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1f the Linearly ordered group‘i'ii bounded from below by some element 2z,
then the procedure produces all minimal colﬁt‘lom of (1). Setting for each
PaG{1,...,0) which is reported

xj-{cj' 1t 3chy for all 18jsn,

z, if jery,

one obtains a List of the minimal solutions.
The largest solution 13 the vector (cq,...,c,), if the solution set is not
empty. - |
(Analogous results are of course obtained for the minsum problem with a
Linearly ordered group bounded from above, the set of maximal solutions,

and the smallest solution.)

Since the set of minimal solutions correponds one-to-one to the set of
minimal coverings, and the Latter set is a set of pairwise incomparable
subsets of {1,...,n} (an anti-chain), it follous by standard combinatorial

results that the number of minimal solutions is not greater than

(ln72J) = znvg -

This bound can however only be attained tightly if the minimal coverings
are either all sets with [n/2] or all sets with [n/2] elements, i. e. if m

is equal to the above number or greater.
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S. Special cese (b) Maxmin (minmax, resp.) equations

Nere we have X¢=...=X =Bq=...=B =:B, where (B,5) i3 a Linearly ordered set,
and in (1) f45(x) = minCay5, x) for given elements ayseB.

1f we specialize the methods of the preceding sections for this problem we
obtain

€ xeB | xSby 3, if aypby

ujj = € xeB | minCay;,x)8b; 3 =
} JeX°% B, if ‘iiji

~and
: { xeB | x<by 3, 1f aj;2b4

Lj5 = € xeB | minCaj;,x)<b; } =
) R 8, it 835<by

Thus, for each 1, éﬁ;re are only two possibilities for the sets lij. For
the sequences g_uitﬁ non-enpty KE (see the remark following the
characterizations 3:and 3') the possibility lij=B can be excluded,.since
then we can never have L4;Cuj. Thus, with

Py =dLp | lprUj ),

we can conclude: ieP; => Lj; = { xeB | x<b; 3.
Therefore, in the generalized set covering problem referred to in
~ characterization 4 we have:

A4 = (@ y € )| qepy 3, with

mG) = € a0 ) 1SS, LGy 0 =

Ci* | 15i'Sm, i'ePj, bjeshy 3 =

€i* | 15i'Sm, bs:Sb; ¥ N Py,

The.first set in this last intersection is independent of j, and the second

set depends only on j.
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Example 43

Let B be the set R* of non-negative real nusbers, let »=6, n=5, and let
the matrix A and the vector b be defined as follows:

12 10 20 20 10 10
LRIk
Wp=| g 333 ben=]3|

22333 13

11313 3

The upper bounds on the sets uj are then

uji: 10 =1010 8

and we get the following data for the set covering problem:

§: | §: 12345
1: 2232~
23 1t-2-2
3: 11=-=-2
4: -=-11-
S -=-111
63 -=-1-1

The lines in the table form three groups: Line 1; lines 2 and 3; and lines

4, 5, and 6, corresponding to the three values of the right sides b;.

In the procedure 6SCP2, the order of processing of the indices i in the
. hierarchy of recursive calls is arbitrary. If they are processed in order
of non-increasing b;, then an anticipation of the final test, whether a

minimal covering has indeedrbeen produced, is possible:
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Assume that the procedure is at some instant clllid at level 1, and all
indices i' with by:>b; have deen: procnud, 1. v those kp are tixed. The
‘procodure vill now select some &y ond npuo set 'bki(k‘) which i3 the
smallest set of the form My(ki) that covers the element i. If there is such
a set at atl, i, e. if 1cPk‘ then .

Moy, 1 = € 151%5m | bysdby 3 0 Py C C151'%n | byesny 2,

f. e no i° uith byi1>by can boce-o covered at thia Level, nor at any Lower
_level. Therefore the test for covering which is nornally executed at the
vend for each 1'cyet-to-be~covered can already be carried out at this Level

if byodby. ‘

We can thus conclude that if the indices | are processed in orde?fof'
non-increasing by, then each block of equal b; can be processed completely
before control is passed to the Level of the next Lower bj. It turns out
_that the processing of one block of equal b; involves just one set covering
problem. These facts are refleéted in the following procedure, which Looks

very short and elegant but uses a subroutine for enumerating all minimal
solutions of a set covering problem. A specialized version of procedure

65CP1 or procedure SCP can be used here.

Let's assume that the set {(by,...,b,) contains r different values:
beq)>b(2)>***>b(g)>***>b(p), and define
Ics) 2= € 1 | by=begy 3.



procedure WAXNIN(s);
€ At this level, the procedure will select the sets which cover Iggy. }

I' = Clelgg) | 1¢ 0 Pj }, ( thc set of uncovered elements )
p§>0
=L | py=0

for all minimal solutions J(,ﬁ;l‘ of thc sit covering problem

ur 21
Jedcsd

for all jel¢g) do pj :=s; end fof;
Af s<r then MAXNINCsS+1);
else print (pq,.+.,Pp);

end if;
. for all jel¢g) do pj := 0; end for; { reset to previous value. )}
end for; '

end MAXMIN;

P1seeesPp Bust be initialized to O before the call to MAXMIN(1).

1f the set I' is empty then there is only one minimal covering: J(4)=8, and
control passes sgraight thréugh to the next Level. ’ .
The condition J(,ﬁ;J' is not necessary for the definition of the set
covering problem but helps only to make it smaller, because a set Pj with
jtJ' could not cover any element in 1I', since the elements which might have

been covered by P; are already removed from I'.

' Thglvariables pj are to be understood in such a way thif their values now
mean the parenthesized ordered 1ndice; of b:‘ |
Xp = € (xq,eeexp) |
for atl 18§én: ijb(pj) if'pj>0; and xj€u; };

.. Figure 5 shows the tree of calls of procedure MAXMIN for example 4.
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Figure 5 = tree of calls of the procedure MAXMIN, for qxapple 4

Each node corresponds to a call of the procedure MAXMIN; in each node the local set
covering problem whose minimal solutions have to be determined is given: The rows
are labeled by the elements of I', and the columns are Labeled by the elements of
J'. An entry X in some place in the matrix indicates that the element which cor-
responds to the row is contained in the set P corresponding to the column. If the
set I' is empty this has been indicated as "-". The children of each node are
Labeled by the minimal covering solution to which they correspond. In the last row,
the sequences (pq,..,ps) which are produced by the program are given.

The data of the problem is repeated in the upper left corner, but only the sets Py
and the division of the rows into groups with equal right-hand side by is given.

-y
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_ If,the set 8 is bounded fron below by some element z, then the procedure
will report the minimal solutions of (1) as the elements (b(p1),...,b(pn;),

with the convention that b¢gy=z.

When [I¢g)|=1, then |I'|S1 and the set covering problem becomes trivial.
The procedure can then be coded in the following way, which is sinﬂllr to
procedure SCP. The gets

K1'(j|‘l€?j}'(j_| l”C\lj}

are again used.

é
I

' procedure MAXMINTUs);
€ l1¢g)1=1 and I¢qy=Cid. 3
{ At this level, the procedure will select the set which covers . )

HKincil Pj>0 3 # @ then
if s<r then MAXNINT (s+1);
else print (py,...,pp);
end if;
else
for all kjeKk; do
Pky = 8;
3f s<r then MAXRINI (s+1);
else print (pq,...,pp);
end if;
' Py = 0; { reset to previous value. )
end end for; -
end iF;
end JARNLET




Lot Nim,n) yo the maximal number of minimal selutions that a system of
saxmin equations of size mxn may have. The sbove algorithe can be use to
estimate this number, For the purpose of deriving an upper bound, I sssume
e Lo 0. g. that all by are different and that bydby>s«=>b,.

Note that the behavior of tﬁo algorithe and hence also the number of
sinimal elements reported 1s completely determined by the sets K. Let's
call this number N(Ky,...,Kg), then N(m,n) is defined as

N(l,l‘\) = nax N(K‘,---.,K.).
tor all i:
KGO, ...,

At each call of the procedure there are two possibilities, corresponding to
the outermost alternation in the procedure: either the procedure passes
control straight through to the next level, or it tries all possibilities
in K;. Suppose that (Ky,v..,Kg) is a family of subsets qf {1,...,n}. Note
that {jlpy>0) = {kq,k3,...,k{-93\(0} at level i. The lasf Level in the
hierarchy of recursive procedure calls is the level m. The number of calls
to this level is equal to N(Kq,...,Ky-1). Lets assume that the number of
calls where K.n{jlpj>0} is empty is a. Then in these calls the procedure
will output [Kg| minimal solutions, and in toe remaining catls it will

output one minimal solution. Thus we have

NKg,oeeKp) = 8= |Kpl + (N(Kg,.ou,Kpoq)=ad"1 =

N(Kq,eou Kya1) + asCiRgl-1) .

The number a is the number of possibilities that no el:ment of K, has been

selected in the first m-1 steps. It can be written as follows:
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a .. "(K‘\K.,-o-,‘r1\‘.) s “(.“1,“"‘n'> .'
Here N(m=1,0) is of course 0, unless m-1=0,

- Putting these results together gives:

‘ "‘k’,v--,‘-) 5 "(K1’-QQ'K-1) + “("1,""‘.')'("."1)-

Using induction on m, we obtain:

NKy oo k) S N + T NG=1,n=1K5D = CKk4]=D),
2815w

or, since N(K9)=|Kq],

A10)  N(Ky,.eo Kpd $ 1+ NCGE=1,n=|k; D= CIK;]-1),
151w

if we set N(O,n)=1, for all n.

By taking the maximum over att (Kq,...,Kp) with Kﬁ;{1,...,n}, and sefting
dj:=|K;]:

an - Nmn) $1 4+ max I NCGi=1,n=dy)=(ds-1),
(d1 ’dz".-’d.) 1§i§- -
~ 13disn
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This bound can still be enhanced, by the following observation. If two sets
Ky+ and K3, 1'<i, are equal (or more aenernlly; if K1n§;R1), then
N(K1,...,Ki!,...,K1-1,K1,K1+1,...,K.) =

= N(KYyeoasKitpooesKimt Kit1peoe,Ky) =

= N(KYpeoasKityana, Kial Kit1pooe,Kn {11,
For if Kji=K; then at level 1 the case K1ﬂ(jlpj>0}#l can never occur,
because some pj‘uith jek1|S;K1khas’been set to i' at level i'. Therefore
nothing changes in the number of minimal elements produced, if Level 1 {s
omitted altogether. Adding a one-element set at the end again changes
nothing.
Therefore we can always assume without loss of generality that there are no
equal set; in (Kq,...Kg) except sets of cardinality 1.
In the transition from inequality (10) to inequality (11) for
N(m,n)=max(N(Kq,...Kg)) it suffices to take thé maximum over all sequences
(K9,...Ky) with no equal sets except sets with only one element. Since
there are (ﬂ) different subsets of {1,...,n} of cardinality k, and since
the sequence (d4,...,dy) represents the cardinalities of the sets .
K1seee Ky, we may iipose the following addifional restriction on the

sequence (dq,...dy) in formula (11):

(12)  for all k22: IGilds=k2] § ) .



The bounds on N(m,n) from formula {11) can easily be computed recursively,
if N(m-1,n) and all N(m',n*') with m'<m and n'<n are known.
The problem of determining the bound N(m,n) subject to the conditions (11)

and (12) can be formulated as a transportation problem:

The set of sources is {1,...,n}, with a supply of (ﬁ) units at
source k, for kkz; but with unlimited supply at source 1. There are
a sinks, numbered from 1 to m, each with unit demand. The cost of
sending one unit from source k to sink i is N(i-1,n~k)+(k-1), and
jthe totat cosSﬁ’of a solution is” the sum of the unit costs. We are

- Llooking for a maximum cost solution satisfying all demands.

1f thg shortest augmenting path method is used to solﬁe the transportation
problem, then the problem for N(l,ﬁ) can be solved .starting from the
problem for N(m-1,n) using just one augmenting path, since the costs are
independent of m énd each sink has a demand of-one unit, and therefore the

maximum flow after adding sink m increases by 1.

The values obtained in this way are shown in the tables 1 and 2. The
entries of table 1 are the correct values of N(m,n) for nS4. The first
bound which is not tight is the bound for N(6,5)=29, which can be proved by
enumerative techniques and case distinctions. |
Table 3 disproves a conjecture of Czogala, E., J. Drewniak, and W. Pedrycz

[1982, at the end of section 3], that N(n,n)<2n,
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ngn)

2)

4 .
5
& 10
24
o4
“118
1280
. 648
10 * 1456
1 3432
12 . 8028
13 18285
14 43206
15 101433
1% 32788
17 i - 850825
18 1296372
19 | . 2990840
20 .. . 7083082
21 16701918
v 38672898
23 " 91655159
2% 216458550
25 502530194
26 - 1191761402
27 2817844839
S B 6555357096
29 15555628432
go -+ 36812236936
1 85780483920
32 203664882290
33 48230547337

34 1125422750160
35 2573230788443
36 6334226103548
37 14797659376246

38 351621313038%

: Qr_N(m,n) from €11) and (12)
ce|lm123 &8 87T 8 9 10 N
3 123 4 5:6 7 8 9% W M
' 124 6 9 12 16 20 25 30 36
3 123 81320 28 38 52 66 84
42 1261018:-30 46 64 92 126 168
1261246 42 6 100 152 216 300
63 12614630 54 88 148 236 344 500
R 1261636 68118 208 344 520 796
BET L I 1261842 84154 280 480 756 1212
1262048 102 196 364 648 1064 1772
10: - 1262256122 244 466 852 1456 2500
" 1262 60 144 298 538 1096 1944 3432
128 12626 66168358 732 1394 2540 4608
13: 1262 72 192 424 900 1752 3272 6072 .
e 126 26 77216 496 1092 2176 4172 7872 .
12 6 24 81.240. 573 1308 2672 5264 10056

Table 3: An example
exhibiting that uzt,gsgzss

i Ky

O~NOWVSIWUWN =

1,2,3,4
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An upper. bound 1ndcbendent of m, which might be guessed by looking at the

tirst four columns of table 1, can be proved to be tight for large m:

Nim,n) § n! ;

‘furthermore, N(m,m=n! if and only if mz2"-n-1 .

Step 1: We start by proving that m22N=n-1 implies N(m,n)2n! .

Let w=2N-n-1 and take (Kq,K2,...,Ky) to be the sequence consisting of all
different subsets of {1,2,...,n} with at least two elements in the
following order: K4={1,...,n}; next come all subsets of cardinality m=1 in
arbitrary ordeér, then all subsets of cardinality n=2 in arbitrary order,
and so on; the subsets of cardinality 2 are Last. To complete step 1 of the
proof we shall show that for each permutation (qq,92,-..,9,) of the set
{1,...,n)} there is a sequence (kq,...,kg) by which the algorithm MAXMIN1
produces a minimal covering, and (k1,...,k.) coincides with the sequence
(Qq,e++,qn~1) When the elements kj with k=0 are réloved.

This can be seen as folious: »

At level 1 the proceduré can choose kq=qq to be any of the n elements

in Kq. Among the sets K; with cardinality n=1 there is exactly one set Kiz
which is disjoint from {kq}={q¢} such that the second alternative is chosen
in thé procedure. (In all other cases k; is set to 0.) k12=gz can then be
chosen as any number different from a¢. Among the sets Ky with cardinality
.n=2, which come next, there is exactly one sgt Kis which is disjoint from

{qq,92}, and ki3=q3 can be chosen to be any number different from qq

and q2, and so on.
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Step 2: The inequality N(m,n)3n! can be derived from formula (11) with the
restriction (12) by induction on n. )

For n=1, it is certainly true.

Combining terms with equal d; in the sum (11), and inductively replacing
N(i=1,n=k) by the bound (n=k)!, yields '

Nm,n) S 1+ max I I na-tme0ek-» §
(dy,d2,.0.,dg) 15kSn 1Sisa
18d;Sn di=k
$1+ max ) I otek-1
(d1 ’dz'. l.'d.) 1§k§n 1§i§.
15d;Sn dy=k
a3 $1+ max I 1Cildi=k - tn=k) 1o (k-1 .
(dy,d2,...,dg) 1Sk$n
15d;Sn

For k=1, the term under the rightmost sum does not contribute anything, and

for k22, restriction (12) can be applied:

(14) Nam,n) £1+ ) (:)-(n;k)!-(k-1) = 14+n! ) !E} .
15kSn 15k$n

By induction, this Last sum can easily be proved to Be 1-1/n!, which yields
the desired inequality.

In the transition from (13) to (14), equality can of course only be

achieved if equality holds in (12). for this it is necessary that

m= ] IGNSiSdi=kd] 2 ] ) = 2Men-t .
15kEn 28ksn

Therefore, if m<2N-n-1 then N(m,n) is less then n!.



6. Special cese (c) The set covering problem

Here we have Xq=,..=X =B4=...=B, ={0,1), where ({0,12,3) s the two-element
Boolean algebra (€0,1},V,A,0,1), where V is written for max and A'for nin,

and in (1) fij(x) = Iin(lij, x) for given elements l1’€(0,1}-

If 845=0 then f;;0)=0;
if lijl1 then fij(x)=x.

Hence, with Ki:={j|aijs1}, we can write the system (1) as:

max xj = b;, for i=1,2,...,m,
jeky

1f b;=0, then the corresponding equation is equivalent to the condition
that all x; with jeK; are 0. If all the equations with b;=0 are applied in
this way and the corresponding variables are eliminated from the remaining

equations, one gets, after appropriate renumbering, a system of equations

of the form:

max xj = 1, for i=1,2,...,m,
jek;

Clearly, this is a set covering problem: we are looking for a subset of the
sets {Pj|1§j§n}, where Pj={i|jeKyd, which covers the set €1,2,cc,83. A

solution (xq,...,x,) of the above system corresponds to a covering

€P;x;=12.

The set covering problem has been discussed in the previous section.



Systems of set equations of the form

U‘ (."j n Xj) = b1' for i“'z'---'.'
1$38n :

vhere 5, bij, and the unknouwns X3 ale” subsets of a given common groundvset
s{icln be decomposed into unrelated systems of type (1‘) over the two
element Boolean algebra, by regarding each.element of the set S separately.
fMore generally, if the algebraic structure (B,®) is the direct product of
the linearly ordered structures (Bg,Bs), seS, for some index set S, then
each equation of the systei (1') over (B,®) is equivalent to a system of
IS| ‘unrelated equations of the same form over the structures (Bg,®8;), since
the max aﬁd ® operations as well as the = sign can be taken componentwise.
Thus; the system (1') is equivalent to |S| unrelated systems of the form
(1'), one system for each seS. In the case mentioned above, the set algebra
of the subsets of a ground set S, (P(S),u,n), is the direct product of |S|

copies of the Boolean algebra ({0,1},V,A). (P(S) denotes the power-set of

$J)
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7. Conclusion

AlLL the general results in section 2 éarry over to systems with antitone
fuhctions fgj or to systems uithtthe maximum operation replaced by the

- minimum operation; by inverting the Linear order on the sets X1,X25«00Xn
or on the sets 8¢,8,,...,8,, such sysfens can be transformed into

equivalent systems of the original type.

In section 2, the equalities were treated by splitting them into two
inequalities with "$" and "2" and treating these inequalities separately;
hence the methods and results of section 2 can alsoc be applied to systems
where the equality sign is replaced by "$" or "2" in some or all of the
equations of the system (1), Furthermore, the methods can be extended to

handle also strict inequalities ("<" and ™") without difficulty.

In all the given examples and in all applications that are reported in the
literature, the functions fij(x) can be written in the form 2j;® in some
algebraic structure. It is important to stress that the general results are
not algebraic in nature, but order-theoretic: the} rely only on the Linear
ordering of the ground set and on the monotonicity of the functions fij--
Partially ordered sets B; which are direct products of Llinearly ordered
sets can be handled Like in the last part of section 6. If the isotonicity
condition of the functions fij is relieved, then the structure of the
solution set becomes very complicated, since the crucial property that the

sets uj\lij form a chain (for fixed j) does not hold any more.

Finally we remark that in order to minimize a function of the form

max cj(xj) .or min Cj(Xj)
1$5&n 15ién

with isotone functions cj:xj->c c is a linearly ordered set) over the set
. of feasible solutions described by the system (1), it is not necessary to
enumerate the minimal feasible solutions (cf. U. Zimmermann 1979, 19811,
K. Zimmermann [1982]). However, for minimizing other isotone functions

€(Xq,.00,%p), enumerating the minimal feasible solutions might be useful.
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