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THE GENERALIZED COMBINATORIAL

LASOŃ–ALON–ZIPPEL–SCHWARTZ NULLSTELLENSATZ

LEMMA

GÜNTER ROTE

Abstract. We survey a few strengthenings and generalizations of the
Combinatorial Nullstellensatz of Alon and the Schwartz–Zippel Lemma.
These lemmas guarantee the existence of (a certain number of) nonze-
ros of a multivariate polynomial when the variables run independently
through sufficiently large ranges.
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1. Introduction

1.1. The Quantitative and the Existence Conclusion. Consider a
polynomial f ∈ K[x1, . . . , xn] in n variables over a field or integral do-
main K, and let S1, . . . , Sn be subsets of K. We want to make statements
about the nonzeros of f(x1, . . . , xn) when the variables xi run independently
over the sets Si, under the assumption that these sets are sufficiently large,
compared to certain parameters d1, . . . , dn that are related to the degrees of
the terms in f . We may then derive a mere conclusion about the existence
of a nonzero or a stronger statement about the number of nonzeros:

The Quantitative Conclusion. If |Si| > di for all i =
1, . . . , n, then the number of tuples (x1, . . . , xn) ∈ S1 × S2 ×
· · · × Sn such that f(x1, . . . , xn) 6= 0 is at least

(1) (|S1| − d1) · (|S2| − d2) · · · (|Sn| − dn)

= |S1 × S2 × · · · × Sn| ·
(
1− d1

|S1|
)(

1− d2
|S2|
)
· · ·
(
1− dn

|Sn|
)
.

The product in the right half of the last line can be interpreted as a lower
bound on the probability of getting a nonzero.

Since the product of the terms |Si| − di is positive, an immediate conse-
quence is

The Existence Conclusion. If |Si| > di for all i =
1, . . . , n, then there exists a tuple of values (x1, . . . , xn) ∈
S1 × S2 × · · · × Sn such that f(x1, . . . , xn) 6= 0.

1.2. Assumptions on the numbers di. These conclusions hold under a
variety of different assumptions about the parameters d1, . . . , dn.

To describe these parameters, we recall a few standard definitions. A
monomial is a product xa11 xa22 . . . xann of powers of variables xi (not including
a coefficient from K). The degree of the monomial in the variable xi is the
exponent ai, and the total degree is the sum a1 + · · ·+an of these exponents.
The monomials of a polynomial f are the monomials that have nonzero
coefficients when the polynomial is written out in expanded form as a linear
combination of monomials.

The (partial) degree of a polynomial f in the variable xi (or the degree
of xi in f) is the largest exponent ai for which xaii appears as a factor of a
monomial of f . The total degree of a polynomial is the largest total degree
of any of its monomials. This is what is usually called the degree of the
polynomial without further qualification.

A monomial of f is maximal if it does not divide another monomial of f ,
see Figure 1d.

Lemma X (Generalized Combinatorial Nullstellensatz, Lasoń 2010 [13,

Theorem 2], Tao and Vu 2006 [21, Exercise 9.1.4, p. 332]). If xd11 xd22 . . . xdnn
is a maximal monomial of f , then the Existence Conclusion holds.

The lexicographically largest monomial xa11 xa22 . . . xann of f is defined in the
usual sense, see Figure 1c: a1 is the largest exponent of x1 in all monomials
of f , a2 is the largest exponent of x2 in all monomials that contain xa11 as a
factor, a3 is the largest exponent of x3 in all monomials that contain xa11 xa22
as a factor, and so on. Of course, we may get a different lexicographically
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Figure 1. The forbidden monomials for the various assump-
tions are shown as grey regions, for (d1, d2) = (4, 2). In the
top row, (e1, e2) = (1, 1) was chosen.

largest monomial if we consider the variables in a different order. The results
remain valid independently of the chosen order.

Lemma Q. If the lexicographically largest monomial of f is xd11 xd22 . . . xdnn ,
then the Quantitative Conclusion holds.

1.3. Applications. Lemmas Q and X and their many relatives in the lit-
erature (to be discussed shortly) have numerous important applications to
combinatorics and algorithms. The results with the Quantitative Conclu-
sion are the basis for many randomized algorithms. The prime example is
polynomial identity testing: Here one wants to check whether two polyno-
mials are identical, or whether a given polynomial is identically zero. The
polynomials are given by some algorithm that can evaluate them for specific
values. Lemmas Q provides a randomized test for this property, provided
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some a-priori bounds on the degree can be given. For more applications, see
for example [16, Section 7].

When applying the results with the Existence Conclusion, in particular
the Combinatorial Nullstellensatz (Corollary X1), a nonzero solution of the
polynomial at hand represents some combinatorial object whose existence
should be guaranteed. See Alon [1] for a selection of applications.

The two application scenarios focus on different ends of the probability
spectrum. In randomized algorithms, the “success probability” of finding a
nonzero should ideally be close to 1, but a reasonable probability that decays
only polynomially to zero is good enough. Then, by choosing larger sets Si
or by repeating the experiment, the success probability can be amplified to
any desired level. The precise probability bounds are not so important in
this context.

On the other hand, when it comes to questions of existence, the success of
the argument comes down to whether the probability of having a non-zero
is non-zero or not. Here it is important to know the smallest values di for
which the Existence Conclusion holds.

1.4. Assumptions about the coefficient ring. To a lesser extent, the
various results in the literature differ in the assumption about the underlying
ring of coefficients. All results that we state (with the exception of Lemmas 7
and 8 in Appendix A, which require K to be a field) hold when K is an
integral domain, i.e., a commutative ring without zero divisors. We mention
an even weaker condition under which the theorems hold: K can be an
arbitrary commutative ring, but none of the differences x − y for x, y ∈ Si
must be a zero divisor, see [18, Definition 2.8] or [3, Condition (D)].

1.5. Comparison of the assumptions. Figure 2 compares the strength of
the various assumptions in these theorems, including some conditions that
are defined in later sections.

The lexicographically largest condition of Lemma Q implies the maximality
assumption of Lemma X, but since the Quantitative Conclusion in Lemma Q
is stronger than the Existence Conclusion in Lemma X, neither of the two
results can be derived from the other. We will see in Section 4 that there is
no common generalization.

While maximality is not sufficient to imply the Quantitative Conclusion,
there are some weaker quantitative conclusions that one can derive under
the maximality assumption, see Section 8.

The assumptions in Lemmas X and Q for the Existence or the Quantita-
tive Conclusion are not the weakest assumptions in terms of the monomials
of f that we are aware of. The two boxes in the top row of Figure 1 and 2
correspond to some weakened assumptions, which we treat in Section 6.

1.6. Tightness. A simple family of polynomials shows that the bounds of
Lemmas X and Q are tight: Select subsets Ai ⊂ Si of size |Ai| = di. Then
the polynomial

(2)
n∏
i=1

∏
a∈Ai

(xi − a)
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Combinatorial NullstellensatzSchwartz–Zippel Lemma

Figure 2. Relation between the assumptions on d1, . . . , dn.
The Existence and/or some Quantitative Conclusion is indi-
cated at the upper right corner of each box.

has degree di in each variable xi. It has (|S1| − d1)(|S2| − d2) . . . (|Sn| − dn)

zeros. The term xd11 xd22 . . . xdnn is simultaneously the lexicographically largest
monomial and the unique maximal monomial, (and also the unique succes-
sively largest exponent sequence in the sense of Theorem 2 in Section 6.1).

1.7. Existence conclusions in the literature. This is Alon’s original
Combinatorial Nullstellensatz:

Corollary X1 (Combinatorial Nullstellensatz, Alon 1999 [1, Theorem 1.2]).

If xd11 xd22 . . . xdnn is a monomial of largest total degree, then the Existence
Conclusion holds.

Alon derives Corollary X1 from a companion result, [1, Theorem 1.1]
(which can be proved by the trimming procedure of Proposition 1 in Sec-
tion 5). It states that, if the Existence Conclusion does not hold, and f is
zero on S1×S2×· · ·×Sn, it can be represented in a certain way in the ideal
generated by the polynomials

∏
a∈Si

(xi − a). This statement is analogous
to Hilbert’s Nullstellensatz, and this justifies the name Combinatorial Null-
stellensatz that Alon coined for these theorems. It is of interest in its own
right, see [1, Section 9] or [4], but we will not pursue these connections.
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1.8. Quantitative conclusions in the literature. The following bound
follows by estimating the product (1− p1)(1− p2) . . . (1− pn) in (1) by the
lower bound 1− p1 − p2 − · · · − pn.

Corollary Q1 (Schwartz 1979 [19, 20, Lemma 1]). Under the assump-
tions of Lemma Q, i.e., if the lexicographically largest monomial of f is
xd11 xd22 . . . xdnn , the number of nonzeros is at least

|S1 × S2 × · · · × Sn| ·
(
1− d1

|S1| −
d2
|S2| − · · · −

dn
|Sn|
)
.

As a special case, when all sets Si are equal, we get

Corollary Q2 (The Schwartz–Zippel Lemma1, Schwartz 1979 [19, 20, Corol-
lary 1], see also [16, Theorem 7.2] or [21, Exercise 9.1.1, pp. 331–332]).
If S1 = S2 = · · · = Sn = S and the polynomial has total degree d ≥ 0, then
the number of nonzeros is at least

|S|n ·
(
1− d

|S|
)
.

In other words, the probability of getting a zero of f if the variables xi are
uniformly and independently chosen from S is at most

d/|S|.

The probabilistic formulation with the upper bound d/|S| on the proba-
bility of getting a zero is the common statement of this lemma. The same
holds for the following statements, but for comparison, we formulate all
theorems in terms of the number of nonzeros.

The following statement looks at the degree of f in each variable xi. It
follows trivially from Lemma Q.

Corollary Q3 (Generalized DeMillo–Lipton–Zippel Theorem [3, Thm. 4.6],
Knuth 1997 [10, Ex. 4.6.1–16, p. 436]).

If di is the degree of variable xi in f , the Quantitative Conclusion holds.

Note that f does not have to contain the term xd11 xd22 . . . xdnn in this case,
but the powers occurring in the lexicographically largest monomial of f are
at most di.

As a special case, with a uniform bound on the degrees and all sets Si
equal, we get:

Corollary Q4 (Zippel 1979 [22, Theorem 1, p. 221]). Suppose that f is not
identically zero and the degree of each variable xi in f is bounded by d, and
S1 = S2 = · · · = Sn = S. Then the number of nonzeros is at least

(|S| − d)n = |S|n ·
(
1− d/|S|

)n
.

The following statement puts a stronger assumption on d:

Corollary Q5 (DeMillo and Lipton 1978 [5, Inequality (1)]). If f has total
degree d ≥ 0 and S1 = S2 = · · · = Sn = S = {1, 2, . . . , |S|}, then the number
of nonzeros is at least

|S|n · (1− d/|S|)n.
1see also Wikipedia, http://en.wikipedia.org/wiki/Schwartz-Zippel lemma,

accessed 2022-01-16

http://en.wikipedia.org/wiki/Schwartz-Zippel_lemma
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Note that this has essentially the same assumptions as Corollary Q2 (only
the assumption about the set S is more specialized), but a weaker conclusion.

1.9. Comparison between the results. The relation between the results
in their published form is confusing. This is discussed at length in [3, Sec-
tion 4] and in several blog posts2. Above, we have attempted to present them
systematically in a logical order, irrespective of the historic development.

As mentioned in Section 1.3, the precise bounds for the Qualitative Con-
clusion are of minor importance for the applications, and researchers may
prefer to state their results in a form that is more convenient to apply or
easier to remember instead of the strongest form. Thus, the reason that
Lemma Q, which is, among the statements with the Quantitative Conclu-
sion discussed so far, the strongest and most general, was apparently not
written down before is simply that nobody cared to do so.

1.10. Precursor results. We mention two precursor results: In the first
edition of Knuth’s Art of Computer Programming, Vol. 2, there is a weaker,
qualitative version of the Quantitative Conclusion:

Corollary Q6 (Knuth 1969 [9, Ex. 4.6.1–16, p. 379, solution on p. 5403]).
If f is not identically zero and S1 = S2 = · · · = Sn = {−N,−N + 1, . . . ,
N − 1, N}, then the fraction of zeros of f in S1 × S2 × · · · × Sn goes to zero
as N →∞.

Øystein Ore, in 1922, already established the special case of the Schwartz–
Zippel Lemma (Corollary Q2) when the variables xi run over all elements
of a finite field.

Corollary Q7 (Ore 1922 [17], [14, Theorem 6.13]). If f ∈ Fq[x1, . . . , xn] is
a polynomial of total degree d ≥ 0 over a finite field Fq and S1 = S2 = · · · =
Sn = Fq, then the number of nonzeros is at least (q − d)qn−1.

I have not been able to look are Ore’s work, and I am citing it according
to [14].

1.11. Proofs and extensions. We give the very easy proofs of Lemmas X
and Q in Sections 2 and 3, respectively. Another proof of Lemma X, which
is based on the technique of trimming the polynomial, is given in Section 5.
It is the basis for the generalization of Lemma X in Section 6.2. Yet another
proof of Lemma X is given in Appendix A.

In Section 7, we study the case where both the total degree and the
individual degree of each variable is constrained: This is the Generalized
Alon–Füredi Theorem of [3].

The example in Section 4 shows that for a maximal xd11 xd22 . . . xdnn , the
Quantitative Conclusion in the form (1) does not follow. In Section 8 we ex-
plore the question what quantitative statement we can nevertheless derive.

2https://anuragbishnoi.wordpress.com/2015/10/19/alon-furedi-schwartz-zipp

el-demillo-lipton-and-their-common-generalization/, https://rjlipton.wpcomst
aging.com/2009/11/30/the-curious-history-of-the-schwartz-zippel-lemma/

3In the second edition, these are on p. 418 and p. 620. In the third edition, this exercise
has been replaced by the statement of Corollary Q3.

https://anuragbishnoi.wordpress.com/2015/10/19/alon-furedi-schwartz-zippel-demillo-lipton-and-their-common-generalization/
https://anuragbishnoi.wordpress.com/2015/10/19/alon-furedi-schwartz-zippel-demillo-lipton-and-their-common-generalization/
https://rjlipton.wpcomstaging.com/2009/11/30/the-curious-history-of-the-schwartz-zippel-lemma/
https://rjlipton.wpcomstaging.com/2009/11/30/the-curious-history-of-the-schwartz-zippel-lemma/
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This question is wide open, and it leads to problems of extremal combina-
torics and additive combinatorics.

There are many other extensions of the Schwartz–Zippel Lemma or the
Combinatorial Nullstellensatz. Among them, we mention a “multivariate”
generalization with a quantitative conclusion [6], giving an upper bound on
the number of zeros of f over S1×S2×· · ·×Sn, where the individual sets Si ∈
Kλi are themselves multidimensional, representing vectors or points or other
geometric objects. This is used to derive incidence bounds in combinatorial
geometry.

2. Proof of Lemma X by division by a linear factor

We sketch the proof of Lasoń [13, Theorem 2], which extends the very
simple proof of the original Combinatorial Nullstellensatz (Corollary X1)
that was given by Micha lek [15] in 2010.

Proof of Lemma X. We use induction on d1 + · · ·+ dn. The base case d1 +
· · · + dn = 0 is obvious. Otherwise, assume w.l.o.g. that d1 > 0. Pick an
element a ∈ S1 and divide f by x1 − a:

(3) f = q(x1 − a) + r

The remainder r is of degree 0 in x1, i.e., it is a function r(x2, . . . , xn) and
does not depend on x1. If r has a nonzero on S2 × · · · × Sn, we obtain a
nonzero of f by setting x1 = a. Suppose that r is zero on all of S2×· · ·×Sn.
Then we get a nonzero of f by finding a nonzero of q(x1, x2, . . . , xn) with
x1 6= a. The existence of such a nonzero in (S1 \ {a}) × S2 × · · · × Sn is

ensured by the inductive hypothesis: It is easy to check that xd1−11 xd22 . . . xdnn
is indeed a maximal monomial of the quotient q. �

3. Proof of Lemma Q

Proof of Lemma Q. The proof is by induction on n. The induction basis for
n = 1 is the elementary fact that a degree-d polynomial has at most d zeros.
For n > 1, we write f in powers of x1:

(4) f(x1, . . . , xn) =

d1∑
i=0

xi1hi(x2, . . . , xn)

The sum contains in particular the nonzero term xd11 hd1(x2, . . . , xn). By

definition, xd22 . . . xdnn is the lexicographically largest monomial of hd1 . By
induction, the number N of tuples (x2, . . . , xn) ∈ S2 × · · · × Sn for which
hd1(x2, . . . , xn) 6= 0 is at least

N ≥ (|S2| − d2) · · · (|Sn| − dn).

For a fixed (x2, . . . , xn) for which this case arises, f is a polynomial of degree
d1 in x1. Therefore it has at most d1 zeros, and at least |S1| − d1 nonzeros.
Consequently, the number of nonzeros of f is at least

(|S1| − d1)N ≥ (|S1| − d1)(|S2| − d2) · · · (|Sn| − dn). �
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4. Largest total degree does not imply the Quantitative
Conclusion

We show that maximality (Lemma X) and not even largest total degree
(Corollary X1) is not sufficient to derive the Quantitative Conclusion. A
counterexample is the polynomial f(x1, x2) = x21−x1x2 +x22− 1, describing
an ellipse in the plane, and the sets S1 = S2 = {−1, 0, 1}, see Figure 3. The
monomial x1x2 is a monomial of largest total degree, and the Quantitative
Conclusion for d1 = d2 = 1 would predict at least (|S1| − d1)(|S2| − d2) = 4
nonzeros on S1 × S2. However, there are only 3 nonzeros. (In fact, 3 is the
smallest possible number of nonzeros for any polynomial for with x1x2 as
maximal monomial, see Proposition 5 in Section 8.)

x1

x2

0 1

1

Figure 3. A quadratic bivariate polynomial with 6 zeros on
a 3× 3 grid

5. Proof of Lemma X by trimming

The Combinatorial Nullstellensatz is a basic result, and it appears in a
wide range of textbooks. Many of the proofs that I have seen in my (not very
thorough) survey of the literature proceed in two steps along the following
lines.

The first step reduces the polynomial f to a trimmed polynomial, whose
degree in each variable is now less than |Si|, without changing the value of f
on S1×S2×· · ·×Sn; After this reduction, one can apply any of the lemmas
with the Quantitative Conclusion.

We include this proof because it lends itself to a generalization, Theorem 3
in Section 6.2.

The trimming procedure is described in the following statement:

Proposition 1. Let f ∈ K[x1, . . . , xn] be a polynomial over a commutative
ring K, and let S1, . . . , Sn ⊆ K be sets.

Then f can be transformed into a polynomial f̂ with the following prop-
erties:

(1) f and f̂ have the same values on S1 × S2 × · · · × Sn.

(2) In f̂ , the degree in each variable xi is less than |Si|.
(3) If xe11 . . . xenn is a maximal monomial of f with ei < |Si| for all i,

then its coefficient remains unchanged by this transformation.

Proof. Let si = |Si|. The polynomials xsii and xsii −
∏
a∈Si

(xi − a) have the

same values for all x ∈ Si. Hence, we may successively replace xsii by the
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polynomial xsii −
∏
a∈Si

(xi− a), whose degree is smaller than si, and in this
way, eliminate all powers of xi of degree si or higher, without changing the
value of f on S1 × S2 × · · · × Sn. (Putting it differently, we divide f by∏
a∈Si

(xi − a) and take the remainder.)

If we do this for all variables, we arrive at a polynomial f̃ for which the
degree in each variable xi is less than si.

To see Property 3, we observe that the modification, applied to a term
xe11 xe22 . . . xenn , only affects the coefficients of monomials xb11 xb22 . . . xbnn with
bi ≤ ei for all i. A monomial xe11 xe22 . . . xenn with ei < si for all i is itself not
subject to the trimming procedure, and if it is maximal, it has no monomials
“above it” that could change its coefficient. �

Since the degree di in each variable xi is now less than |Si|, we can apply
Corollary Q3, which has an easy inductive proof along the lines of the proof
of Lemma Q shown in Section 3, or we may pick a lexicographically largest
monomial and apply Lemma Q directly.

5.1. Comparison of the proofs. It is instructive to compare the two
proofs of Lemma X that we have seen. The trimming procedure is essen-
tially a polynomial division, and it reduces the polynomial to a polynomial
for which the Quantitative Conclusion holds. To prove the Quantitative
Conclusion, one applies induction on the number of variables, as in the
proof of Lemma Q (Section 3). The induction step is based on the fact that
a univariate polynomial of degree d has at most d roots. This fact, finally,
is proved by repeated division by a linear factor.

By contrast, the proof of Section 2, which goes back to Micha lek [15],
puts the division by a linear factor at the very beginning. As we have seen,
this makes the proof simple and direct.

In Appendix A, we give another proof. It follows the suggested hint for
the solution of Exercise 9.1.4 in Tao and Vu[21, p. 332], and it is the earliest
proof of Lemma X. In contrast to the other proofs, it works only for fields.

6. Weaker assumptions

There is a way in which the respective assumptions of Lemma Q and
Lemma X can be weakened. The two variations of the assumptions were
developed independently, but they are remarkably similar in spirit, and the
relation between them is analogous to the relation between lexicographically
largest and maximal monomials. The assumptions are not easy to under-
stand, and they are motivated mainly by the fact that the original proofs
carry through with few changes.

6.1. Successively largest sequences for the Quantitative Conclu-
sion. We define a more general notion than a lexicographically largest
monomial, namely what we call a successively largest sequence (d1, . . . , dn) of
exponents: Pick any monomial xe11 xe22 . . . xenn of f . We set f1 to be the orig-
inal polynomial f1(x1, . . . , xn) = f(x1, . . . , xn). For j = 2, . . . , n, we induc-
tively define fj(xj , . . . , xn) as the coefficient of x

ej−1

j−1 in fj−1(xj−1, . . . , xn).
Finally, we let dj be the degree of xj in fj , for j = 1, . . . , n.
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Consider, for example, the polynomial f(x1, x2) = x71 + x61x
9
2 + x1x

2
2 +

x1x2 + x62. Picking the term x1x2 leads to f2(x2) = x22 + x2, and thus
a successively largest sequence (d1, d2) = (7, 2). For the term x62, we get
(d1, d2) = (7, 6). Figure 1a shows another example: (d1, d2) = (4, 2) is a
successively largest sequence with respect to the monomial xy.

Note that xd11 xd22 . . . xdnn is not necessarily a monomial of f . As with the
lexicographically largest monomial, this notion depends on the chosen order
of the variables.

Theorem 2 (Knuth 1998 [10, Answer to Ex. 4.6.1–16, pp. 674–675]). For a
successively largest sequence d1, . . . , dn, the Quantitative Conclusion holds.

Proof. The proof of Lemma Q goes through with straightforward adapta-
tions. We proceed by induction on n. We write f in powers of x1 as in (4):

f(x1, . . . , xn) =

d1∑
i=0

xi1hi(x2, . . . , xn)

By assumption, the sum contains the nonzero term xe11 f2(x2, . . . , xn). By
definition, (d2, . . . , dn) is a successively largest sequence for f2.

For a fixed tuple (x2, . . . , xn) with f2(x2, . . . , xn) 6= 0, f is a nonzero poly-
nomial of degree at most d1 in x1. In contrast to the case of Lemma Q, the
degree can be smaller than d1, but the conclusion that f has hat most
d1 zeros remains valid. The argument finishes in the same way as for
Lemma Q. �

Knuth [10, p. 675] mentions further ideas of strengthening the bound, and
points out the significance in the context of sparse polynomials.

6.2. Weaker assumptions for the Existence Conclusion.

Theorem 3 (Schauz 2008 [18, Theorem 3.2(ii)]). Assume |Si| > di ≥ ei for
i = 1, . . . , n, and assume that xe11 . . . xenn is a monomial of f . If f contains

no other monomial x
e′1
1 . . . x

e′n
n with e′i = ei or e′i > di for each i = 1, . . . , n,

then the Existence Conclusion holds.

Figure 1b illustrates this condition. In the terminology of Schauz, the
tuple (e1, . . . , en) is called a “(d1, . . . , dn)-leading multi-index”. The term

xd11 . . . xdnn is not required to appear in f .
Theorem 3 may be stronger than Lemma X. For example, for the poly-

nomial

f(x1, x2) = x41x
8
2 + x1x2 + x61x

2
2,

which is a sparser variant of the polynomial in Figure 1b, we may take
(e1, e2) = (1, 1) and (d1, d2) = (4, 2).

The forbidden exponent pairs can be written concisely as {e1, d1 + 1, d1 +
2, d1 + 3, . . .} × {e2, d2 + 1, d2 + 2, d2 + 3, . . .}, except (e1, e2) itself.

Proof of Theorem 3. The proof by trimming from Section 5 goes through:
Observe that trimming a monomial xc11 xc22 . . . xcnn creates monomials in which
the powers xcii with ci < |Si| are unchanged. Only the powers xcii with ci ≥
|Si| are replaced by smaller powers. Thus, the monomials x

e′1
1 . . . x

e′n
n that
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are excluded by the assumption of Theorem 3 are precisely those monomials
whose trimming process could affect the chosen monomial xe11 . . . xenn . �

Schauz showed the stronger statement that the coefficient of xe11 . . . xenn
can be represented in terms of the values of f on S1×S2×· · ·×Sn, thus gen-
eralizing the coefficient formula (14) in Appendix A. For further information
and more references, see [4].

6.3. Connections between the assumptions. There is a connection be-
tween Theorems 2 and 3: The assumptions of the first theorem imply the
assumptions of the second. In particular, if (d1, . . . , dn) is a successively
largest degree sequence with respect to the monomial xe11 . . . xenn , then the
assumptions of Theorem 3 hold.

Looking at the top two rows of Figure 1, one can notice some general
pattern: The conditions for the Quantitative Conclusion in the left column
(lexicographically largest monomial, successively largest sequence) depend
on the ordering of the variables, whereas the conditions for the Existence
Conclusion in the right column (maximal monomial, the (d1, . . . , dn)-leading
multi-index of Theorem 3) are insensitive to the variable order.

One can observe (and prove) the following curious connection between
the forbidden monomials, which are shown as shaded regions of Figure 1:
The forbidden terms for xd11 xd22 . . . xdnn being a maximal monomial can be
obtained as the intersection of the forbidden terms for being a lexicograph-
ically largest monomial over all n! orderings of the variables.

The same relation holds between a successively largest sequence (Theo-
rem 2) and the condition of Theorem 3, if the defining monomial xe11 . . . xenn
is held fixed.

6.4. Applications of the generalized results. In the applications of the
Combinatorial Nullstellensatz or the Schwartz–Zippel Lemma and its rela-
tives, the degree bounds on the polynomial f are derived a priori, and not
by looking at a particular polynomial that is explicitly given. Thus, the
added generality offered by Theorems 2 and 3 is only academic and of lit-
tle practical use. Even for the Generalized Combinatorial Nullstellensatz
(Lemma X), we are not aware of a convincing application for which the
classic Combinatorial Nullstellensatz (Corollary X1) would not suffice.

Such an application was indeed given by Lasoń [13, Theorem 4], but it
appears somewhat fabricated. The polynomial can be obtained from some
homogeneous polynomial h(x1, . . . , xn) by replacing each variable xi by some
polynomial fi(xi) (and adding some linear terms). In a homogeneous poly-
nomial, every monomial is both maximal and of maximum total degree, but
after the modification, the terms acquire different degrees, and Corollary X1
no longer applies.

7. Stronger constraints: The Generalized Alon–Füredi
Theorem

Bishnoi, Clark, Potukuchi, and Schmitt [3] give a precise bound on the
minimum number of nonzeros when, in addition to a bound di on the degree
of each variable xi, the total degree d is specified. The bound is not explicit:
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It is formulated in terms of an optimization problem of minimizing the
product of variables yi under linear constraints.

Theorem 4 (The Generalized Alon–Füredi Theorem, Bishnoi et al. [3]). Let
f be a polynomial of total degree d, whose degree in each variable xi is at
most di, where di < |Si|. Then f has at least N nonzeros on S1×S2×· · ·×Sn,
where N is the optimum value of the following minimization problem:

minimize y1y2 . . . yn(5)

subject to |Si| − di ≤ yi ≤ |Si|, for i = 1, . . . , n(6)
n∑
i=1

yi = |S1|+ · · ·+ |Sn| − d(7)

x8x7x6x5x4x3x2x1

y8

y7

y6

y5

y4

y3

y2

y

1

Figure 4. Forbidden monomials for the Generalized Alon–
Füredi Theorem, for d1 = 5, d2 = 4, d = 7. For an example
with |S1| = |S2| = 8, the optimal value N = y1y2 = 18 is
achieved by (y1, y2) = (3, 6).

Figure 4 illustrates the assumptions. They combine the constraints of
Figure 1e and 1f.

Proof. The theorem can be derived from Lemma Q. The optimization prob-
lem (5–7) can be interpreted as looking for a lexicographically largest mono-
mial xe11 xe22 . . . xenn that is consistent with the assumptions of the theorem
and for which Lemma Q gives the weakest bound.

To start the formal proof, note first that the optimum value N of (5–7)
does not change if we turn (7) into an inequality:

(7′)
n∑
i=1

yi ≥ |S1|+ · · ·+ |Sn| − d

This is easily seen as follows: Take a solution (y1, . . . , yn) satisfying (6)
and (7′). The assumptions of the theorem imply d ≤

∑n
i=1 di. Therefore,

as long as the inequality (7′) is strict, one can always find a variable yi that
is not at its lower bound, i.e., yi > |Si| − di. We can therefore reduce this
variable, reducing the product y1 . . . yn.

The proof is now straightforward: Let xe11 xe22 . . . xenn be the lexicograph-
ically largest monomial of f . By the assumptions on f , ei ≤ di and
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∑n
i=1 ei ≤ d. Hence, the quantities yi := |Si| − ei satisfy the constraints (6)

|Si| − di ≤ yi ≤ |Si|,
and the constraint (7′):∑

yi ≥ |S1|+ · · ·+ |Sn| −
∑

ei ≥ |S1|+ · · ·+ |Sn| − d

By Lemma Q, the number of nonzeros is at least

(|S1| − e1)(|S2| − e2) . . . (|Sn| − en) = y1y2 . . . yn,

which is at least the minimum value N of (5) under (6) and (7′). �

Bishnoi et al. [3] proved Theorem 4 directly by induction on n. They
showed that the bound is tight for all combinations of values d, di and |Si|
to which the theorem applies. They also derived the Generalized DeMillo–
Lipton–Zippel Theorem (Corollary Q3) from it.

In the (original) Alon–Füredi Theorem [2, Theorem 5], the degrees di
in the individual variables are not constrained, and there is an important
difference: It is assumed that f has at least one nonzero on S1 × S2 × · · · ×
Sn. Because of this extra assumption, the Alon–Füredi Theorem is not a
straightforward corollary of the Generalized Alon–Füredi Theorem, see [3,
Sections 2.2–2.3]. In the constraints defining the bound N , the lower bound
in (6) is replaced by yi ≥ 1. As a consequence, in contrast to Theorem 4,
it is easy to solve the optimization problem: Starting from the lower bound
y1 = · · · = yn = 1, consider the variables yi in order of decreasing sizes
|Si| and greedily enlarge each yi value to its upper bound |Si| until (7) is
fulfilled.

8. Weaker quantitative conclusions for a maximal monomial

We have seen in Section 4 that for a maximal monomial, or even for a
monomial of largest total degree, the Quantitative Conclusion in the form (1)
does not hold. Can we still say something about the number of nonzeros
beyond the fact that it is at least 1, which is the trivial consequence of the
Existence Conclusion?

8.1. Additive increase of the bound. A very weak quantitative conclu-
sion is given by the following statement.

Proposition 5. If xd11 xd22 . . . xdnn is a maximal monomial, then the number
of nonzeros over the grid S1 × · · · × Sn, with |Si| > di for all i, is at least

1 +
(
|S1| − (d1 + 1)

)
+
(
|S2| − (d2 + 1)

)
+ · · ·+

(
|Sn| − (dn + 1)

)
.

In other words, at each step of increasing |Si| above the lower bound di+1
that is necessary for the Existence Conclusion, the guaranteed number of
nonzeros increases by 1.

For example, with (d1, d2) = (1, 1) and |S1| = |S2| = 3, we conclude that
there must be at least 3 nonzeros. Thus, the ellipse example of Section 4
cannot be improved by choosing a different grid S1 × S2 of the same size.

A version of Proposition 5 was stated in 2022 by Knuth for the restricted
case that xd11 xd22 . . . xdnn is a monomial of largest total degree [11, Ex. MPR–
114, p. 23, answer on p. 388]. The proof goes through without changes
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when xd11 xd22 . . . xdnn is a maximal monomial and we base the argument on
Lemma X instead of Corollary X1.

Proof of Proposition 5. We can eliminate any chosen nonzero (x1, . . . , xn)
from S1 × S2 × · · · × Sn by removing xj from Sj , for an arbitrary j. (This
may eliminate additional nonzeros.)

Thus, if there were fewer than the claimed number of nonzeros, we could
eliminate them by successively removing an element from some Sj while
keeping |Sj | ≥ dj + 1. Eventually we would arrive at a grid on which f is
identically zero, contradicting Lemma X. �

8.2. Hypergraph model. Stronger asymptotic bounds can be obtained
by using tools from extremal combinatorics. It is natural to associate an
n-partite n-uniform hypergraph to the zeros of an n-variate polynomial over
a grid S1 × · · · × Sn: The hypergraph contains the hyperedge (x1, . . . , xn)
whenever f(x1, . . . , xn) = 0. The Existence Conclusion then says that the

hypergraph contains no complete subhypergraph K(r)(d1 + 1, . . . , dn + 1).
What does this last statement alone (without regarding the algebraic origin
of the hypergraph) imply about the number of nonzeros in S1 × · · · × Sn?
This is a question from extremal (hyper-)graph theory.

We can apply the following result of Erdős from 1964 [7, Corollary, p. 188].

Proposition 6. Consider the family of n-partite n-uniform hypergraphs that
contain no complete K(n)(l, . . . , l), for some l ≥ 2.

Then there is a threshold s0(n, l) such that in every hypergraph of the
family with at least s vertices in each color class, for s > s0(n, l), the edge
density is at most

(8) (3n)n
/
s1/l

n−1
.

(In the original statement in [7], our n is denoted by r, which adheres
better to the conventions of hypergraphs, and our s is denoted by n.)

We translate this to our setting: If xd11 xd22 . . . xdnn is a maximal monomial
of f , Lemma X implies that the hypergraph corresponding to the zeros does
not contain a complete K(r)(l, . . . , l), with l = 1 + max{d1, . . . , dn}. We
conclude that the density of zeros in S1×S2× · · · ×Sn is bounded by (8) if
s := min{|S1|, . . . , |Sn|} is big enough. This is good enough for the property
that is essential for the applications: The probability of hitting a zero goes
to 0 as the size of all sets Si is increased. However, the convergence is very
slow.

8.3. Bivariate polynomials. For a polynomial of n = 2 variables, we are
in the setting of bipartite graphs, where the classic result of Kővári, Sós,
and Turán [8] applies. In particular, if xd11 xd22 is a maximal monomial,
then the bipartite graph with |S1| + |S2| vertices that models the zeros
on S1 × S2 contains no complete bipartite subgraph Kd1+1,d2+1. Assuming
s = |S1| = |S2|, we conclude from the Kővári–Sós–Turán Theorem that such

a graph has at most O(s2−1/l) edges, where l = min{d1, d2}+ 1. Note that,
in contrast to the case of hypergraphs above, we use min{d1, d2} and not
max. Hence the density of zeros is

O(1/ l
√
s).
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The bound of the Kővári–Sós–Turán Theorem is known to be tight for sev-
eral small values of l in the combinatorial setting, where all we know is that
that the bipartite subgraph Kd1+1,d2+1 is forbidden. This completely ignores
the origin of the problem from the polynomial f . Can a polynomial with
such a large fraction Θ(1/s1/l) of zeros on an s× s grid be constructed?

8.4. A puzzle. The first nontrivial example is (d1, d2) = (1, 1), i.e., xy
should be a maximal monomial. Such a polynomial, after suitable scaling,
has the form

(9) f(x, y) = −xy + P (x) + Q(y),

where P (x) and Q(y) are polynomials of arbitrarily high degree.
Let us denote the elements that we substitute for x by S1 = {a1, . . . , as},

with distinct elements ai, and similarly for the values S2 = {b1, . . . , bs} that
we substitute for y. Let ui = P (ai) and vj = Q(bj) be the corresponding
values of the polynomials. Then the zeros of f on S1 × S2 are the index
pairs (i, j) with

aibj = ui + vj (1 ≤ i, j ≤ s).

We can thus reformulate our question as follows:

Problem 1. Let s be fixed.
Find two sequences of a1, . . . , as and b1, . . . , bs of distinct numbers, and

two sequences u1, . . . , us and v1, . . . , vs of not necessarily distinct numbers,
such that the multiplication table of the first two sequences agrees with the
addition table of the last two sequences in as many positions (i, j) as possible:

aibj = ui + vj

For example, the following multiplication and addition tables, which are
derived from the ellipse example of Section 4, have 6 coinciding entries:

× 1 3 5
6 6 18 30
7 7 21 35
8 8 24 40

and

+ 1 17 29
1 2 18 30
6 7 23 35
7 8 24 36

The question has now become a problem of additive combinatorics. It is
clear that Problem 1 is not more restricted than asking for the zeros of (9):
We can find an interpolating polynomial P and Q for any values ai and ui,
or bi and vi, respectively, since the degree of P and Q is not bounded.

As discussed above, the bipartite graph that models the zeros of f contains
no K2,2; this can also be shown directly from the definition of an addition

and multiplication table. Hence the number of zeros is O(s3/2). Can this
bound be achieved, asymptotically, or does the algebra imply a sharper
upper bound? Is there a construction with a superlinear number of zeros?

8.5. Solution of Problem 1 for finite fields, added June 6, 2023 .
Recently, Alexey Gordeev (private communication) has informed me that
he has a solution of Problem 1 in finite fields. Specifically, for any m > 1
and any prime p, he constructs an m-variate polynomial over the field Fpm
for which x1x2 . . . xm is a maximal monomial, and for which the fraction of
zeros among the sm = (pm)m m-tuples is Θ(1/p) = Θ(1/s1/m).
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9. What’s in a name?

In the late 1970’s, the first randomized primality tests were discovered.
Randomized algorithms were gaining popularity, and their usefulness was
recognized. It is thus no coincidence that various forms of the Schwartz–
Zippel Lemma were discovered independently, as the topic was “in the air”.
The papers of Schwartz and Zippel were even presented at the same confer-
ence in 1979 and published back to back in the proceedings volume [19, 22].

The name Schwartz–Zippel Lemma stuck, despite the accumulation of
sibilant consonants, and despite the priority of DeMillo and Lipton [5]. A
blog post of Richard Lipton4 from 2009 proposed various possible reasons
for this fact. We add to this discussion by speculating that the poor type-
setting quality of the Information Processing Letters at the time may have
contributed to the fact that the paper [5] was not sufficiently received. In
addition, the quirk with the capital letter in the middle of the family name
might have caused some insecurity and uneasiness. In the title of this note,
we honor the tradition of omitting DeMillo and Lipton.

We have seen that Lasoń’s generalization of Alon’s Combinatorial Null-
stellensatz was predated by an exercise in a textbook, but he must be nev-
ertheless credited for bringing the statement of Lemma X to the published
journal literature. The major reason for including his name is the rhyme.
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[13] Micha l Lasoń. A generalization of Combinatorial Nullstellensatz. The Electronic Jour-
nal of Combinatorics, 17(#N32):1–6, 2010. doi:10.37236/481.

[14] Rudolf Lidl and Harald Niederreiter. Finite Fields. Cambridge University Press, USA,
1996. doi:10.1017/CBO9780511525926.

[15] Mateusz Micha lek. A short proof of Combinatorial Nullstellensatz. Amer. Math.
Monthly, 117(9):821–823, 2010. arXiv:0904.4573, doi:0.4169/000298910X521689.

[16] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
New York, NY, 1995.
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Appendix A. Proof of Lemma X via the coefficient formula

This proof follows the hint of Tao and Vu [21, Exercise 9.1.4, p. 332]
and works out their exercise, see also Lasoń [13, Section 3]. Essentially the
same proof, for the original Combinatorial Nullstellensatz (Corollary X1),
was given by Kouba [12] in 2009.

As an intermediate result, we get a formula (14) for the coefficient of

xd11 xd22 . . . xdnn in terms of the values of f on S1×S2×· · ·×Sn (the Coefficient
Formula of Lasoń [13, Theorem 3]).

We emphasize that, in contrast to other statements in this note, the
following proof supposes that the coefficient ring is a field (and we call it F).

We start with a preparatory lemma:

Lemma 7. Let F be a field. For a finite nonempty set S ⊆ F, there is a
function gS : S → F with the following property:∑

x∈S
gS(x)xk = 0, for k = 0, 1, . . . , |S| − 2(10) ∑

x∈S
gS(x)xk = 1, for k = |S| − 1(11)

Proof. The equations (10–11) form a system of |S| linear equations in the |S|
unknowns uj = gS(aj) for aj ∈ S = {a1, a2, . . . , a|S|}. The coefficient matrix
is a Vandermonde matrix, and hence the system has a unique solution. (The
situation is the same as in Lagrange interpolation, except that the coefficient
matrix is transposed.)
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The solutions uj can actually be obtained explicitly as the quotient of two
Vandermonde determinants:

�(12) uj = gS(aj) = 1
/ ∏

k 6=j
(aj − ak)

Proof of Lemma X. It is no loss of generality to assume |Si| = di + 1. Take
the functions gSi for i = 1, . . . , n, and multiply them together:

(13) g̃(x1, . . . , xn) := gS1(x1)gS2(x2) . . . gSn(xn)

Continuing to follow the suggested procedure of Tao and Vu [21, Exercise
9.1.4], we consider the quantity

(14) F̃ :=
∑
x1∈S1

∑
x2∈S2

· · ·
∑
xn∈Sn

f(x1, . . . , xn)g̃(x1, . . . , xn),

and we want to show that F̃ 6= 0. Let us see how the transformation from
f to F̃ affects the monomials xa11 . . . xann of f :∑

x1∈S1

∑
x2∈S2

· · ·
∑
xn∈Sn

xa11 . . . xann gS1(x1)gS2(x2) . . . gSn(xn)

=
∑
x1∈S1

xa11 gS1(x1) ·
∑
x2∈S2

xa22 gS2(x2) · · ·
∑
xn∈Sn

xann gSn(xn)(15)

This expression vanishes whenever ai < di for some i, by (10). The only
monomial of f that is not annihilated in this way is the maximal mono-
mial xd11 xd22 . . . xdnn . For this monomial, the term (15) becomes 1, by (11).

Therefore F̃ as given by (14) is equal to the coefficient of xd11 xd22 . . . xdnn in f ,
expressing it in terms of the values of f on the grid S1 × S2 × · · · × Sn.
Accordingly, (14), in connection with (12) and (13), is called the coefficient
formula.

By the assumption of Lemma X, xd11 xd22 . . . xdnn appears in f , and thus its

coefficient F̃ 6= 0. Therefore, by (14), there must be an (x1, x2, . . . , xn) ∈
S1 × S2 × · · · × Sn with f(x1, . . . , xn) 6= 0. �

We conclude with a few remarks. The hint of Tao and Vu [21, Exer-
cise 9.1.4] actually suggests to prove a more general version of Lemma 7:

Lemma 8. For a set S with |S| > d, there is a function gS,d : S → R with
the following property:∑

x∈S
gS,d(x)xk =

{
0, for k = 0, 1, . . . , d− 1

1, for k = d

This can be derived by applying Lemma 7 to an arbitrary subset S′ ⊆ S
of size |S′| = d + 1 and setting gS,d(x) = 0 for x /∈ S′. We have instead
chosen to simplify the proof by assuming |S| = d + 1.

Tao and Vu [21, Exercise 9.1.4] formulate their exercise “for a field whose
characteristic is 0 or greater than max di.” I don’t see how the characteristic
of the field comes into play.

Since we are constructing some sort of interpolating function g, which
depends on solving a system of equations, this proof depends on F being a
field (or at least, a ring in which all nonzero differences a− a′ for a, a′ ∈ Si
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are units). Under some weaker algebraic conditions (see Section 1.4), it is

still true that the coefficient of xd11 xd22 . . . xdnn in f is uniquely determined
by the values of f at the points (x1, x2, . . . , xn) ∈ S1 × S2 × · · · × Sn [18,
Statement 2.8(v)], see also [4].
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