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Sweeping x-monotone pseudolines∗

Therese Biedl † Erin Chambers ‡ Irina Kostitsyna § Günter Rote¶
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Abstract

We study the problem of sweeping a pseudoline arrangement with n x-monotone curves
with a rope (an x-monotone curve that connects the points at infinity). The rope can move
by flipping over a face of the arrangement, replacing parts of it from the lower to the upper
chain of the face. Counting as length of the rope the number of edges, what rope-length
can be needed in such a sweep? We show that all such arrangements can be swept with
rope-length at most 2n− 2, and for some arrangements rope-length at least 7

4 (n− 2) + 1 is
required. We also discuss some complexity issues around the problem of computing a sweep
with the shortest rope-length.

1 Introduction

Consider an arrangement A of n x-monotone infinite curves where each pair of curves crosses
exactly once. These define a directed acyclic planar graph GA, by replacing each crossing with
a new vertex, adding two vertices s, t at negative and positive infinity, and directing edges left-
to-right. This paper concerns the problem of sweeping the arrangement with a rope of short
length, or equivalently, sweeping GA with a sequence of short st-paths. Formally, we start with a
rope at the lower hull of the arrangement. At each step, whenever the rope contains the bottom
chain of an inner face F , we may flip across F by replacing the bottom chain by the top chain
of F . We stop when the rope is the upper hull. The rope-length of such a sweep is the maximum
length of the rope, measured as the number of edges in the graph. See Figure 1.
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Figure 1: A pseudoline arrangement A with seven x-monotone curves and the corresponding
graph GA. Rope π (red dashed) has length 8 and can be flipped across face F .
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One can easily construct an arrangement A where the lower hull has length n, so we cannot
in general hope to find a sweep of rope-length less than n. But can we always achieve rope-length
n + O(1) with a suitable sweep? We show that this is false: for some arrangements we need
rope-length at least 7

4n− 5
4 . We also provide an asymptotically matching upper bound: For any

such arrangement A, we can find a sweep with rope-length at most 2n − 2. Furthermore, the
sweep has special properties: we simultaneously sweep the dual graph G∗

A of GA, and the two
ropes of the two sweeps “hug” in some sense.

Finally, we study hardness results. A rope in GA corresponds to an edge-cut in G∗
A, and

sweeping with a rope hence corresponds to finding a vertex order that has small cuts. This
is the cutwidth problem, and since we impose special conditions on the graph and the sweep,
our problem is equivalent to solving Directed Cutwidth in G∗

A (definitions and details are
in Section 6). Surprisingly enough, we have not been able to find NP-hardness results for this
problem, especially not in planar graphs. We therefore show that Directed Cutwidth is
NP-hard even in planar graphs with maximum degree 6. Unfortunately the graphs constructed
in the reduction are not duals of pseudoline arrangements, so the complexity of minimizing the
rope-length in our sweeping problem remains open.

Related results: The problem of minimizing the rope-length of a sweep is motivated by the
problem of enumerating all arrangements of n pseudolines [15]. An easy upper bound on the
rope-length in a sweep is the maximum length of an x-monotone st-path. However, this does
not lead to a good upper bound: x-monotone paths can have close to n2 edges [12, 2], see [11]
for related results. This shows that it is necessary to choose a sweep carefully.

The idea of “sweeping a plane graph” is closely related to the so-called homotopy height, see
[8, 3, 14] for an overview. Here we are given an undirected planar graph G with a fixed planar
embedding and two vertices s, t on the outer-face. We are asked to find a sequence of st-paths
that begin and end with the two st-paths that run along the outer-face. Consecutive st-paths
in the sequence must be related via a limited set of permitted operations, which include flipping
across a face and introducing or eliminating a spike along an edge. The goal is to minimize
the maximum path-length in the sequence. Our problem is hence the same as computing the
homotopy height, except that we restrict the set of permitted operations since the path must
follow the edge directions.

Computing the homotopy height of a graph is in NP [8], but it is open whether this problem
is NP-hard.

With both face and spike moves, it is possible to prove that each path in the sequence can
be assumed to be weakly simple, and under some restrictions on the input, the sequence of
paths is monotone in the sense that every face is swept exactly once [7]. In our setting, where
only face moves are allowed, it is unclear if the optimal homotopy will be necessarily monotone,
although this seems quite likely to be true; the proof in [7] relies upon spike moves as well as an
underlying Riemannian metric structure for the disk, so it does not readily apply in our setting.

Another concept to which our sweep is somewhat related are “strictly northward b-migrations”,
which were studied in the context of chains on lattices by Brightwell and Winkler [6]; while they
are able to prove that their version is not monotone, their setting is not equivalent to arrange-
ments of pseudolines, and hence does not answer the monotonicity question for our setting.

There is also a relationship between the homotopy height and the height of a planar straight-
line grid-drawing [3]; in particular this implies that every N -vertex planar graph G has homotopy
height at most 2

3N + O(1) since G has a planar straight-line grid-drawing where the smaller
dimension is 2

3N + O(1) [9]. Unfortunately, this does not help to solve our problem, for two
reasons. First, in our sweeps we impose stronger restrictions on when we are allowed to flip
across a face. Second, we are sweeping an arrangement of n curves, hence the corresponding
planar graph has N ∈ Θ(n2) vertices and the above bounds are meaninglessly big.

As mentioned earlier, sweeping a pseudoline arrangement A with a short rope corresponds
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to solving Directed Cutwidth in the dual graph G∗
A. The (undirected) version Cutwidth

of this problem is very well-established in the literature and is known to be NP-hard even in
planar graphs with maximum degree 3 [13]. Cutwidth is also SSE-hard to approximate within
any constant factor [16]. SSE stands for the Small Set Expansion conjecture; we refer the reader
to this paper for the definition of “SSE-hard” and other results concerning cutwidth.

2 Definitions

Throughout the paper, A denotes a set of n x-monotone infinite curves that form a pseudoline
arrangement, i.e., each pair of curves has exactly one point in common where the curves properly
cross. The curves in A are called pseudolines. Arrangement A naturally defines a planar graph
GA, by replacing every crossing between pseudolines by a vertex, adding an edge whenever two
crossings are consecutive on a pseudo-line, adding two vertices s and t that represent the points
at negative and positive infinity, and connecting s to the first crossing and t to the last crossing
of each pseudo-line. We direct all edges of GA from left to right, making it a directed acyclic
planar graph with exactly one source s and one sink t that are both on the outer-face. Such a
graph is known as a bipolar orientation, and many properties are known, see for example [10].
In particular, for any inner face F , the boundary consists of two directed paths; in our situation
where edges are drawn left-to-right these paths naturally are called the top chain and bottom
chain of F . Their common start-vertex is the source s(F ) of F , and their common end-vertex is
the sink t(F ) of F . At any vertex v ̸= s, t, the incoming edges are consecutive in the clockwise
order around v, as are the outgoing edges. In our situation with edges drawn left-to-right, we
can naturally speak of the topmost/bottommost incoming/outgoing edge of a vertex.

A rope of A is a directed st-path π in GA; alternatively we can view π as an x-monotone
infinite curve along pseudo-lines. For any two points p, p′ on π, we use π(p, p′) to denote the
sub-curve between the two points (including p, p′). If π contains the entire bottom chain of some
inner face F , then flipping rope π across F means to create a new rope that is π except that
the bottom chain π(s(F ), t(F )) of F gets replaced by the top chain of F . A sweep of A consists
of a sequence π1, . . . , πk of ropes where π1 is the lower hull of A, πk is the upper hull of A,
and consecutive ropes are obtained by flipping across an inner face. The rope-length of such a
sweep is the maximum length (measured by the number of edges) among the used ropes, and
the problem studied in this paper is to find a sweep that has small rope-length.

Graph GA (and generally any bipolar orientation) naturally gives rise to a dual graph G∗
A

that is also a bipolar orientation as follows. Temporarily add an edge (s, t) to GA, and let s∗, t∗

be the two faces incident to it, with s∗ incident to the upper hull of A. The vertices of G∗
A

are now s∗, t∗, and one vertex F for each inner face of GA. For every edge e = u → v of GA,
let Fℓ and Fr be the faces that lie to the left and right when walking from u to v. (Since our
edges are directed left-to-right, these faces are really above and below e, but “left”/“right” is
the established term in the literature.) We add to G∗

A the dual edge e∗ of e, which is Fℓ → Fr.
Note that e lies on the top chain of Fr and the bottom chain of Fℓ, so in any sweep we must
have swept Fr before we can sweep Fℓ. We think of dual graph G∗

A as drawn such that each
vertex F is placed in the corresponding face of GA, and each edge e∗ crosses the edge e that it
is dual to. By definition, e∗ crosses e from left to right.

Since G∗
A is also a bipolar orientation, concepts such as “rope” and “flipping across a face”

can also be applied to G∗
A. For ease of distinction, we use the term dual rope for a rope in G∗

A,
and flipping across a vertex (of GA) for the operation of flipping across a face of G∗

A. Note
that any dual rope π∗ defines an st-cut by virtue of taking the edges of GA that it crossed (i.e.,
whose duals it contained), and symmetrically every rope π defines an s∗t∗-cut. Both these cuts
are directed, i.e., contain only edges directed from the source-side to the sink-side.
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Figure 2: The dual graph G∗
A with a dual rope π∗ (green dotted) that can be flipped across

vertex v.

3 A lower bound
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Figure 3: Construction for the lower bound for n = 7 (K = 1); we need rope-length 11. The
four vertical lines cut the arrangement into five sections.

Theorem 1. For n = 3 mod 4, there exists a pseudoline arrangement A of n x-monotone curves
such that any sweep requires rope-length at least 7

4n− 5
4 .

Proof. The construction is symmetric, and we describe it from left to right, see Figure 3 for the
construction for n = 7 and Figure 4 for n = 15. Start with two curves c, c′ (black solid) that are
at the top and bottom at the far left and intersect in some point x. All other curves will pass
above x. Set K = n−3

4 . Between c and c′ at the far left are 2K + 1 “top” curves (red, dashed)
at even positions, and 2K “bottom” curves (blue, dotted) at odd positions.

The arrangement consists of five consecutive sections, as indicated by the vertical lines in
the figure. In the first section, the red curves move up and the blue curves move down until they
are separated, forming a 2K × 2K half-grid (shown shaded in Figures 3 and 4). So far there are
no intersections between curves of the same color. In the area below all red curves and above
all blue curves, there are three faces Fℓ, Fc, and Fr, separated from each other by c and c′.

Before the 2K+1 red curves cross c, we let the lower K+1 of them cross each other in such
a way that they all become incident to the top chain of Fℓ. These curves, together with c,
hence create a (K+1) × (K+1) half-grid, which forms the second section. (In terms of sorting
networks, this half-grid is the bubble-sort network.)
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Figure 4: The lower-bound construction with n = 15 pseudolines (K = 3); we need rope-length
25.

In the middle section, in the area above x, we do two things: a) We cross the blue curves in
such a way that they all become incident to the bottom chain of Fc, forming a (2K+1)×(2K+1)
half-grid together with c and c′. b) We cross the upper K with the lower K red curves (the
middle red curve remains uncrossed, as it meets all other red curves in the half-grids above Fℓ

and Fr).
The right part of the construction is symmetric. As shown in Figure 5, this arrangement can

even be drawn with straight lines. Observe the following properties of x-monotone paths in the
construction:

• Any x-monotone path from s to the source s(Fℓ) of Fℓ has length at least 2K. This holds
because such a path must traverse the 2K × 2K half-grid, plus the edge from s to reach
the half-grid.

• Any x-monotone path π from t(Fc) to t has length at least 2K + 1. This is obvious if
π walks along c′ until the intersection with the last red curve (and from there to t). So
assume that it walks along c′ for i < 2K edges and then turns onto a red curve that brings
us (perhaps after some more edges) to the half-grid right of t(Fr). It then traverses a
(2K−i)× (2K−i) half-grid, which takes 2K−i edges, plus one more edge to t. Hence the
path has length at least 2K+1.

• Any x-monotone path from t(Fℓ) to s(Fr) has length at least 2K, because it must go
across the (2K+1)× (2K+1) half-grid below Fc and can (at best) use shortcuts along the
bottom chain of Fc.

Now we come to the actual proof. Consider any sweep of A. Since the dual graph has
edges Fc → Fℓ and Fc → Fr, we must flip across both Fℓ and Fr before flipping across Fc. By
symmetry we may assume that we flip across Fr first, and consider the rope π immediately after
we flipped across Fℓ. Then π goes from s to s(Fℓ), from there along the top chain of Fℓ to t(Fℓ),
from there to s(Fr) and t(Fc) (since we have flipped across Fr but not Fc yet), and from there
to t. So

|π| = |π(s, s(Fℓ))|+ length of top chain of Fℓ

+|π(t(Fℓ), s(Fr))|+ 1 + |π(t(Fc), t)|
≥ 2K +K+2 + 2K + 1 + 2K+1 = 7K + 4

which is at least 7n−3
4 + 4 = 7

4n− 5
4 .
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Figure 5: The lower-bound example for n = 15 as an arrangement of straight lines. The slopes
of the seven red (dashed) and six blue (dotted) lines are evenly spaced, with red and blue slopes
interleaving. This ensures the appropriate intersection pattern when the lines are extended far
enough to the left and right. In the three shaded disks, the lines are slightly perturbed from a
common intersection point so that they become incident to Fℓ, Fc, and Fr, respectively.

The lower bound that we have proved is tight for these instances: The primal-dual sweep
that we present in the next section achieves ropelength (7n− 5)/4 = 7K + 4:

Proposition 1. The pseudoline arrangement A of Theorem 1, consisting of n x-monotone
curves, is swept by the primal-dual sweep of Section 4 with rope-length 7

4n− 5
4 .

We give the proof in Section 5

4 An upper bound: The coordinated primal-dual sweep

We now show an upper bound on the required rope-length by defining a sequence of ropes in GA
and simultaneously a sequence of dual ropes that “hug” the ropes. To define this, we first need
a few other definitions and observations about a rope π and a dual rope π∗ (see also Figure 6).

Rope π connects s to t, hence must go across the directed st-cut defined by π∗, and can do
so only once since π is directed. It follows that exactly one edge e of π is crossed by π∗; we call
e the active edge and let x be the point where it is crossed by π∗. This crossing-point x splits
the rope into two parts π(s, x) and π(x, t), and likewise splits the dual rope into π∗(s∗, x) and
π∗(x, t∗), and the properties that we require will depend on which part we are in.

Definition 1. We say that a rope π and dual rope π∗ hug each other if the following four
(symmetric) conditions hold: (1) for every edge e in π(s, x), the face to the left of e belongs to
π∗; (2) for every edge e in π(x, t), the face to the right of e belongs to π∗; (3) for every edge e∗

in π∗(s∗, x), the face of G∗
A (hence vertex of GA) to the right of e∗ belongs to π; (4) for every

edge e∗ in π∗(x, s∗), the vertex of GA to the left of e∗ belongs to π.

We will now define a sequence of rope pairs (i.e., pairs of a rope π and a dual rope π∗) such
that the ropes sweep GA, the dual ropes sweep G∗

A, and at all times π and π∗ hug each other.
Then we argue that this implies rope-length at most 2n − 2 at all times. We initialize rope
π as the lower hull of A, so all edges of π have t∗ to their right. We initialize the dual rope
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Figure 6: A rope and a dual rope that hug each other. We can flip across face F , which is to
the left of the active edge.

π∗ to contain all faces incident to s, in order from top to bottom, so all edges of π∗ have s to
their right. The active edge is the bottommost outgoing edge of s, and one easily verifies all
conditions. (Appendix A shows an example of a sweep from the beginning.) To explain how to
update the rope pair, we need some observations.

Claim 1. (1) At any vertex v ̸= s of π(s, x), rope π uses the top incoming edge. (2) At any
vertex v ̸= t of π(x, t), rope π uses the bottom outgoing edge. (3) At any face F ̸= s∗ of π∗(s∗, x),
dual rope π∗ crosses the first edge of the top chain of F . (4) At any face F ̸= t∗ of π∗(x, t∗),
dual rope π∗ crosses the last edge of the bottom chain of F .

Proof. We only prove the first claim, the other three are symmetric. Let e be the incoming edge
of v on π, and assume for contradiction that e is not top incoming. Then the face F to the left
of e is incident to two incoming edges of v, hence v = t(F ) and e is the last edge of the bottom
chain of F . By the hugging-condition F belongs to π∗; the next edge on π∗ hence crosses the
bottom chain of F . But then v = t(F ) is on the t-side of the st-cut defined by the dual rope π∗,
contradicting that v ∈ π(s, x).

Claim 2. Let e be the active edge and let v be its head and F be the face to its left. If F ̸= s∗

or v ̸= t, then we can flip π across F or flip π∗ across v, and the new pair of rope and dual rope
hug each other.

Proof. The claim is illustrated in Figure 7. Assume first that e is not top incoming, which implies
that it is the last edge of the bottom chain of F . We know that F ̸= s∗ since all edges incident
to s∗ are top incoming. Since π(s, x) only uses top incoming edges, π must have traversed the
entire bottom chain of F and by F ̸= s∗ we can hence flip across F to get the new rope π′. The
new active edge is the first edge of the top chain of F by Claim 1(3). The hugging-conditions
could be violated only at face F (everywhere else the rope and dual rope are unchanged), and
one easily verifies that they hold here because all new edges of π′ have F to their right.

F

e′

e

s∗

e

e′
v

F

F ′

Figure 7: Closeup of flipping across a face and a vertex. Dual graph not shown.
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Now assume that e is top incoming, which implies that v ̸= t since otherwise F = s∗ and
not both are allowed. Let F ′ be the face to the right of e; this is in π∗(x, t) since e (as active
edge) is crossed by π∗. All other incoming edges of v are the last edge of the bottom chain of
the faces to their left. Applying Claim 1(4) repeatedly, starting with F ′ ∈ π∗(x, t∗), therefore
dual rope π∗ must cross all incoming edges of v. So by v ̸= t we can flip the dual rope across v.
By Claim 1(2) rope π continues from v along the bottom outgoing edge, which hence becomes
the new active edge. Again one easily verifies the hugging condition, since all new edges of the
new dual rope have v to their right.

We hence update π and π∗ as follows. Let e be the active edge, and let v be its head and
F be the face to its left. If F = s∗ and v = t then e is the last edge of the upper hull. By
Claim 1(1) hence π is the upper hull and the sweep is finished. By Claim 1(4) π∗ crosses all
incoming edges of t, and so the sweep of the dual is also finished. Otherwise (either F ̸= s∗ or
v ̸= t) we perform one of the flips that exists by Claim 2 and repeat.

4.1 Analysis

The sweeping algorithm as described would actually work for any bipolar orientation. We now
show that if the bipolar orientation comes from a pseudoline arrangement A of x-monotone
curves, then the rope-length is at most 2n− 2 at all times. Enumerate the pseudolines from top
to bottom in the order of incidence with s as c1, . . . , cn. The index of an edge e is the index of
the pseudoline that supports e, i.e., along which e runs. The following observation is trivial (it
holds since pseudolines intersect only once, so one can go above the other only once), but will
be crucial for counting vertices later.

Observation 1. At any vertex v ̸= s, t, the indices of incoming edges increase from top to
bottom, while the indices of outgoing edges decrease from top to bottom.

An encounter of rope π with pseudoline ci is a maximal sub-curve π(v, v′) that belongs to
ci. Note that v, v′ are necessarily vertices, and possibly v = v′.

Corollary 1. While walking along π(s, x), the index i of the current edge of π can only increase,
and any pseudoline cj encountered at the next vertex v satisfies j ≥ i.

Proof. Rope π enters along the top incoming edge of v, hence i is the smallest index of a
pseudoline incident to v. So all pseudolines encountered at v (including the one along which π
leaves) cannot have smaller index.

Claim 3. While walking along π(s, x), we encounter every pseudo-line at most once.

Proof. Assume for contradiction that we encounter pseudoline ci at least twice. At the end of
the first encounter we hence have a vertex v with v ∈ ci ∩ π(s, x), but π continues beyond v
along some pseudoline cj with j ̸= i. If j > i, then the index throughout π(v, x) is at least j > i,
and so we cannot encounter ci again. So we must have j < i, which means that the outgoing
edge of π at v is below the outgoing edge along ci by Observation 1. Therefore ci has entered
the s∗-side of the s∗t∗-cut defined by π. Since π(s, x) always uses top incoming edges, there are
no edges from the s∗-side to π(s, x), and so ci cannot encounter π(s, x) again.

Claim 4. At any time during the sweep, rope π has length at most 2n− 2.

Proof. Assign to s the pseudoline along which π leaves, and assign to every vertex v ̸= s on
π(s, x) the pseudoline c that supports the bottom incoming edge e at v. This assigns every
pseudoline at most once, for e was not in π(s, x) by Claim 1, and so v is the beginning of the
unique encounter of c with π(s, x). (This also shows that c was not assigned to s). So π(s, x)
has at most n vertices, and symmetrically π(s, t) has at most n vertices and the rope-length is
at most 2n− 1.
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We claim that this is not tight. Assume for contradiction that at some point rope π has length
exactly 2n−1, so π(s, x) has n vertices and all pseudolines have been assigned to some vertex of
π(s, x). Observe that c1 must have been assigned to s, for otherwise the index of π(s, x) would
be greater than 1 throughout, so π(s, x) could not encounter c1, so c1 would not be assigned to
a vertex. Also observe that c2 must have been assigned to a vertex v that lies on c1, because
it is not assigned to s, and we assign (by Observation 1 and Claim 1(1)) a pseudoline cj to a
vertex v ̸= s only if π(s, x) has index less than j when it reaches v. In particular therefore c1
and c2 intersect at a point on π(s, x). By a completely symmetric argument, c1 and c2 intersect
again at a point on π(x, t). This is not possible in a pseudoline arrangement.

Theorem 2. For every pseudoline arrangement of n x-monotone curves, there exists a sweep
with rope-length at most 2n− 2.

A few comments are in order. First, the bound is tight: for some arrangements, this partic-
ular method of computing a sweep requires rope-length 2n− 2. Appendix A describes a family
of examples where the primal-dual sweep uses ropelength 2n− 2.

Also, our coordinated primal-dual sweep can be interpreted as a left-first greedy sweep: At
each stage, the rope π selects the leftmost possible position where it can flip over a face. The
dual rope π∗ can be interpreted as guiding the search for the sweep position: As long as a flip is
not possible at the current position of the active edge, the active edge advances to the right, and
this corresponds to a dual flip. In fact, this left-first greedy method was used by Alvarez and
Seidel to sweep a rope over a (hypothetical) triangulation of a set of points, in their algorithm
for counting the number of triangulations [1].

It is striking that the same procedure can be interpreted as a bottom-first greedy dual sweep,
where the primal rope π plays the role of guiding the sweep of π∗.

5 Proof of Proposition 1

Now that we have defined the primal-dual sweep, we can apply it to the lower-bound examples
of Section 3 and prove Proposition 1.

We use the particular drawing of the arrangement in Figures 3 and 4. The vertices are drawn
in 2K + (2K + 1) + (4K + 1) + (2K + 1) + 2K = 12K + 3 vertical layers, excluding s and t,
as indicated by the vertical lines in the figure. This gives an a-priori upper bound of 12K + 4
on the length of any potential rope. For the claimed bound 7

4n− 5
4 = 7K + 4, we need to show

that the rope always skips at least 5K layers.
The greedy primal-dual sweep algorithm starts with flips in the left part until the rope follows

line c. During this time, the rope contains the long horizontal rightmost section of c, which skips
6K + 1 layers, so we are on the safe side. From now on, the rope will always contain the long
first section of c, skipping over 2K layers. So we need to skip only 3K layers in the rest of the
rope.

The algorithm will now flip over each face below Fr, followed by a ripple to the left until the
lower border of Fc is reached. The rope becomes gradually longer and longer, but stays far from
getting critical. In the end of this phase, the rope runs along the lower edge of Fc ∪ Fr, thereby
skipping 2K + (2K + 1) layers. (One step prior to this situation, the rope was one segment
longer, and this is where the maximum ropelength so far was achieved.) Now the rope flips over
Fr and gets to the critical situation conjured up in the lower-bound proof: Only 2K +K = 3K
layers are skipped. Next, the rope flips over Fc. From now on, the rope contains the single
long edge at the upper bounday of Fc, or two of the long edges on either side of the central top
diamond, skipping at least 4K + 1 layers. This concludes the proof.
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6 NP-hardness

In this section, we reduce our sweep-problem to solving Directed Cutwidth in G∗
A. Then we

show that Directed Cutwidth is NP-hard even in planar graphs with maximum degree 6.
Unfortunately this does not prove the sweep-problem NP-hard since the graph that we construct
cannot be the dual graph of a pseudo-line arrangement (it has vertices of degree 2 and many
sources and sinks).

We need a few definitions. Fix a vertex order σ = ⟨v1, . . . , vn⟩ of G. For 1 ≤ i ≤ n, the ith
cut (or cut after vi) is the set of edges (vh, vj) with h ≤ i < j. The maximum cardinality of
these cuts is the width of the vertex order, and the cutwidth of graph G is the minimum width
over all vertex orders.

The cutwidth is defined for undirected graphs, but for directed acyclic graphs there exists
a natural restriction, apparently first studied in [4]: The directed cutwidth of a directed acyclic
graph G is the minimum width of a vertex order of G that is a topological order, i.e., where
every edge is directed from a lower-indexed to a larger-indexed vertex.

Lemma 1. Let A be a pseudo-line arrangement with x-monotone curves. Then A has a sweep
with rope-length at most w if and only if G∗

A has directed cutwidth at most w.

Proof. We only show one direction, the other is similar. Fix a sweep with rope-length w. This
defines a sequence σ = ⟨F1, . . . , Fk⟩ of the inner faces of GA via the order in which the sweep
flips the rope across faces. We append s∗ =: Fk+1 and pre-pend t∗ := F0 to this sequence since
the rope begins incident to t∗ and ends incident to s∗. Sequence σ hence gives a vertex order
F0, F1, . . . , Fk+1 of G∗

A. Any directed edge Fℓ → Fr of G∗
A is dual to an edge e of GA that is

on the upper chain of Fr and the lower chain of Fℓ. So the sweep must flip across Fr before
flipping across Fℓ, i.e., r < ℓ. So in our face order all edges of G∗

A are directed right-to-left, and
reversing it (which does not affect the width) gives a topological order. Finally the edges of the
ith cut are dual to the edges of the rope after flipping across Fi, and vice versa. Therefore the
width of the topological order is the same as the rope-length.

So we are interested in the complexity of problemDirected Cutwidth, the decision version
of the problem: Given a directed acyclic graph G and an integer w, is there a topological order
of width at most w? Surprisingly, the complexity of this problem does not appear to have
been studied much in the literature. Wu et al. [16] showed that Directed Cutwidth (not
specifically named there, but appearing in row 6 of their Table 1) is SSE-hard to approximate
(the constructed graphs are non-planar). There are also some positive results; in particular
Directed Cutwidth has a linear-time algorithm if w is a constant [4], and for series-parallel
graphs it can be computed in quadratic time [5]. But we have the following new result:

Theorem 3. Directed Cutwidth is NP-hard, even in planar graphs with maximum degree 6.

Proof. The reduction is from Cutwidth, which is known to be NP-hard, even for a planar graph
with maximum degree 3 [13]. So assume that we are given a planar graph G with maximum
degree 3 and an integer w and we want to test whether its cutwidth is at most w. We may
assume that G has no isolated vertices or isolated edges: They do not affect the cutwidth, except
in the trivial case that G consists exclusively of isolated edges and vertices. We create a directed
graph H as follows (see Figure 8). We retain all vertices of G, and replace every edge e = (v, w)
by a source se and a sink te that are both incident to both v, w. (A similar transformation,
using only a sink, was used in [16].)

We claim that G has a vertex order σG of width at most w if and only if H has a topological
order σH of width at most 2w+2. This implies the correctness of the reduction. The remainder
of the proof will show the claimed relation between the widths of G and H in both directions.

To convert σG to σH , simply add (for each edge e of G) source se just before the first endpoint
of e in σG, and sink te just after the second endpoint of e in σG. This doubles the degrees of



Th. Biedl, E. Chambers, I. Kostitsyna and G. Rote: Sweeping x-monotone pseudolines 11

G358

G359

G360

G361

G362

G363

G364

G365

G366

G367

G368

G369

G370

G371

G372

G373

G374

G375

G376

G377

G378

G379

G380

G381

G382

G383

G384

G385

G386

G387

G388

G389

G390

G391

G392

G393

G394

G395

v1 v3 v4v2

Figure 8: From a vertex order of G (black dashed) to a topological order of H (blue solid). For
ease of reading we offset sources to be above and sinks to be below vertices of G.

all vertices of G (so the maximum degree of H is 6). Also the undirected version of H can be
obtained by duplicating all edges of G and then subdividing all edges; in particular if G is planar
then so is H.

We want to show that σH then has width at most 2w + 2. To convert σH to σG, initially
simply take the induced vertex order, which is easily seen to have width at most w+1. This can
be tight (say at the ith cut) only if vi has no neighbours on the left while vi+1 has no neighbours
on the right. Call such a pair (vi, vi+1) improvable: exchanging the two vertices in the order
improves the size of the ith cut and leaves all other cuts after vertices unchanged. Exchanging
all improvable pairs hence gives the desired σG.

To argue about the relation between the widths, we need some notation. For any vertex
order v1, . . . , vn of G, and any i = 1, . . . , n, write Li [Ri] for the set of edges in G that are
incident to vi and whose other endpoint is left [right] of vi in the vertex order. Also, let Bi be
the set of edges that bypass vi, i.e., have the form (vh, vj) for h < i < j, and note that the cut
before and after vi have size |Bi|+ |Li| and |Bi|+ |Ri|, respectively.

For both G and H, we write C�(v) and C�(v) for the cuts directly before and after a vertex v,
respectively, and indicate with a subscript which graph this applies to. (The vertex order will
be clear from context.)

Claim 5. If G has a vertex order v1, . . . , vn of width w, then H has a topological order σH of
width at most 2w + 2.

Proof. As sketched earlier, σH is obtained by inserting, for each edge e, the source just before
the left end of e and the sink just after the right end of e. Put differently, for i = 1, . . . , n,
list all sources of edges of Ri (in arbitrary order), then list vi, the list all sinks of edges in Li

and proceed to the next i. See Figure 8 for an example, and verify that we indeed obtain a
topological order. Also notice that scanning σH from left to right, the cut-sizes increase when
we pass a source and decrease when we pass a sink, so the maximize cut-size of σH must occur
immediately before or after some original vertex vi of G.

One verifies that C�
H(vi) contains exactly two edges each for each edge in Li∪Bi∪Ri, due to

edges in C�
G(vi) and sources for edges in Ri, respectively. Therefore |C�

H(vi)| = 2(|Li|+|Bi|+|Ri|),
and by symmetry, this is also equal to |C�

H(vi)|. Since

|Bi|+max{|Li|, |Ri|} = max{|C�
G(vi)|, |C�

G(vi)|} ≤ w,

the width of σH is at most 2(|Bi|+max{|Li|, |Ri|}+min{|Li|, |Ri|}) ≤ 2w+2min{|Li|, |Ri|} ≤
2w + 2 since |Li|+ |Ri| ≤ degG(vi) ≤ 3.

For the other direction, we must convert a topological order of H into a vertex order of G of
small width. Recall that in a vertex order of G, the pair (vi, vi+1) (for some 1 ≤ i < n) is called
an improvable pair if Li = ∅ = Ri+1, see also Figure 9.

Claim 6. If H has a topological order σH of width 2w + 2, then in the induced vertex order
v1, . . . , vn of G, the ith cut has width at most w+1 for all i < n, and equality holds only if
(vi, vi+1) is an improvable pair.
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Proof. We have to bound |Bi| + |Ri|, and will show that all these edges, and the edges of Li,
had contributed to C�

H(vi), so there cannot be too many of them. For e ∈ Li ∪Bi ∪Ri, the left
end was vi or farther left, while the right end was vi or farther right. Since σH is a topological
order, source se was strictly before vi and sink te was strictly after vi in σH , and so in σH this
contributed two edges to C�

H(vi). Therefore

2w + 2 ≥ |C�
H(vi)| ≥ 2|Li|+ 2|Bi|+ 2|Ri|,

which implies that |C�
G(vi)| = |Bi|+ |Ri| ≤ w+1 and equality can hold only if Li = ∅. Symmet-

rically arguing via the cut before vi+1 in σH , one sees that

2w + 2 ≥ 2|C�
H(vi+1)| ≥ 2(|Li+1|+ |Bi+1|+ |Ri+1|)

and so |C�
G(vi)| = |C�

G(vi+1)| = |Li+1| + |Bi+1| ≤ w+1 and equality can only hold if also
Ri+1 = ∅.

v1 v3 v4v2

Figure 9: From a topological order of H (blue solid) of width 2w+2 = 6 to a vertex order of G
(dashed black), but it may not have optimal width: G has cutwidth w = 2 (see Figure 8), but
the cut between v3 and v4 has width 3. Note that L3 = ∅ = R4, i.e., (v3, v4) is improvable.

Figure 9 shows an example where the width of the induced vertex order σG is indeed w+ 1.
So we are not done yet with the reverse direction of the reduction. But observe that if the pair
(vi, vi+1) is improvable, then by exchanging their order all edges in Ri and Li+1 are removed
from the cut between them, except the edge vivi+1 if it exists. Since we have excluded the cases
that vi or vi+1 are isolated vertices or vivi+1 is an isolated edge, the cut strictly improves. All
other cuts remain unchanged. We repeat this until no improvable pair remains. In the end, all
cut-sizes are at most w as desired, and G has cutwidth at most w.

7 Computer experiments

We ran some computer experiments, exhaustively trying all pseudoline arrangements with up
to n = 9 pseudolines. (We used a Python version of the arrangement enumeration algorithm
in [15].) Each arrangement was subjected to a rather brute-force attack to find the shortest
rope-length, by essentially looking for a path in the graph whose nodes represent all possible
ropes. The data that we found are displayed in Table 1. For n of the form n = 4k + 3, the
results on the maximum agree with the lower bound of Theorem 1.

The lower bound is apparently n + 1, except for n = 2. The number of arrangements that
require the maximum rope-length grows very quickly. For example, among the arrangements
of 7 pseudolines, there are exactly two that require rope-length 11, up to symmetries. On the
other hand, with 8 pseudolines, 1184 arrangements among the 1,232,944 arrangements need
rope-length 12.

8 Summary and outlook

We have studied the problem of sweeping a pseudoline arrangement of n x-monotone curves
using a rope between the points of infinity. The only permitted move is to flip parts of the rope
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n min max #PSLA

2 2 2 1
3 4 4 2
4 5 5 8
5 6 7 62
6 7 9 908
7 8 11 24,698
8 9 12 1,232,944
9 10 14 112,018,190

Table 1: min/max: The shortest and longest rope-length required for pseudoline arrangements
with n pseudolines. #PSLA: the number of combinatorial types of x-monotone pseudoline
arrangements with n pseudolines (sequence A006245 in the Online Encyclopedia of Integer
Sequences).

from the bottom chain to the top chain of a face, and the goal is to keep the number of edges on
the rope small. We argue that the worst-case rope-length is in Θ(n), and specifically, at most
2n− 2 (for all arrangements) and at least 7

4n− 5
4 (for some arrangements).

The most tantalizing open problem is the complexity of finding the shortest rope, possibly for
an arbitrary bipolar orientation instead of a pseudoline arrangement. We proved NP-hardness
of DirectedCutwidth, which is closely related to our problem via duality. But the graph
that we construct for the NP-hardness ihas many sources and sinks, and so is not the dual
graph of a pseudoline arrangement, and proving NP-hardness of the original problem or finding
a polynomial-time algorithm for it remains open.

Weighted versions could also be of interest, for example if edge-weights are the edge-lengths
in a straight-line drawing of GA.

Our sweep by definition is monotone in the sense that every inner face is swept exactly once.
Could a shorter rope-length ever be achieved if we are permitted to reverse some flips? As
discussed at the end of the introduction, we suspect that (as for the homotopy height under
some restrictions on the input [7]) repeatedly sweeping a face cannot shorten the rope-length,
but this remains open.
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A An instance where the primal-dual sweep uses the maximum
ropelength

We show another example of how the sweep is performed in the following sequence of figures.
The construction consists of n pseudolines c1, . . . , cn, enumerated in top-to-bottom order at s,
that satisfy the following:

• For any i > 1, the first crossing along ci is with pseudoline c1.

• Let F be the face to the left of the last edge of c1. Then the top chain of F meets all
pseudolines except c1.

See Figure 10 for the pseudoline arrangement (for n = 7) and the initial rope and dual rope.
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Figure 10: The arrangement, with initial rope and dual rope.

We show that if these conditions hold, then the rope-length becomes 2n − 2 at some point
(hence the bound of Claim 4 is tight). To see this, observe that the first move is to flip across
a face, since the active edge (which is the first edge of pseudoline cn) is bottom incoming. See
Figure 11.
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Figure 11: The situation after the first face-flip.

The next few moves will all be face-flips, because the active edge is always the first edge of
pseudoline ci for some i > 1, which is bottom incoming because it ends at the intersection with
c1. So we continue face-flips until the active edge is the first edge of c1, and in fact the entire
rope is exactly c1. See Figure 12.

Now the active edge is on c1, hence top incoming, and we do a vertex-flip, which pushes the
active edge one further down the rope (i.e., along c1). See Figure 13.

The next few moves will actually all be vertex-flips, because the active edge is always on c1,
hence top-incoming if its head is not t. So we continue doing vertex-flips until the active edge
is the last edge of c1. See Figure 14.

Now the active edge is bottommost incoming at its head t, which means that we do a face-flip
at the face F to the left of the active edge. Recall that we constructed our arrangement so that
the upper chain of this face F has length n − 1. Also, pseudoline c1 has n edges, of which the
rope uses all but the last one. Therefore at this point the rope has length 2n−2. See Figure 15.
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Figure 12: The situation after repeated face-flips until the rope follows c1.
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Figure 13: The situation after the first vertex-flip.
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Figure 14: The situation after repeated vertex-flips until the active edge is the last edge of c1.

We note that rope-length 2n − 2 is not required in this example if we sweep differently. In
particular, a sweep with rope-length n + 1 can be obtained by applying the algorithm to the
reflected arrangement in which left and right are swapped.
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Figure 15: After one more face-flip, the rope length is 2n− 2.
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