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Abstract15

Nonograms are a popular type of puzzle, where an arrangement of curves in the16

plane (in the classic version, a rectangular grid) is given together with a series17

of hints, indicating which cells of the subdivision are to be colored. The colored18

cells yield an image. Curved nonograms use a curve arrangement rather than19

a grid, leading to a closer approximation of an arbitrary solution image. While20

there is a considerable amount of previous work on the natural question of the21

hardness of solving a classic nonogram, research on curved nonograms has so far22

focused on their creation, which is already highly non-trivial. We address this gap23

by providing algorithmic and hardness results for curved nonograms of varying24

complexity.25
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1 Introduction53

Nonograms, also known as Japanese puzzles, paint-by-numbers, or griddlers, are a54

popular puzzle type where one is given an empty grid in which some grid cells are55

to be colored (filled); the remaining cells remain empty (unfilled). For every row and56

column, there is a clue sequence (sometimes called description) that constrains the57

set of colored grid cells in this row or column. The clue sequence specifies how many58

consecutive blocks of cells should be filled and how large these blocks are. Two filled59

blocks need to be separated by one or more unfilled cells. A solved nonogram typically60

results in a picture (see Figure 1).61

Nonograms provide an accessible and contained environment for logical deduction.62

They have been used successfully to teach logical thinking [2, 3], and have been shown63

to stimulate brain activity to prevent dementia [4].64
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Batenburg et al. [5] introduce the notion of a simple nonogram, which can be65

solved efficiently. A nonogram is simple when it can be solved by only looking at66

a single row or column at a time. More precisely, they consider a nonogram simple67

if it can be solved by repeatedly focusing a row or column, considering all possible68

solutions for it that are consistent with the fixed cells determined so far, and fixing69

all cells which have the same value in every possible solution. This procedure is called70

settling a row/column (or simply Settle) and will be considered in more detail in71

the preliminaries (Section 2). Note that since repeated application of settling a row or72

column is a deterministic process, the existence of multiple solutions for a nonogram73

immediately implies that it cannot be simple; however, the converse is not true, i.e.,74

there are uniquely solvable nonograms that are not simple. In fact, Batenburg and75

Kosters introduce a whole hierarchy of complexity for nonograms, depending on the76

number of rows and columns which have to be considered simultaneously (by a specific77

solver) in order to definitively identify a cell whose status can be settled; puzzles with78

unique solutions can be found at all levels of this hierarchy.79

Nonogram puzzles that appear in newspapers or similar platforms tend to be of80

this simple type [6] which can be solved efficiently [6], contradicting to some extent81

the popular opinion that all interesting games and puzzles are NP-hard [7, 8].82

1.1 Solving Nonograms83

A large amount of research on solving nonograms appears in software repositories,84

discussion forums, or on personal web pages, as collected in an online survey [9] of Jan85

Wolter. Besides, there has also been substantial academic interest in nonograms. The86

natural question is to come up with an algorithm to decide whether a given nonogram87

can be solved. A number of solvers using various strategies have been presented in the88

literature. These include heuristic approaches [10], DFS-based solving methods [11–89

13], genetic algorithms [14–18], line-by-line solving combined with probing (using low90

probability guesses to quickly achieve contradictions) [19], SAT solvers [20], integer91

linear programming [21], and a combination of heuristics and neural networks [22].92

1 1

2 2

5

2 21 1

25

13

26

11 5
88888888888888888

2 4

4

1

1

1

2

3

6 7

3

6

4

4

1

3 2

3

1 3

2

0

(a)

1 1

2 2

5

2 21 1

25

13

26

11 5
88888888888888888

2 4

4

1

1

1

2

3

6 7

3

6

4

4

1

3 2

3

1 3

2

0

(b)

1 1

2 2

5

2 21 1

25

13

26

11 5
88888888888888888

2 4

4

1

1

1

2

3

6 7

3

6

4

4

1

3 2

3

1 3

2

0

(c)

Figure 1: (a) A classic nonogram puzzle. (b) An inference based on the highlighted
clue. (c) The solved nonogram.
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Figure 2: Three types of curved nonograms of increasing complexity [27], shown
with solutions. (a) Basic puzzles have no popular faces. (b) Advanced puzzles may
have popular faces, but no self-intersections. (c) Expert puzzles have self-intersecting
curves.

The performance of two general solving strategies (DFS and so called soft computing)93

has been experimentally compared on a small set of four nonogram instances [23].94

The computational problem of deciding if a nonogram has a solution is NP-95

complete, as was first shown by Ueda and Nagao [24]; see also [25, 26]. This of course96

implies that computing this solution is also at least NP-hard. Ueda and Nagao addi-97

tionally prove that, given a nonogram and a solution, deciding if this solution is unique98

is also NP-hard, via a parsimonious reduction from three-dimensional matching.99

In contrast, Batenburg and Kosters [6] gave a polynomial-time algorithm that,100

given a sequence of partially settled cells and a corresponding clue sequence, finds a101

cell that is either filled or unfilled in every possible solution, if such a cell exists. Their102

procedure can be used to either solve a given nonogram in polynomial time or decide103

that it is not simple.104

1.2 Curved Nonograms105

Van de Kerkhof et al. [27] introduced curved nonograms, a variant in which the puzzle106

is no longer played on a grid but on any arrangement of curves (an example is shown107

in Figure 2); see also [28]. For distinction, we will refer to the nonograms played on108

a grid as classic nonograms. In curved nonograms, the numbers of filled faces of the109

arrangement in the sequence of faces that appear along a side of a curve, are specified110

by a clue sequence (one on each side). Curved nonograms allow cells with more organic111

shapes than classic nonograms, and thus lead to clearer or more specific pictures. Van112

de Kerkhof et al. focus on heuristics to automatically generate such puzzles from a113

desired solution picture by extending curve segments to a complete curve arrangement.114

Additionally, they define three different levels of complexity of curved nonograms115

— not in terms of how hard it is to solve a puzzle, but how hard it is to understand116

the rules (see Figure 2). It turns out that these difficulty levels nicely correspond117

with properties of the underlying curve arrangement as observed by De Nooijer et118

al. [1] (see [29] for the conference version). Specifically, basic curved nonograms are119

exactly the puzzles in which each clue sequence corresponds to a sequence of distinct120

faces. The analogy with clue sequences in classic nonograms is straightforward. In121

an advanced curved nonogram, a face may be incident to the same curve multiple122
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times, but only on the same side, and therefore a face can appear more than once123

in a sequence. If such a face is filled it is also counted multiple times when checking124

consistency with a clue sequence; in particular, it is no longer true that the sum of125

the numbers in a clue sequence is equal to the total number of filled faces incident to126

the curve. Expert curved nonograms may have clue sequences in which a single face127

is incident to the same curve on both sides (which corresponds to the presence of a128

self-intersecting curve in the arrangement).129

Research on curved nonograms has so far focused on their production. Klute, Löf-130

fler and Nöllenburg [30] investigate the geometric problem of adding clue sequences131

to the ends of curves and provide polynomial-time algorithms for restricted cases and132

hardness results for the general problem. De Noojier et al. [1] aim to eliminate all133

faces with multiple incidences to the same curve (so-called popular faces) from a nono-134

gram by adding one additional curve to the arrangement. The same goal was recently135

pursued by reconfiguring the curve arrangement through local crossing resolution [31].136

1.3 Contribution137

In this paper, we investigate for the first time the computational problem of solving138

curved nonograms. In particular, we investigate how the concept of simple nonograms139

translates to curved nonograms. After some preliminaries in Section 2, we present in140

Section 3 a dynamic program which leverages the nested structure of popular faces141

in advanced nonograms to check for a given sequence of faces along a curve, some of142

which are already filled or unfilled, if it can still be extended to a solution that is con-143

sistent with a given clue sequence. This implies a procedure solving simple advanced144

curved nonograms in O(l7) time, where l is the length of the longest clue sequence.145

This runtime can be improved to O(l6) by using an additional top-down phase of the146

dynamic program. In the case the nonogram is basic, the dynamic program coincides147

with a special case of the one presented by Batenburg and Kosters [6], showing that148

simple basic curved nonograms can be solved in the same way as simple classic nono-149

grams. Then Section 4 shows that self-intersecting curves make curved nonograms150

significantly harder to solve, since even simple curved expert nonograms are at least151

as hard to solve as classic nonograms with a guaranteed unique solution, which we152

show is at least as hard as Unambiguous-SAT. This implies that no polynomial-time153

algorithm for solving simple expert curved nonograms exists unless RP=NP [32]. We154

close with some further research questions in Section 5.155

A preliminary version of this work has been presented at the 36th International156

Workshop on Combinatorial Algorithms (IWOCA 2025), in Bozeman, Montana, in157

July 2025. The version in the proceedings of this workshop [33] uses a different158

terminology and lacks the complexity results about unique solvability.159

2 Preliminaries160

In this section we introduce the basic concepts and notation as well as the basic161

problems, which naturally arise in the context of solving nonograms.162
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2.1 Nonograms163

Let A be a curve arrangement consisting of h curves A1, . . . , Ah all contained in and164

starting and ending at a rectangle called the frame. Every piece of a curve A between165

two consecutive intersections (or the start or end of A) is a curve segment of A. A166

face of A (also called cell) is popular if two or more curve segments incident to the167

face belong to the same curve. Every cell initially has the value unsettled which we168

denote with ?. If a value is assigned one of the two values empty (0) or filled (1) we169

say that the cell is settled. Here we follow the notation of Batenburg and Kosters [6].170

We choose an arbitrary orientation for each curve; accordingly, a face f incident171

to a curve segment s is said to be on the left or on the right side of s. Let s1, s2, . . . , sk172

be the curve segments of a curve ℓ in A. We call the list of faces f1, . . . , fk, s.t. fi is173

on the right (left) of si the right (left) sequence Sr
ℓ (Sl

ℓ) of ℓ. Popular faces can appear174

multiple times in the same sequence, and if ℓ is a self-intersecting curve, faces can175

appear in both sequences.176

A progress descriptor for a sequence S is a string ΨS = ψ1ψ2 . . . ψk ∈ {0, 1, ?}k,177

and it encodes the current state of knowledge about the faces in the sequence. If ΨS
178

contains no ?, then it is a fix. If the sequence in question is clear from context, we may179

omit the superscript. If for two progress descriptors Ψ and Ψ′ of the same sequence S180

it holds that either ψi = ? or ψi = ψ′
i for all i, we say that Ψ′ refines Ψ.181

A clue sequence D = d1, . . . , dt is a list of t numbers. One such number di will182

be called a clue of D. A fix Ψ of S is consistent with D if and only if Ψ contains183

exactly t maximal blocks of consecutive 1s and the i-th block consists of exactly di184

1s. Since these blocks are maximal, consecutive blocks are separated by one or more185

0s. A progress descriptor Ψ of S is consistent with D if it refines Ψ and there exists a186

fix that is consistent with D.187

In a curved nonogram, a face can appear more than once along a curve. This188

leads to additional constraints in the form of equations ψi = ψj . We encode this189

by a sequence of letters f1 . . . fl, like abcdefdbgbh, where repeated letters indicate190

positions that belong to the same face. For example, the 2nd, 8th, and 10th edges lie191

on a common face, marked b. We call this the face pattern of the sequence.192

We will only consider progress descriptors Ψ that fulfill all equality constraints.193

A curved nonogram C consists of a curve arrangement together with a set of clue194

sequences and progress descriptors (one for each sequence in C respectively). If all195

progress descriptors are fixes, we say the nonogram is solved and conversely solving a196

given nonogram means obtaining a fix for every progress descriptor that is consistent197

with its clue sequence. For any i ≤ j we write i . . j for the list of numbers between i198

and j (including both).199

2.2 Settling and Nonogram Complexity200

Given a progress descriptor Ψ, which is consistent with a clue sequence D, obtaining201

a progress descriptor Ψ′ that refines Ψ and is still consistent with D is called making202

progress on Ψ. The procedure Settle(Ψ, D) takes a progress descriptor and a clue203

sequence and (if possible) returns a progress descriptor Ψ′, which refines Ψ and is204

consistent with D. It does so by settling any unsettled cells to be filled (or empty)205
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5 1 2

0 ? ? ? ? ? ? ? ? ? ? ?0 0 01 1 1Ψ=

0 ? ? ? 11111111111111111 ? ? ? ? ? 00000000000000000 000000000000000000 0 01 1 1Ψ′=

Settle

Figure 3: An example of the Settle function. Filled cells are shown with a filled
square, empty cells with a dot; all other cells are unsettled. For example, in a row
with progress descriptor Ψ and clue sequence D = 5-1-2 (shown in the top left), there
are five possible fixes of Ψ consistent with D, as shown in the top right. Cells already
settled in Ψ are colored black, others gray. The blocks corresponding to the three
parts of D are indicated in corresponding colors. One cell is filled and two are empty
for all five fixes. This is indicated with yellow entries.

if they have the same value in all possible fixes which refine Ψ and are consistent206

with D. This procedure is illustrated in Figure 3.207

Note that there can be exponentially many such fixes. However, while Settle is208

defined via equality of the value of a cell over all possible fixes, an implementation of209

Settle does not necessarily need to enumerate all possible fixes to find such a cell.210

For example in a classic nonogram, the dynamic program of Batenburg and Kosters [6]211

finds such a cell in polynomial time or decides that no such cell exists. Applying212

Settle to all rows and columns of a nonogram until no progress can be made is called213

a FullSettle.214

If every progress descriptor of a nonogram has a fix consistent with its clue sequence215

it is solvable and correspondingly we will call a nonogram in which every progress216

descriptor is a fix the solution of the nonogram. If a nonogram is solvable via a217

FullSettle it is called simple. We remark that this definition is in line with [6],218

whose algorithm can solve simple classic nonograms in polynomial time.219

3 Solving Simple Advanced Curved Nonograms220

In this section we present a dynamic program which, given a sequence S together221

with a progress descriptor Ψ and a clue sequence D decides in polynomial time if222

there exists a fix Ψ′ consistent with D that refines Ψ. This is analogous to the ex-223

isting dynamic program by Batenburg and Kosters for classic nonogram [6], and in224

fact for basic curved nonograms our algorithm simplifies exactly to a special case of225

their algorithm (see Section 3.2). Readers familiar with their work will easily spot226

the parallels; however, in advanced curved nonograms, the presence of popular faces227

requires the maintenance of an additional data structure. The property of advanced228

nonograms that is crucial for us is that the equality constraints are properly nested:229
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Observation 1 Let i, j, k and l be four indices of letters in the face pattern of a sequence230

S belonging to a curve A in an advanced curved nonogram, such that fi = fj ̸= fk = fl.231

W.l.o.g. assume min(i, j, k, l) = i and k < l. Then either (i) j < k∧j < l or (ii) j > k∧j > l.232

Proof We only have to exclude the order i < k < j < l. Assume w.l.o.g. that we are233

considering the left side of A. Let a and b be points on the i-th and j-th segment of A,234

respectively. Since these segments lie on a common face, we can connect a and b by a curve235

B in that face, on the left side of A. Let A[a, b] be the subcurve of A between a and b. Then236

C = A[a, b] ∪ B is a Jordan curve (simple and closed). If i < k < j < l, C encloses the face237

on the left side of the k-th segment, but it does not enclose the face on the left side of the l-238

th segment. Hence, these faces cannot be identical, contrary to our assumption fk = fl, and239

therefore, the order i < k < j < l is impossible. □240

We mention that the nesting property of Observation 1 is the only property on241

which our algorithm relies. If a curve A has self-intersections but there are no faces242

that lead to a violation of the nesting property, our algorithm can be applied.243

Theorem 1 Consistency of a sequence S of length l with a clue sequence D with
∑

d∈D d = k244

can be decided in time O(k3l) = O(l4).245

Proof In a bottom-up phase of the dynamic program we try to match larger and larger246

intervals of the progress descriptor with larger and larger parts of the clue sequence. In a247

subsequent top-down phase we will discover which assignments are consistent with an overall248

solution. A Python program for the algorithm is given in Appendix A.1249

We translate D = d1d2 . . . dt to a clue bitstring = a1a2 . . . ak of 0s and 1, by creating250

blocks of di 1s for every 1 ≤ i ≤ t and concatenating them with one 0 between consecutive251

blocks. Additionally we artificially pad the list by an extra 0 at the beginning and at the252

end. This assumption implies that every row and column starts and ends with an empty253

cell. Every nonogram can obviously be padded with empty rows and columns to achieve this.254

For example, D = 5-1-2 is translated to D01 = 011111010110, with the understanding that255

a 0 has the potential to stretch to an arbitrary larger number of unfilled cells. A progress256

descriptor is consistent with this clue bitstring if one can create two equal strings by replacing257

every ? in the progress descriptor with either 0 or 1 and replacing any 0 in the clue sequence258

with one or more 0. The following example shows this for D = 5-1-2.259

clue bitstring D01 = a1a2 . . . ai . . . ak = 011111010110

progress descriptor Ψ = ψ1ψ2ψ3 . . . ψj . . . ψl−1ψl = 0???1???10??1??0?0
260

In the finished nonogram, all ?’s should be turned into 0’s or 1’s, subject to the require-261

ment that the resulting sequence fits the progress descriptor. We want to know whether a262

particular ? can be turned only into 0 or only into 1 in all possible solutions, because then263

this ? can be fixed to this value. In other words we aim to implement the Settle procedure.264

Recall that the finished solution must satisfy certain equations ψi = ψj when two edges265

are incident to a common face, which we have encoded by a face pattern f1 . . . fl, like266

abcdefdbgbh (see also Figure 4), where repeated letters indicate that edges belong to the267

1See https://page.mi.fu-berlin.de/rote/Papers/abstract/On+solving+simple+curved+nonograms.html

https://page.mi.fu-berlin.de/rote/Papers/abstract/On+solving+simple+curved+nonograms.html
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c d e1 f e2 b2g h i b3

e1 f e2g h
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(b)

Figure 4: (a) A schematic representation of a curve arrangement indicating the face
incidences for top side of the horizontal line and (b) its hierarchical decomposition into
subintervals. For clarity, multiple occurrences of the same face (such as b1, b2, b3) are
distinguished by indices. A white node denotes a decomposition of a complete group
into brackets; a black node denotes decomposition of a bracket into complete groups.
Black and white nodes occur in alternate levels of the tree.

same face. According to Observation 1, these repeated occurrences are nested : The pattern268

. . . x . . . y . . . x . . . y . . . cannot occur in the sequence.269

We solve the following subproblems Match i. .i′

j. .j′ , for every 1 ≤ i ≤ i′ ≤ k and for a270

certain set J of 2l − 1 selected intervals j . . j′ with 1 ≤ j ≤ j′ ≤ l:271

Can the ?’s in ψj . . ψj′ be turned into 0’s or 1’s such that the resulting string is consistent272

with the clue bitstring ai . . ai′?273
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progress descriptor ψ1 . . . ψl

clue bitstring a1a2 . . . ak

j j′

i i′

face pattern f1f2 . . . fl

Figure 5: Illustration of a subproblem Match i. .i′

j. .j′ = Match 2. .10
3. .13. A possible correspon-

dence between a2 . . . a10 and ψ3 . . . ψ13 is indicated, showing that this subproblem is
consistent.

The subproblem Match i. .i′

j. .j′ results in a Boolean value true or false. Accordingly, we will say274

that a subproblem is consistent or inconsistent. See Figure 5 for an example.275
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The set J of intervals j . . j′ of the curve that we consider is defined as follows.276

Suppose that the cells j1 < j2 < · · · < jm are the cells belonging to some common face:277

fj1 = fj2 = · · · = fjm . We call the interval j1 . . jm a complete group, and we call the278

intervals j1 . . jp, for p = 1, . . . ,m the progressive sleuths. The first progressive sleuth is the279

singleton interval j1 . . j1. If a face occurs only once along the curve, at position j, then the280

singleton interval j . . j forms a complete group.281

An interval jp +1 . . jp+1 between two successive occurrences of the same face, including282

the second occurrence but not the first, is called a bracket. A bracket consists of a nonempty283

sequence of complete groups, followed by an occurrence of the face of the enclosing group at284

position jp+1. We consider also the whole interval 1 . . l as a bracket although it lacks the285

final element of the enclosing group (see Figure 4 for an illustration).286

We will build up the whole curve 1 . . l, starting from singleton intervals j . . j. These can287

be seen as the leaves of a binary composition tree T (see Figure 6) This binary tree represents288

how we will combine certain pairs of consecutive intervals j . . j′ and j′ + 1 . . j′′ into larger289

intervals j . . j′′. This is done as follows.290

a b1 c d e1 f e2 b2 i b3g h

a b1 c d e1 f e2 b2 i b3g h

b1 c d e1 f e2 b2 i b3g h

c d e1 f e2 b2g h

i b3

e1 f e2g h

b1 c d e1 f e2 b2g h

c d

e1 f e2g h

f e2g h

f g h

f g

c d

Figure 6: The binary composition tree T corresponding to the tree of Figure 4b, in
which nodes of higher degree have been replaced by sequences of binary nodes. This
is a binary tree whose leaves are the singleton intervals.

Every complete group is built up from left to right by successive addition of brackets:291

[j1 . . jp] ∪ [jp + 1 . . jp+1] = [j1 . . jp+1]

Similarly, every bracket is built up from left to right by successive addition of the complete292

groups that make it up (plus the final cell of the enclosing group). In total, a set J of293

2l − 1 = O(l) intervals j . . j′′ are considered. Each such interval with j < j′′ – an internal294

node in T – is built in a unique way from two disjoint subintervals in J :295

[j . . j′′] = [j . . j′] ∪ [j′ + 1 . . j′′] (1)

See Figure 6 for an example.296
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The singleton subproblems of the form Matchj. .j are trivial to solve: For a clue bitstring of297

length 1, we have Match i. .i
j. .j ⇐⇒ ψj = ?∨ψj = ai, while Match i. .i′

j. .j is trivially inconsistent298

for i < i′, since a single cell can never be consistent with a clue bitstring of length larger299

than 1.300

Following the decomposition (1), each subproblem of the type Matchj. .j′′ with j′′ > j301

is associated to two families of smaller subproblems Matchj. .j′ and Matchj′+1. .j′′ , for some302

fixed j′. We solve these subproblems by the following recursion:303

Match i. .i′′

j. .j′′ ⇐⇒
∨

i′:i≤i′≤i′′−1

(
Match i. .i′

j. .j′ ∧ Match i′+1. .i′′

j′+1. .j′′ ∧ ai′ = ai′′
)

∨
∨

i′:i≤i′≤i′′

(
ai′ = 0 ∧ Match i. .i′

j. .j′ ∧ Match i′. .i′′

j′+1. .j′′ ∧ ai′ = ai′′
)
,

(2)

where the final condition ai′ = ai′′ is present only in case of composing a progressive sleuth304

with a bracket. This extra condition ensures that occurrences of the same face have the same305

color 0 or 1; when combining two complete groups, there are no shared faces that need to be306

considered, and the condition ai′ = ai′′ is omitted.307

The first clause considers all possibilities of splitting the interval i . . i′′ into two disjoint308

parts i . . i′ and i′ + 1 . . i′′. The second clause considers in addition the possibility that the309

two parts of the curve can use overlapping parts of the clue bitstring if the overlap is a 0.310

This completes the description of the bottom-up phase. The target problem Match 1. .k
1. .l de-311

scribes the original problem: consistency of the whole progress descriptor Ψ with the complete312

clue bitstring D01.313

In total, there are O(k2l) subproblems, and each subproblem can be evaluated by trying314

O(k) choices for i′, for a total running time of O(k3l). □315

3.1 Making progress316

Having solved the consistency problem, we immediately get a polynomial-time solution317

algorithm for making progress.318

Proposition 1 Given a single sequence S of length l and a clue sequence D with
∑

d∈D d = k319

we can make progress or decide that no progress can be made in time O(k3l2) = O(l5).320

Proof We tentatively set a ? letter to 0 or 1 and check consistency again. If one of the options321

is inconsistent, then we know that ? must be replaced by the other letter, thus making322

progress. This is repeated most l times, for each occurrence of ?. □323

However, we can solve this more efficiently and avoid the additional factor l by a324

top-down phase, in which we mark certain subproblems as extensible.325

Theorem 2 Given a single sequence S of length l and a clue sequence D that describes k326

ones we can make progress or decide that no progress can be made in time O(k3l) = O(l4).327
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Proof We call a subproblem Match i. .i′

j. .j′ extensible if it is consistent and in addition, some328

solution that fits the clue bitstring ai . . ai′ can be extended to a complete solution by setting329

the remaining ?’s outside the substring bj . . bj′ appropriately.330

We begin by marking the target problem Match 1. .k
1. .l , as extensible, assuming it is con-331

sistent. Then we use the recursion (2) in reverse. If Match i. .i′′

j. .j′′ is extensible, then, if any of332

the parenthesized clauses on the right-hand side of (2) holds for some i′, we mark the two333

corresponding subproblems Match i. .i′

j. .j′ and Match i′(+1). .i′′

j′+1. .j′′ as extensible.334

Finally we look at each unsettled position j with bj = ?, and we check for which clue335

bitstring positions i the problem Match i. .i
j. .j is extensible. If all extensible problems among336

these have ai = 0, we can conclude that bj must be set to 0, and settle an unsettled color in337

this way. Similarly, if all extensible problems have ai = 1, we can fix the unsettled value bj338

to 1 at this position. □339

Theorem 2 can be used to obtain the following corollary by the simple fact that340

there are only a linear number of rows and columns and cells in the nonogram. After341

applying the dynamic program once to every row and column, we must have made342

progress on at least one sequence, so there is at most an overhead of O(l2).343

Corollary 1 Simple advanced curved nonograms can be solved in time O(l6).344

3.2 Back to Basic Nonograms345

When our algorithm is applied to a curve in a basic nonogram, there are no groups, and346

the whole sequence is just one bracket whose sequence of “complete groups” consists of347

singletons. The decomposition tree degenerates, and the algorithm simply grows the348

intervals 1 . . i and 1 . . j by adding one symbol at at time. Here our dynamic program349

reduces to the seminal algorithm of Batenburg and Kosters [6] (which is actually more350

general because it can deal with a specified range of lengths for each 1-block instead351

of a fixed length).352

4 Solving Simple Expert Curved Nonograms353

In this section we show that no polynomial-time algorithms for solving simple expert354

curved nonograms can exist, unless RP=NP. The proof consists of two parts. First,355

in Section 4.1, we show that solving a simple curved expert nonogram is at least as356

hard as finding the solution to a not necessarily simple classic nonogram provided357

that the classic nonogram has a unique solution. Then, in Section 4.2, we argue that358

this problem is in turn at least as hard as Unambiguous-SAT.359

4.1 Parsimonious Reduction from Classic Nonograms to360

Simple Expert Curved Nonograms361

In this section we provide a parsimonious reduction from solving a classic nonogram362

to solving a curved expert nonogram. In particular the curved expert nonogram con-363

structed by our reduction is simple if the classical grid nonogram had a unique solution.364

We will base our reduction on the following problem.365
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Figure 7: (a) A classic nonogram with w = 5 columns and h = 5 rows. (b) In the
reduction we pad a given nonogram to guarantee it has one more column than rows.
The result here is a padded nonogram with w = 6 columns and h = 5 rows. The
hints are annotated with the order in which they are collected into (c) a single self-
intersecting vital curve that contains all grid lines of the classic nonogram and all clue
sequences in one vital clue sequence.

Unique Solution Nonogram (1-SN) Given a classic nonogram N with the guarantee it366

has a unique solution, find the solution for the nonogram N .367

It is instructive to observe that:368

(i) the uniqueness of a solution for a nonogram (curved or classical) does not imply369

that the nonogram is simple,370

(ii) testing if a classic nonogram has a solution is NP-hard in general, as shown by371

Ueda and Nagao [24] (of course implying that finding such a solution is also372

NP-hard),373

(iii) Ueda and Nagao [24] also show that testing if a given nonogram has more than374

one solution, even if we are given a solution, is NP-hard and375

(iv) neither (ii) nor (iii) directly imply that finding a solution for a classic nonogram376

is still NP-hard if we are guaranteed that it has a unique solution and we can377

therefore not immediately follow that 1-SN is NP-hard.378

4.1.1 High-Level Overview379

The high-level overview of our reduction is as follows. We first describe the construc-380

tion of a curved expert nonogram C based on a given not-necessarily-simple classic381

nonogram N . If we are guaranteed that N has a unique solution, then C will equally382

have a unique solution, and additionally we will show that C is simple. To do so we383

argue that the sequences along all but one curve can be trivially filled (using the384

Settle procedure) by simply filling all sequences whose clue sequence requires the385

entire sequence to be colored black. This will yield a partially filled curved expert386
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nonogram, in which all cells that are not yet colored are part of the right sequence Sr
ℓ387

along a single curve ℓ. Moreover the progress descriptor Ψ of this sequence includes388

already filled sequences of cells and there is a one-to-one correspondence between any389

maximal sequence of unsettled cells to a row or column of the input classic nonogram.390

Now any fix which refines Ψ and is consistent with the clue sequence of Sr
ℓ will fill in391

all remaining cells of C. This immediately yields a solution for N .392

Since C is simple, it can be solved with an application of FullSettle. Therefore a393

polynomial time algorithm for FullSettle on curved expert nonograms would imply394

that the constructed simple curved expert nonogram and thereby classic nonograms395

can be solved in polynomial time, if we are guaranteed that their solution is unique.396

4.1.2 Constructing the curved expert nonogram397

Consider a classic nonogram N with w columns and h rows, as in Figure 7(a). We398

will assume w.l.o.g. that we have w = h + 1; this can be achieved through appropri-399

ate padding, see Figure 7(b). Note that adding empty (or completely filled) rows or400

columns does not change the difficulty of the puzzle. All cells of N will also be con-401

tained in the curved expert nonogram C we created based on N . We will call these402

cells the original cells.403

Now, conceptually, we will trace a single vital curve through all w + 1 vertical404

and h + 1 horizontal line segments that make up the grid of the puzzle (excluding405

the section that contains the clue sequences); refer to Figure 7(c). Doing this will406

concatenate the clue sequences from all rows and columns of the original nonogram407

into a single clue sequence; specifically, it will intersperse the clue sequences of the408

columns (from left to right) and the rows (from top to bottom). We will refer to the409

resulting clue sequence as the vital clue sequence.410

However, this alters the difficulty of the puzzle, as the information which sections411

of the vital clue sequence belong to separate rows or columns is lost. To solve this,412

we again pad the original nonogram, but now with rows and columns, which we will413

force to be entirely colored in a solution of C as follows.414

We let k = 1 + max
(
⌊w
2 ⌋, ⌊

h
2 ⌋
)
; this value is chosen to ensure that 2k is more415

than either w or h. We first construct another padded w + 2 + 2k by h + 2 + 2k416

grid: the original grid with a single empty and k full rows added on all sides. Refer417

to Figure 8(a). All filled/empty cells that are added by this procedure are called the418

filled/empty padding cells.419

Then, we construct a curved nonogram C which consists of this grid surrounded420

by some additional potentially non-rectangular cells (which will be called boundary421

cells). In total, it consists of 4k + 5 curves: k + 1 straight lines on each side of the422

input picture, plus 1 very long curve ℓ which contains all original grid lines. Refer to423

Figure 8(b). Note that by construction all clue sequences which consists of a single424

clue require their entire sequence to be filled. Settling all cells of these sequences to be425

filled also uniquely determines a fix for all sequences with clue sequences consisting426

of two clues and we state the following observation.427

Observation 2 Any sequence other than Sr
ℓ has a clue sequence of length one or two. More-428

over all boundary and filled padding cells can trivially be settled to be filled and all empty429
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Figure 8: (a) An even more padded version of the nonogram from Figure 7. (b)
The final construction including k = 3 additional rows and columns of filled cells on
all sides. Original filled cells are yellow; padding cells are orange. In the vital clue
sequence, numbers are orange if they are at least 2k and yellow otherwise.

padding cells can trivially be settled to be empty. Every unsettled cell is an original cell and430

contained in Sr
ℓ . □431

Next we consider the vital clue sequence D. We can partition D into 2(w+h+4)+1432

(possibly empty) parts, s.t., these parts alternatingly correspond to the clue sequence433

of a column or row of N and clues which require 4k − 1 consecutive filled cells (with434

the exception of the first and last part, which require exactly k+1 filled cells). We call435

the parts requiring 4k− 1 cells blockers. Note two things. First there is a matching of436

already settled cells along the vital sequence and blockers, s.t., all blockers are fulfilled437

and second there are either w + 2 or h + 2 unsettled cells between two consecutive438

chains of 4k − 1 already filled cells and therefore no blocker can be fulfilled in such439

a space. Therefore this matching is the only possible realization of the blockers and440

we know that every chain of unsettled original cells in C has to accommodate exactly441

the clues that the original row or column in N had to realize. With this we state the442

following.443

Observation 3 If we restrict the solution of C to its original cells, we obtain exactly the444

solution of N .445

Lemma 1 If N has a unique solution the constructed curved expert nonogram C also has446

only a single solution. Moreover C is simple.447
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Proof The first part of the lemma follows as a direct consequence of Observation 2 and 3.448

Over all solutions of C, any padding and boundary cell in C can have exactly one value (filled449

or unfilled) and any original cell can have at most as many values as the corresponding cell450

in N over all valid solutions of N . If this solution of N is unique, every original cell can have451

only one such value.452

The second part of the lemma statement is a consequence of Observation 2. Since the453

value of all cells, which are not part of the vital sequence can trivially be settled, if we would454

apply the Settle procedure to the vital sequence, we would settle all remaining cells, since455

they can have only one value in a solution (because this solution is unique). □456

Observe that Lemma 1 will be the crucial property to show that the reduction is457

parsimonious.458

4.1.3 Correctness459

We are now ready to prove the main theorem.460

Theorem 3 Solving Simple Curved Expert Nonogram is (a) at least as hard as 1-SN461

and (b) in NP.462

Proof To prove statement (a) it suffices to show that we can construct C based on a given463

nonogram N in polynomial time and given a solution of Simple Curved Expert Nono-464

gram, i.e., a filled version of C, we can construct a solution to 1-SN for the instance N in465

polynomial time. The first part is immediate as the construction as described in Section 4.1.2466

which yields C based on a given N adds only a polynomially many cells to N and the curves467

can be obtained by connecting at most a polynomial number of grid lines. Since N has a468

unique solution by definition of 1-SN, it follows from Lemma 1.469

The second part, i.e., constructing a solution for N based on a given solution for C follows470

from Observation 3. By simply settling all cells in N according to the value of the original471

cells in C, we obtain the solution.472

To prove statement (b) observe that, given a solution for Simple Curved Expert Nono-473

gram, we can enumerate all polynomially many sequences, and check in polynomial time if474

their fix is consistent with their clue sequence. This concludes the proof. □475

Finally after completing the reduction we state a last observation based on the fact476

that, by Lemma 1, the reduction from 1-SN to Simple Curved Expert Nonogram477

guarantees that the uniqueness of the solution for 1-SN is preserved.478

Observation 4 The reduction from 1-SN to Simple Curved Expert Nonogram is479

parsimonious.480

We note that the construction of our hardness proof produces a simple curve481

arrangement, i.e., there are no three curves intersect in the same point, no two curves482

touch without crossing, and no curves locally overlap in more than a single point.483

As previously mentioned we only show with Theorem 3 that Simple Curved484

Expert Nonogram is at least as hard as 1-SN. While it seems reasonable to expect485
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1-SN to be NP-hard (equivalent to the generalized problem, i.e., finding a solution to486

any classic nonogram), this remains open. However in the following section we will487

see that it is nevertheless unlikely that there is an efficient algorithm for 1-SN.488

4.2 Reduction from Unambiguous-SAT to Classic Nonograms489

In this section, we show that 1-SN and therefore solving a simple curved expert nono-490

gram is at least as hard as Unambiguous-SAT, for which no polynomial-time algorithm491

exists unless RP=NP [32]. Our reduction is presented in three steps:492

• a parsimonious reduction from SAT to 1-IN-3-SAT (Section 4.2.1);493

• a parsimonious reduction from 1-IN-3-SAT to 3-dimensional matching494

(Section 4.2.2); and495

• a parsimonious reduction from 3-dimensional matching to nonogram solvability496

(Section 4.2.3).497

4.2.1 Parsimonious reduction from SAT to 1-IN-3-SAT498

It is not hard to come up with parsimonious reduction from SAT to 3-SAT, and499

a parsimonious reduction from 3-SAT to 1-IN-3-SAT is given in [34, Appendix B],500

crediting [35], where this is mentioned as a corollary of a much more general result.2501

Taken together, these reductions yield a parsimonious reduction from SAT to 1-IN-502

3-SAT. For completeness, we sketch a direct parsimonious reduction from SAT to503

1-IN-3-SAT:504

Proposition 2 There is a parsimonious reduction from SAT to 1-IN-3-SAT.505

Proof Consider a clause a1 ∨ a2 ∨ · · · ∨ ak with k ≥ 2 literals. We think of evaluating it from506

left to right in the form507

(((((a1 ∨ a2) ∨ a3) ∨ · · · ) ∨ ak−2) ∨ ak−1) ∨ ak
and model it accordingly as the conjunction of the formulas508

a1 ∨ a2 ↔ b2
b2 ∨ a3 ↔ b3

...
bk−3 ∨ ak−2 ↔ bk−2

bk−2 ∨ ak−2 ↔ bk−1

bk−1 ∨ ak.
Given a1, . . . , ak, the values of the auxiliary variables b2, . . . , bk−1 with the intermediate509

results are uniquely determined.510

Each formula of the form (x∨ y) ↔ z is transformed into a formula with two 1-IN-3-SAT511

clauses and two (ordinary disjunctive) 2-SAT clauses:512

(x ∨ y) ↔ z ⇐⇒ (x, r,¬z) ∧ (y ∨ ¬r) ∧ (y, s,¬z) ∧ (x ∨ ¬s)

2see also https://cs.stackexchange.com/questions/125440/unique-3sat-to-unique-1-IN-3sat

https://cs.stackexchange.com/questions/125440/unique-3sat-to-unique-1-IN-3sat
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Figure 9: Variable gadget (a) with two rings of 6k = 18 vertices (2k red, 2k blue and
2k green). The triplets that are unique to the variable gadget are shown in light green.
They overlap in the core vertices. Blocks {RT , GT , BT } of tip vertices are indicated
with an orange backdrop, and blocks {RF , GF , BF } with a blue one. Dashed backdrops
indicate unused blocks; each such block can be covered with a separate triple: these
are the gray and black triples in (b), where the black triple is used in the true state
and the two gray triples are used in the false state. The true state (b) leaves the tip
vertices of the {RF , GF , BF } blocks uncovered (the brown connections).

with additional variables r and s. Here, a comma-separated triplet denotes 1-IN-3-SAT clause,513

which evaluates to true if exactly one of the three literals is true. It is easy to check that,514

for each of the four combinations of values of x and y, the clauses on the right-hand side515

determine z, r, s uniquely, and z gets the correct value. Finally, any 2-SAT clause is easily516

translated into a 1-IN-3-SAT clause with an additional variable t:517

x ∨ y ⇐⇒ (¬x,¬y, t) □

4.2.2 Parsimonious reduction from 1-IN-3-SAT to518

Three-Dimensional Matching (3DM)519

In the Three-Dimensional Matching Problem (3DM), there are three disjoint sets520

R,G,B of vertices of the same size |R| = |G| = |B| = n, and a set of three-colored521

triplets (a, b, c) with a ∈ R, b ∈ G, c ∈ B. The task is to pick n triplets that partition522

the set R ∪G ∪B.523

The usual reduction from 3SAT to Three-Dimensional Matching (3DM) can be524

made to be parsimonious when adapting it to 1-IN-3-SAT. The following reduction is525

a slight extension of the standard reduction found in the literature, see, for example,526

[36, Section 3.1.2] or [37, pp. 481–485].527

Proposition 3 There is a parsimonious reduction from 1-IN-3-SAT to 3DM.528
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Figure 10: Clause gadget with triplets in the gadget: diagonal triplets in purple,
singleton triplets in turquoise, snake triplets in orange and blocks from the variable
gadget in brown. For a fixed choice of a diagonal triplet, e.g., {b̂, r1, g2}, all other
vertices of the gadget can be covered (a) while using exactly one singleton triplet,
one snake triplet and one block. Any choice of singleton triplet different from r̂ĝb1
as in (b) or (c) necessarily leaves b1 uncovered. Examples of triplets which cannot be
chosen are shown with a hatched fill.

Proof Each variable is represented by a variable gadget as follows, see Figure 9. Let k be529

the number of clauses in which the variable appears. There is an inner ring of 6k core530

vertices and an outer ring of 6k tip vertices. The core vertices are involved in no other531

triplets. Therefore there can be only two solutions, which either cover the “even” tips or532

the “odd” tips. One solution represents setting the variable to true, the other solution to533

false. We partition the 3k covered tips of the true state arbitrarily into k multicolored blocks534

{RT
1 , G

T
1 , B

T
1 }, {RT

2 , G
T
2 , B

T
2 }, . . . , {RT

k , G
T
k , B

T
k } of size three, and similarly, we form k mul-535

ticolored blocks {RF
1 , G

F
1 , B

F
1 }, {RF

2 , G
F
2 , B

F
2 }, . . . , {RF

k , G
F
k , B

F
k }, from the 3k covered tips536

of the false state. Each block is used to represent the corresponding literal in one clause in537

which that literal appears.538

Since there are 2k blocks (for positive and negative literals) but only k occurrences of539

literals, k blocks will remain unused. For each unused block of the variable gadget, we add a540

triplet that can cover that block.541

Clause gadgets.542

For each 1-IN-3-SAT clause of three literals, we form a clause gadget, which involves three543

blocks with three vertices each from the variable gadgets that represent the literals, plus544

three extra vertices r̂, ĝ, b̂, for a total of 12 vertices, see Figure 10a. For simplicity of notation,545

we refer to the vertices of the three blocks as {r1, g1, b1}, {r2, g2, b2}, and {r3, g3, b3}. This546

numbering is local to the clause gadget, and each clause gadget has separate vertices r̂, ĝ, b̂.547

There are nine triplets that are specific to the clause gadget, and they come in three548

types. The construction is symmetric under cyclic permutation of indices modulo 3. There are549

three diagonal triplets (r1, g2, b̂), (r2, g3, b̂), and (r3, g1, b̂); three singleton triplets (r̂, ĝ, b1),550

(r̂, ĝ, b2), and (r̂, ĝ, b3); and three snake triplets (r2, g1, b2), (r3, g2, b3), and (r1, g3, b1). All of551

these are shown in Figure 10a.552
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Clearly, to cover r̂, ĝ, and b̂, we must use exactly one diagonal triplet, and exactly one553

singleton triplet. From the variable gadgets, we have the option to cover any of the blocks554

{ri, gi, bi} that are arranged in a column in Figure 10b. Assume w.l.o.g. that we use the555

diagonal triplet (r1, g2, b̂), see Figure 10b.556

The only snake triplet that we may use is (r2, g1, b2), because the other snake triplets557

intersect the chosen diagonal triplet (b̂, r1, g2). If we use the singleton triplet that covers b1558

(Figure 10b), the only possibility to generate a matching is to cover the column {r3, g3, b3}559

from the respective variable gadget.560

If the singleton triplet covers b2 or b3 (Figure 10c–d), b1 can be covered neither by a561

snake triplet nor from the variable gadgets as part of the column {r1, g1, b1} from the variable562

gadgets.563

It follows that the only possibility is to use exactly one column, corresponding to a literal564

that is true, and once that column is chosen, the solution is unique within the clause gadget.565

Our previous reduction to 1-IN-3-SAT does not produce clauses with less than three566

literals, but if we had a “1-IN-2-SAT” clause with only 2 literals, we could handle it as567

follows: We use these literals for the columns {r1, g1, b1} and {r2, g2, b2}, and we add three568

new vertices forming the column {r3, g3, b3}. Since these vertices cannot be covered from the569

vertex gadgets, the clause gadget works in the intended way. □570

4.2.3 Parsimonious reduction from 3DM to Nonogram Solvability571

Ueda and Nagao [24, Theorem 3.1] present a parsimonious reduction from 3DM to572

solving a classical grid nonogram. Since the reduction is parsimonious this reduction573

together with the reduction of the previous section yields the following result, which574

we believe is of independent interest.575

Theorem 4 The problem of finding the solution of a (classical) nonogram, under the con-576

dition that it has a unique solution, is at least as hard as Unambiguous-SAT. Therefore, it577

admits no polynomial-time solution unless RP=NP.578

4.3 Combining the Reductions579

We now have all pieces in place to combine the above reductions in the following way.580

Starting with an instance of Unambiguous-SAT, we use the reduction of Section 4.2.1581

to create an instance of 1-IN-3 SAT which, by the fact that the reduction is parsimo-582

nious, also has a unique solution. Then we create an instance of 3DM, again with a583

unique solution, via the reduction of Section 4.2.2. Next we employ Ueda and Nagao’s584

parsimonious reduction from 3DM to Nonogram. This reduction creates a classical585

grid nonogram with a unique solution, and thus is an instance of 1-SN. And finally we586

use our own parsimonious reduction explained in Section 4.1, which creates a simple587

curved expert nonogram.588

If there were a polynomial-time algorithm for Simple Curved Expert Nono-589

gram, we would immediately obtain a polynomial-time algorithm for Unambiguous-590

SAT, which does not exist unless RP=NP [32], which is summarized in our final591

result.592
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Theorem 5 The problem of finding the solution of a simple expert curved nonogram is at593

least as hard as Unambiguous-SAT. Therefore, it admits no polynomial-time solution unless594

RP = NP.595

5 Conclusions596

We have shown that the concept of simple nonograms extends to curved nonograms597

to some extent. In general, simple curved nonograms are not necessarily easy to solve:598

even the problem of testing for progress on a single clue sequence is already as hard as599

solving a classic nonogram under the assumption that it has a unique solution, which600

in turn we show is at least as hard as Unambiguous-SAT. However, for the restricted601

classes of basic and advanced curved nonograms, we show that simple puzzles can be602

solved in polynomial time. It would be of interest how other measures of difficulty like603

the ones proposed by Batenburg and Kosters [39] extend to curved nonograms.604
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A Python program for the settle algorithm732

1 # indices start at 0 (following Python conventions) and not at 1 (as in the paper)
2

3 from collections import defaultdict
4

5 def decomposition_tree(f, show=False):
6 """construct the binary decomposition tree.
7 f is a the "face pattern", a string (or list of numbers or other objects)
8 with one entry for each segment of the curve.
9 Equal letters indicate segments belonging to the same face.

10

11 Tree has three types of nodes, see Figure 5:
12 * "Singleton", a leaf.
13 * "Separate", with two children (white node).
14 * "Progressive", with two children (black node): progressive sleuth + bracket
15 "Separate" and "Progressive" store a triplet (i,j,k) of indices:
16 f[i..k] (f[i:k+1] in Python notation) is the current range,
17 and it is split after f[j]. """
18 assert all(c!=d for c,d in zip(f,f[1:])) # Consecutive letters must be distinct.
19 where = defaultdict(list)
20 for i,c in enumerate(f):
21 where[c].append(i) # store in which positions each letter appears
22

23 # The tree is built by the recursive procedure "decompose". This is
24 # not described in the paper.
25 def decompose(i,j):
26 """Either f[i]=f[j]=c and i is the first occurrence of c, or i=0,
27 or the symbol f[i-1] occurs again after f[i..j] but not in f[i..j]."""
28 c = f[j] # pick pieces from the end
29 first = where[c][0]
30 if first<i: # illegal pattern
31 d = f[i-1]
32 raise ValueError(c,first,j, d,i-1,f.index(d,i))
33 if i==j:
34 return ("Singleton",i)
35 if first>i:
36 return("Separate", (i,first-1,j),
37 decompose(i,first-1),
38 decompose(first,j)) # complete group
39 # else: # first==i
40 where[c].pop()
41 prev=where[c][-1]
42 return("Progressive", (i,prev,j),
43 # progressive sleuth
44 decompose(i,prev),
45 # plus bracket
46 ("Separate", (prev+1,j-1,j),
47 decompose(prev+1,j-1),
48 ("Singleton",j)))
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49 try:
50 Tree = decompose(0,len(f)-1)
51 except ValueError as err:
52 c,i1,i2, d,j1,j2 = err.args
53 print(f"Error: Sequence {f} has interleaving faces.")
54 print(f"f[{i1}]=f[{i2}]={c}, f[{j1}]=f[{j2}]={d}")
55 assert f[i1]==f[i2]==c and f[j1]==f[j2]==d
56 assert c!=d
57 assert i1<j1<i2<j2
58 return
59 if show:
60 print("decomposition tree for",repr(f)+":")
61 print_tree(Tree,f)
62 return Tree
63

64 def print_tree(t,f,level=0):
65 typ = t[0]
66 if typ == "Singleton":
67 print(" "*level,*t, f[t[1]])
68 else:
69 ranges = t[1]
70 print(" "*level,typ,ranges,f[ranges[0]:ranges[-1]+1])
71 for sub in t[2:]:
72 print_tree(sub,f,level+1)
73

74 def settle(progress_descriptor, clue_sequence, face_pattern, show_tree=False):
75 """progress_descriptor is a string of '0', '1', and '?'.
76 It is assumed that it contains the added artificial '0' at the
77 beginning and at the end.
78

79 clue_sequence is a sequence of positive integers (clues)
80

81 face_pattern gives the sequence of incident faces along the curve segments.
82 face_pattern has the same length as progress_descriptor.
83 """
84 f = face_pattern
85 clue_bitstring = [0]
86 for n in clue_sequence:
87 clue_bitstring += [1]*n+[0]
88 a = ''.join(str(c) for c in clue_bitstring) # convert to 0-1 string
89 k = len(a)
90 l = len(face_pattern)
91 assert l==len(progress_descriptor)
92 psi = progress_descriptor
93 print(f"{a=} {k=}\n{f=} {l=}\nprogress_descriptor {psi=}")
94 T = decomposition_tree(face_pattern, show=show_tree)
95

96 Match = defaultdict(bool) # defaults to False
97 # For convenience, we use dictionaries instead of arrays.
98
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99 def solve_bottom_up(t):
100 if t[0]=="Singleton":
101 j = t[1]
102 for i in range(k):
103 Match[i,i, j,j] = psi[j]=="?" or psi[j]==a[i]
104 else:
105 typ,split, sub1,sub2 = t
106 solve_bottom_up(sub1) # visit subproblems first
107 solve_bottom_up(sub2)
108

109 lenient = typ=="Separate" # (strict for typ=="Progressive")
110 j1,j2,j3 = split
111 for i1 in range(k):
112 for i3 in range(i1,k): # recursion (2) of the paper
113 Match[i1,i3, j1,j3] = (
114 any(
115 Match[i1,i2, j1,j2] and
116 Match[i2+1,i3, j2+1,j3] and
117 (lenient or a[i2]==a[i3])
118 for i2 in range(i1,i3))
119 or
120 any(a[i2]=="0" and
121 Match[i1,i2, j1,j2] and
122 Match[i2,i3, j2+1,j3] and
123 (lenient or a[i2]==a[i3])
124 for i2 in range(i1,i3+1))
125 )
126 def solve_top_down(t):
127 if t[0]=="Singleton":
128 j = t[1]
129 if psi[j]=="?":
130 for i in range(k):
131 if Extensible[i,i,j,j]:
132 Possible_letters[j,a[i]] = True
133 else:
134 typ,split, sub1,sub2 = t
135 lenient = typ=="Separate" # need not check extra equality
136 j1,j2,j3 = split
137 for i1 in range(k):
138 for i3 in range(i1,k):
139 if Extensible[i1,i3, j1,j3]:
140 for i2 in range(i1,i3):
141 if (Match[i1,i2, j1,j2] and
142 Match[i2+1,i3, j2+1,j3] and
143 (lenient or a[i2]==a[i3])):
144 Extensible[i1,i2, j1,j2] = True
145 Extensible[i2+1,i3, j2+1,j3] = True
146 for i2 in range(i1,i3+1):
147 if (a[i2]=="0" and
148 Match[i1,i2, j1,j2] and



28 Solving Simple Curved Nonograms

149 Match[i2,i3, j2+1,j3] and
150 (lenient or a[i2]==a[i3])):
151 Extensible[i1,i2, j1,j2] = True
152 Extensible[i2,i3, j2+1,j3] = True
153 solve_top_down(sub1)
154 solve_top_down(sub2)
155

156 solve_bottom_up(T)
157 result = Match[0,k-1, 0,l-1]
158 assert result
159

160 Extensible = defaultdict(bool)
161 Extensible[0,k-1, 0,l-1] = True
162 Possible_letters = defaultdict(bool)
163

164 solve_top_down(T)
165

166 Settlestring = list(psi)
167 for i,ps in enumerate(psi):
168 if ps=="?":
169 if not Possible_letters[i,"0"]:
170 Settlestring[i]="1"
171 if not Possible_letters[i,"1"]:
172 Settlestring[i]="0"
173 return "".join(Settlestring)
174

175 ####### A FEW TEST CASES #######
176

177 print("Example from the paper, Fig.4/5")
178 decomposition_tree("abcdefghebib", show=True)
179

180 print("\nBad example: not nested, should raise an error.")
181 decomposition_tree("ababcdefghebib", show=True)
182

183 print("\nExample from the paper, Fig.3 (simple nonogram)")
184 Psi = "0???1???10??1??0?0"
185 se = settle( Psi, (5,1,2), list(range(len(Psi)))) # f is trivial (basic nonogram)
186 print(f"settled: '{se}'\n")
187 assert se=="0???11??10??1?0000" # as claimed in Fig.3
188

189 print("Example from the paper, Fig.6 (advanced nonogram)")
190 print("settled:", settle( Psi, (5,1,2), "abcdedfghigjdklmbn", show_tree = True))
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