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Abstract

Nonograms are a popular type of puzzle, where an arrangement of curves in the
plane (in the classic version, a rectangular grid) is given together with a series
of hints, indicating which cells of the subdivision are to be colored. The colored
cells yield an image. Curved nonograms use a curve arrangement rather than
a grid, leading to a closer approximation of an arbitrary solution image. While
there is a considerable amount of previous work on the natural question of the
hardness of solving a classic nonogram, research on curved nonograms has so far
focused on their creation, which is already highly non-trivial. We address this gap
by providing algorithmic and hardness results for curved nonograms of varying
complexity.
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1 Introduction

Nonograms, also known as Japanese puzzles, paint-by-numbers, or griddlers, are a
popular puzzle type where one is given an empty grid in which some grid cells are
to be colored (filled); the remaining cells remain empty (unfilled). For every row and
column, there is a clue sequence (sometimes called description) that constrains the
set of colored grid cells in this row or column. The clue sequence specifies how many
consecutive blocks of cells should be filled and how large these blocks are. Two filled
blocks need to be separated by one or more unfilled cells. A solved nonogram typically
results in a picture (see Figure 1).

Nonograms provide an accessible and contained environment for logical deduction.
They have been used successfully to teach logical thinking [2, 3], and have been shown
to stimulate brain activity to prevent dementia [4].
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Solving Simple Curved Nonograms 3

Batenburg et al. [5] introduce the notion of a simple nonogram, which can be
solved efficiently. A nonogram is simple when it can be solved by only looking at
a single row or column at a time. More precisely, they consider a nonogram simple
if it can be solved by repeatedly focusing a row or column, considering all possible
solutions for it that are consistent with the fixed cells determined so far, and fixing
all cells which have the same value in every possible solution. This procedure is called
settling a row/column (or simply SETTLE) and will be considered in more detail in
the preliminaries (Section 2). Note that since repeated application of settling a row or
column is a deterministic process, the existence of multiple solutions for a nonogram
immediately implies that it cannot be simple; however, the converse is not true, i.e.,
there are uniquely solvable nonograms that are not simple. In fact, Batenburg and
Kosters introduce a whole hierarchy of complexity for nonograms, depending on the
number of rows and columns which have to be considered simultaneously (by a specific
solver) in order to definitively identify a cell whose status can be settled; puzzles with
unique solutions can be found at all levels of this hierarchy.

Nonogram puzzles that appear in newspapers or similar platforms tend to be of
this simple type [6] which can be solved efficiently 6], contradicting to some extent
the popular opinion that all interesting games and puzzles are NP-hard |7, §|.

1.1 Solving Nonograms

A large amount of research on solving nonograms appears in software repositories,
discussion forums, or on personal web pages, as collected in an online survey [9] of Jan
Wolter. Besides, there has also been substantial academic interest in nonograms. The
natural question is to come up with an algorithm to decide whether a given nonogram
can be solved. A number of solvers using various strategies have been presented in the
literature. These include heuristic approaches [10], DFS-based solving methods [11-
13], genetic algorithms [14-18], line-by-line solving combined with probing (using low
probability guesses to quickly achieve contradictions) [19], SAT solvers [20], integer
linear programming [21]|, and a combination of heuristics and neural networks [22].

4 4 4
1113 3141 312 1113 3141 312 1113 31411 312
2(1]16|7]6[4]3]2]1]3 2(1]16[7]6[4]3[2]1]3 21116|7]16]14]3]2][1]3
0 0 0
11 11 11
2 2 2 2 2 2
5 5 5
2121 2121 2121
5 2 5 2 5 2
31 31 31
6 2 6 2 6 2
151 151 151
8 8 8
2 4 2 4 2 4
(a) (b) (c)

Figure 1: (a) A classic nonogram puzzle. (b) An inference based on the highlighted
clue. (c¢) The solved nonogram.
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4 Solving Simple Curved Nonograms

AnsN

20T
RN 5
) (.EI] 2 i
Panu S
(a) (b) (c)

Figure 2: Three types of curved nonograms of increasing complexity [27], shown
with solutions. (a) Basic puzzles have no popular faces. (b) Advanced puzzles may
have popular faces, but no self-intersections. (c) Ezpert puzzles have self-intersecting
curves.

The performance of two general solving strategies (DFS and so called soft computing)
has been experimentally compared on a small set of four nonogram instances [23].

The computational problem of deciding if a nonogram has a solution is NP-
complete, as was first shown by Ueda and Nagao [24]; see also [25, 26|. This of course
implies that computing this solution is also at least NP-hard. Ueda and Nagao addi-
tionally prove that, given a nonogram and a solution, deciding if this solution is unique
is also NP-hard, via a parsimonious reduction from three-dimensional matching.

In contrast, Batenburg and Kosters [6] gave a polynomial-time algorithm that,
given a sequence of partially settled cells and a corresponding clue sequence, finds a
cell that is either filled or unfilled in every possible solution, if such a cell exists. Their
procedure can be used to either solve a given nonogram in polynomial time or decide
that it is not simple.

1.2 Curved Nonograms

Van de Kerkhof et al. [27] introduced curved nonograms, a variant in which the puzzle
is no longer played on a grid but on any arrangement of curves (an example is shown
in Figure 2); see also [28]. For distinction, we will refer to the nonograms played on
a grid as classic nonograms. In curved nonograms, the numbers of filled faces of the
arrangement in the sequence of faces that appear along a side of a curve, are specified
by a clue sequence (one on each side). Curved nonograms allow cells with more organic
shapes than classic nonograms, and thus lead to clearer or more specific pictures. Van
de Kerkhof et al. focus on heuristics to automatically generate such puzzles from a
desired solution picture by extending curve segments to a complete curve arrangement.

Additionally, they define three different levels of complexity of curved nonograms
— not in terms of how hard it is to solve a puzzle, but how hard it is to understand
the rules (see Figure 2). It turns out that these difficulty levels nicely correspond
with properties of the underlying curve arrangement as observed by De Nooijer et
al. [1] (see [29] for the conference version). Specifically, basic curved nonograms are
exactly the puzzles in which each clue sequence corresponds to a sequence of distinct
faces. The analogy with clue sequences in classic nonograms is straightforward. In
an advanced curved nonogram, a face may be incident to the same curve multiple
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Solving Simple Curved Nonograms 5

times, but only on the same side, and therefore a face can appear more than once
in a sequence. If such a face is filled it is also counted multiple times when checking
consistency with a clue sequence; in particular, it is no longer true that the sum of
the numbers in a clue sequence is equal to the total number of filled faces incident to
the curve. Ezxpert curved nonograms may have clue sequences in which a single face
is incident to the same curve on both sides (which corresponds to the presence of a
self-intersecting curve in the arrangement).

Research on curved nonograms has so far focused on their production. Klute, Lof-
fler and Néllenburg [30] investigate the geometric problem of adding clue sequences
to the ends of curves and provide polynomial-time algorithms for restricted cases and
hardness results for the general problem. De Noojier et al. [1] aim to eliminate all
faces with multiple incidences to the same curve (so-called popular faces) from a nono-
gram by adding one additional curve to the arrangement. The same goal was recently
pursued by reconfiguring the curve arrangement through local crossing resolution [31].

1.3 Contribution

In this paper, we investigate for the first time the computational problem of solving
curved nonograms. In particular, we investigate how the concept of simple nonograms
translates to curved nonograms. After some preliminaries in Section 2, we present in
Section 3 a dynamic program which leverages the nested structure of popular faces
in advanced nonograms to check for a given sequence of faces along a curve, some of
which are already filled or unfilled, if it can still be extended to a solution that is con-
sistent with a given clue sequence. This implies a procedure solving simple advanced
curved nonograms in O(I7) time, where [ is the length of the longest clue sequence.
This runtime can be improved to O(I®) by using an additional top-down phase of the
dynamic program. In the case the nonogram is basic, the dynamic program coincides
with a special case of the one presented by Batenburg and Kosters 6], showing that
simple basic curved nonograms can be solved in the same way as simple classic nono-
grams. Then Section 4 shows that self-intersecting curves make curved nonograms
significantly harder to solve, since even simple curved expert nonograms are at least
as hard to solve as classic nonograms with a guaranteed unique solution, which we
show is at least as hard as Unambiguous-SAT. This implies that no polynomial-time
algorithm for solving simple expert curved nonograms exists unless RP=NP [32]. We
close with some further research questions in Section 5.

A preliminary version of this work has been presented at the 36th International
Workshop on Combinatorial Algorithms (IWOCA 2025), in Bozeman, Montana, in
July 2025. The version in the proceedings of this workshop [33] uses a different
terminology and lacks the complexity results about unique solvability.

2 Preliminaries

In this section we introduce the basic concepts and notation as well as the basic
problems, which naturally arise in the context of solving nonograms.
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6 Solving Simple Curved Nonograms

2.1 Nonograms

Let A be a curve arrangement consisting of h curves Ay, ..., Ay all contained in and
starting and ending at a rectangle called the frame. Every piece of a curve A between
two consecutive intersections (or the start or end of A) is a curve segment of A. A
face of A (also called cell) is popular if two or more curve segments incident to the
face belong to the same curve. Every cell initially has the value unsettled which we
denote with 7. If a value is assigned one of the two values empty (0) or filled (1) we
say that the cell is settled. Here we follow the notation of Batenburg and Kosters [6].

We choose an arbitrary orientation for each curve; accordingly, a face f incident
to a curve segment s is said to be on the left or on the right side of s. Let s1, s2,..., sk
be the curve segments of a curve £ in A. We call the list of faces fi,..., fx, s.t. f; is
on the right (left) of s; the right (left) sequence Sy (S}) of ¢. Popular faces can appear
multiple times in the same sequence, and if ¢ is a self-intersecting curve, faces can
appear in both sequences.

A progress descriptor for a sequence S is a string U = 1) ... € {0,1, ?}k,
and it encodes the current state of knowledge about the faces in the sequence. If U*
contains no 7, then it is a fiz. If the sequence in question is clear from context, we may
omit the superscript. If for two progress descriptors ¥ and ¥’ of the same sequence S
it holds that either ¢; = ? or ¥; = ¢, for all i, we say that U refines V.

A clue sequence D = dy,...,d; is a list of ¢ numbers. One such number d; will
be called a clue of D. A fix ¥ of S is consistent with D if and only if ¥ contains
exactly ¢ maximal blocks of consecutive 1s and the ¢-th block consists of exactly d;
1s. Since these blocks are maximal, consecutive blocks are separated by one or more
0s. A progress descriptor W of S is consistent with D if it refines ¥ and there exists a
fix that is consistent with D.

In a curved nonogram, a face can appear more than once along a curve. This
leads to additional constraints in the form of equations 1; = ;. We encode this
by a sequence of letters fi... fi, like abcdefdbgbh, where repeated letters indicate
positions that belong to the same face. For example, the 2nd, 8th, and 10th edges lie
on a common face, marked b. We call this the face pattern of the sequence.

We will only consider progress descriptors ¥ that fulfill all equality constraints.

A curved nonogram C' consists of a curve arrangement together with a set of clue
sequences and progress descriptors (one for each sequence in C' respectively). If all
progress descriptors are fixes, we say the nonogram is solved and conversely solving a
given nonogram means obtaining a fix for every progress descriptor that is consistent
with its clue sequence. For any ¢ < j we write ¢ .. j for the list of numbers between i
and j (including both).

2.2 Settling and Nonogram Complexity

Given a progress descriptor ¥, which is consistent with a clue sequence D, obtaining
a progress descriptor U’ that refines ¥ and is still consistent with D is called making
progress on W. The procedure SETTLE(W¥, D) takes a progress descriptor and a clue
sequence and (if possible) returns a progress descriptor W', which refines ¥ and is
consistent with D. It does so by settling any unsettled cells to be filled (or empty)
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Figure 3: An example of the SETTLE function. Filled cells are shown with a filled
square, empty cells with a dot; all other cells are unsettled. For example, in a row
with progress descriptor ¥ and clue sequence D = 5-1-2 (shown in the top left), there
are five possible fixes of W consistent with D, as shown in the top right. Cells already
settled in ¥ are colored black, others gray. The blocks corresponding to the three
parts of D are indicated in corresponding colors. One cell is filled and two are empty
for all five fixes. This is indicated with yellow entries.

if they have the same value in all possible fixes which refine ¥ and are consistent
with D. This procedure is illustrated in Figure 3.

Note that there can be exponentially many such fixes. However, while SETTLE is
defined via equality of the value of a cell over all possible fixes, an implementation of
SETTLE does not necessarily need to enumerate all possible fixes to find such a cell.
For example in a classic nonogram, the dynamic program of Batenburg and Kosters [6]
finds such a cell in polynomial time or decides that no such cell exists. Applying
SETTLE to all rows and columns of a nonogram until no progress can be made is called
a FULLSETTLE.

If every progress descriptor of a nonogram has a fix consistent with its clue sequence
it is solvable and correspondingly we will call a nonogram in which every progress
descriptor is a fix the solution of the nonogram. If a nonogram is solvable via a
FULLSETTLE it is called simple. We remark that this definition is in line with [6],
whose algorithm can solve simple classic nonograms in polynomial time.

3 Solving Simple Advanced Curved Nonograms

In this section we present a dynamic program which, given a sequence S together
with a progress descriptor ¥ and a clue sequence D decides in polynomial time if
there exists a fix ¥’ consistent with D that refines ¥. This is analogous to the ex-
isting dynamic program by Batenburg and Kosters for classic nonogram [6], and in
fact for basic curved nonograms our algorithm simplifies exactly to a special case of
their algorithm (see Section 3.2). Readers familiar with their work will easily spot
the parallels; however, in advanced curved nonograms, the presence of popular faces
requires the maintenance of an additional data structure. The property of advanced
nonograms that is crucial for us is that the equality constraints are properly nested:
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8 Solving Simple Curved Nonograms

Observation 1 Let i,j,k and [ be four indices of letters in the face pattern of a sequence
S belonging to a curve A in an advanced curved nonogram, such that f; = f; # fr = fi.
W.l.o.g. assume min(i, j,k,1) =i and k < 1. Then either (i) j < kAj <lor (i) j > kNj > 1.

Proof We only have to exclude the order ¢ < k < j < [. Assume w.l.o.g. that we are
considering the left side of A. Let a and b be points on the i-th and j-th segment of A,
respectively. Since these segments lie on a common face, we can connect a and b by a curve
B in that face, on the left side of A. Let Afa, b] be the subcurve of A between a and b. Then
C = Ala,b] U B is a Jordan curve (simple and closed). If ¢ < k < j <, C encloses the face
on the left side of the k-th segment, but it does not enclose the face on the left side of the I-
th segment. Hence, these faces cannot be identical, contrary to our assumption f = f;, and
therefore, the order ¢ < k < j < [ is impossible. O

We mention that the nesting property of Observation 1 is the only property on
which our algorithm relies. If a curve A has self-intersections but there are no faces
that lead to a violation of the nesting property, our algorithm can be applied.

Theorem 1 Consistency of a sequence S of length | with a clue sequence D with ) ;cpd =k
can be decided in time O(k31) = O(I%).

Proof In a bottom-up phase of the dynamic program we try to match larger and larger
intervals of the progress descriptor with larger and larger parts of the clue sequence. In a
subsequent top-down phase we will discover which assignments are consistent with an overall
solution. A PYTHON program for the algorithm is given in Appendix A.!

We translate D = djds...d; to a clue bitstring = ajas...ap of Os and 1, by creating
blocks of d; 1s for every 1 < i <t and concatenating them with one 0 between consecutive
blocks. Additionally we artificially pad the list by an extra 0 at the beginning and at the
end. This assumption implies that every row and column starts and ends with an empty
cell. Every nonogram can obviously be padded with empty rows and columns to achieve this.
For example, D = 5-1-2 is translated to D" = 011111010110, with the understanding that
a 0 has the potential to stretch to an arbitrary larger number of unfilled cells. A progress
descriptor is consistent with this clue bitstring if one can create two equal strings by replacing
every 7 in the progress descriptor with either 0 or 1 and replacing any 0 in the clue sequence
with one or more 0. The following example shows this for D = 5-1-2.

clue bitstring D' = ajas...q;...ax — 011111010110
progress descriptor ¥ = 1923 ... % ... P13 = 077717771077177070

In the finished nonogram, all ?’s should be turned into 0’s or 1’s, subject to the require-
ment that the resulting sequence fits the progress descriptor. We want to know whether a
particular ? can be turned only into 0 or only into 1 in all possible solutions, because then
this ? can be fixed to this value. In other words we aim to implement the SETTLE procedure.

Recall that the finished solution must satisfy certain equations ¢; = v; when two edges
are incident to a common face, which we have encoded by a face pattern f;... f;, like
abcdefdbgbh (see also Figure 4), where repeated letters indicate that edges belong to the

1See https://page.mi.fu-berlin.de/rote/Papers/abstract /On+solving+simple+curved+nonograms.html
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[abic de f gheybyi by

[aJbrc d erf g h egby i by

AR [bifc d e £ g h eybyfi by

[c]dfei £ g h eylby] [i]bs]

(a)

Figure 4: (a) A schematic representation of a curve arrangement indicating the face
incidences for top side of the horizontal line and (b) its hierarchical decomposition into
subintervals. For clarity, multiple occurrences of the same face (such as by, bs, b3) are
distinguished by indices. A white node denotes a decomposition of a complete group
into brackets; a black node denotes decomposition of a bracket into complete groups.
Black and white nodes occur in alternate levels of the tree.

same face. According to Observation 1, these repeated occurrences are nested: The pattern
..Z...yYy...T...y...cannot occur in the sequence.

We solve the following subproblems Match;: _‘Ji-,/, for every 1 < i < i’ <k and for a
certain set J of 21 — 1 selected intervals j .. j with 1 < j < j' <

Can the ?’s in ¢, .. 14 be turned into 0’s or 1’s such that the resulting string is consistent
with the clue bitstring a; .. a;/?

1 2 3 4 5 6 7 8 9 10 11 12

clue bitstring ajas...ar  [0[1[1]1]1]1]o[1]0]1]1]0]

progressdescriptorwl...wl]?\Z\E\E\HE\?\Z\i\O\?\?\1\?\?\0\?\0\

10 11 12 13 14 15 16 17 18

face pattern fifo... f; ’a‘bl‘ c ‘dl‘ e ‘dg‘ f ‘gl‘h‘i ‘gg‘j ‘dg‘k‘ l‘m‘bg‘n‘

Figure 5: [llustration of a subproblem Match;_' ;l, = Match3 -19. A possible correspon-

dence between as . ..a19 and 13 ...113 is indicated, showing that this subproblem is
consistent.

The subproblem Match;_‘ _‘i'/, results in a Boolean value true or false. Accordingly, we will say
that a subproblem is consistent or inconsistent. See Figure 5 for an example.
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10 Solving Simple Curved Nonograms

The set J of intervals j .. j' of the curve that we consider is defined as follows.

Suppose that the cells j1 < jo < --+ < jm are the cells belonging to some common face:
fin = fjo = -+ = [j,.- We call the interval ji .. jm a complete group, and we call the
intervals ji .. jp, for p = 1,...,m the progressive sleuths. The first progressive sleuth is the

singleton interval j; .. j;. If a face occurs only once along the curve, at position j, then the
singleton interval j .. j forms a complete group.

An interval jp +1 .. jp41 between two successive occurrences of the same face, including
the second occurrence but not the first, is called a bracket. A bracket consists of a nonempty
sequence of complete groups, followed by an occurrence of the face of the enclosing group at
position jp41. We consider also the whole interval 1 .. [ as a bracket although it lacks the
final element of the enclosing group (see Figure 4 for an illustration).

We will build up the whole curve 1 .. [, starting from singleton intervals j .. j. These can
be seen as the leaves of a binary composition tree 7 (see Figure 6) This binary tree represents
how we will combine certain pairs of consecutive intervals j .. ' and 5/ + 1 .. " into larger
intervals j .. 5. This is done as follows.

[abic de f g heybyi by

[b1c d e f g h eybyi by

[b1c d e f g h erby

Figure 6: The binary composition tree 7 corresponding to the tree of Figure 4b, in
which nodes of higher degree have been replaced by sequences of binary nodes. This
is a binary tree whose leaves are the singleton intervals.

Every complete group is built up from left to right by successive addition of brackets:

1 JplUlp + 1. dpga] = [J1 - Jp+1]
Similarly, every bracket is built up from left to right by successive addition of the complete
groups that make it up (plus the final cell of the enclosing group). In total, a set J of
2] — 1 = O(l) intervals j .. j” are considered. Each such interval with j < j” — an internal
node in 7 — is built in a unique way from two disjoint subintervals in J:

G.."1=0- 1ol +1..5"] (1)

See Figure 6 for an example.
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Solving Simple Curved Nonograms 11

The singleton subproblems of the form Match;_; are trivial to solve: For a clue bitstring of

length 1, we have Match;j ; < ; = ?V; = a;, while Match;j j}-l is trivially inconsistent
for i < 4’, since a single cell can never be consistent with a clue bitstring of length larger
than 1.

Following the decomposition (1), each subproblem of the type Match;_ ;i with i’ >
is associated to two families of smaller subproblems Match; ;, and Matchj i, for some

fixed j'. We solve these subproblems by the following recursion:

M hi. 4 M. hi. 4 M hi’+1. 4" o

atc .G < \/ ( ate 5. .3 N Matc 1. . Na; = ai//)
i</ <4/ —1

i i, i, ,';// (2)

V \/ (ai’ =0A Match]]/ A\ Matchj/;l. 4" Na; = aiu)7

i <il it

where the final condition a;s = a;~ is present only in case of composing a progressive sleuth
with a bracket. This extra condition ensures that occurrences of the same face have the same
color 0 or 1; when combining two complete groups, there are no shared faces that need to be
considered, and the condition a;; = a; is omitted.

The first clause considers all possibilities of splitting the interval i .. " into two disjoint
parts i .. and i’ + 1 ..4"”. The second clause considers in addition the possibility that the
two parts of the curve can use overlapping parts of the clue bitstring if the overlap is a 0.

This completes the description of the bottom-up phase. The target problem Match,' .'lk de-
scribes the original problem: consistency of the whole progress descriptor ¥ with the complete
clue bitstring D

In total, there are O(kz2l) subproblems, and each subproblem can be evaluated by trying
O(k) choices for ', for a total running time of O(k31). O

"

3.1 Making progress

Having solved the consistency problem, we immediately get a polynomial-time solution
algorithm for making progress.

Proposition 1 Given a single sequence S of length | and a clue sequence D with ) ;cpd =k
we can make progress or decide that no progress can be made in time O(k31%) = O(1%).

Proof We tentatively set a 7 letter to 0 or 1 and check consistency again. If one of the options
is inconsistent, then we know that ? must be replaced by the other letter, thus making
progress. This is repeated most [ times, for each occurrence of ?. O

However, we can solve this more efficiently and avoid the additional factor [ by a
top-down phase, in which we mark certain subproblems as extensible.

Theorem 2 Given a single sequence S of length | and a clue sequence D that describes k
ones we can make progress or decide that no progress can be made in time O(K31) = O(I*).
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12 Solving Simple Curved Nonograms
Proof We call a subproblem Match;_‘ ;/, extensible if it is consistent and in addition, some
solution that fits the clue bitstring a; .. a;» can be extended to a complete solution by setting
the remaining ?’s outside the substring b; .. b;, appropriately.

We begin by marking the target problem Matchll.'.’lk, as extensible, assuming it is con-
sistent. Then we use the recursion (2) in reverse. If Match;: ]'//// is extensible, then, if any of

the parenthesized clauses on the right-hand side of (2) holds for some i’, we mark the two

corresponding subproblems Match;_' ;l, and Match;,fi'l?;,',i as extensible.
Finally we look at each unsettled position j with b; = 7, and we check for which clue

bitstring positions ¢ the problem Match;j ; is extensible. If all extensible problems among
these have a; = 0, we can conclude that b; must be set to 0, and settle an unsettled color in
this way. Similarly, if all extensible problems have a; = 1, we can fix the unsettled value b;
to 1 at this position. O

Theorem 2 can be used to obtain the following corollary by the simple fact that
there are only a linear number of rows and columns and cells in the nonogram. After
applying the dynamic program once to every row and column, we must have made
progress on at least one sequence, so there is at most an overhead of O(I?).

Corollary 1 Simple advanced curved nonograms can be solved in time O(ZG).

3.2 Back to Basic Nonograms

When our algorithm is applied to a curve in a basic nonogram, there are no groups, and
the whole sequence is just one bracket whose sequence of “complete groups” consists of
singletons. The decomposition tree degenerates, and the algorithm simply grows the
intervals 1..¢ and 1 .. j by adding one symbol at at time. Here our dynamic program
reduces to the seminal algorithm of Batenburg and Kosters [6] (which is actually more
general because it can deal with a specified range of lengths for each 1-block instead
of a fixed length).

4 Solving Simple Expert Curved Nonograms

In this section we show that no polynomial-time algorithms for solving simple expert
curved nonograms can exist, unless RP=NP. The proof consists of two parts. First,
in Section 4.1, we show that solving a simple curved expert nonogram is at least as
hard as finding the solution to a not necessarily simple classic nonogram provided
that the classic nonogram has a unique solution. Then, in Section 4.2, we argue that
this problem is in turn at least as hard as Unambiguous-SAT.

4.1 Parsimonious Reduction from Classic Nonograms to
Simple Expert Curved Nonograms

In this section we provide a parsimonious reduction from solving a classic nonogram
to solving a curved expert nonogram. In particular the curved expert nonogram con-
structed by our reduction is simple if the classical grid nonogram had a unique solution.
We will base our reduction on the following problem.
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Figure 7: (a) A classic nonogram with w = 5 columns and h = 5 rows. (b) In the
reduction we pad a given nonogram to guarantee it has one more column than rows.
The result here is a padded nonogram with w = 6 columns and h = 5 rows. The
hints are annotated with the order in which they are collected into (c) a single self-
intersecting vital curve that contains all grid lines of the classic nonogram and all clue
sequences in one vital clue sequence.

) S S S
.o os
eof = [er| =]

Unique Solution Nonogram (1-SN) Given a classic nonogram N with the guarantee it
has a unique solution, find the solution for the nonogram N.

It is instructive to observe that:

(i) the uniqueness of a solution for a nonogram (curved or classical) does not imply
that the nonogram is simple,

(ii) testing if a classic nonogram has a solution is NP-hard in general, as shown by
Ueda and Nagao [24] (of course implying that finding such a solution is also
NP-hard),

(iii) Ueda and Nagao [24] also show that testing if a given nonogram has more than
one solution, even if we are given a solution, is NP-hard and

(iv) neither (ii) nor (iii) directly imply that finding a solution for a classic nonogram
is still NP-hard if we are guaranteed that it has a unique solution and we can
therefore not immediately follow that 1-SN is NP-hard.

4.1.1 High-Level Overview

The high-level overview of our reduction is as follows. We first describe the construc-
tion of a curved expert nonogram C' based on a given not-necessarily-simple classic
nonogram N. If we are guaranteed that N has a unique solution, then C' will equally
have a unique solution, and additionally we will show that C is simple. To do so we
argue that the sequences along all but one curve can be trivially filled (using the
SETTLE procedure) by simply filling all sequences whose clue sequence requires the
entire sequence to be colored black. This will yield a partially filled curved expert
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14 Solving Simple Curved Nonograms

nonogram, in which all cells that are not yet colored are part of the right sequence S}
along a single curve . Moreover the progress descriptor ¥ of this sequence includes
already filled sequences of cells and there is a one-to-one correspondence between any
maximal sequence of unsettled cells to a row or column of the input classic nonogram.
Now any fix which refines ¥ and is consistent with the clue sequence of S} will fill in
all remaining cells of C'. This immediately yields a solution for N.

Since C'is simple, it can be solved with an application of FULLSETTLE. Therefore a
polynomial time algorithm for FULLSETTLE on curved expert nonograms would imply
that the constructed simple curved expert nonogram and thereby classic nonograms
can be solved in polynomial time, if we are guaranteed that their solution is unique.

4.1.2 Constructing the curved expert nonogram

Consider a classic nonogram N with w columns and h rows, as in Figure 7(a). We
will assume w.l.o.g. that we have w = h + 1; this can be achieved through appropri-
ate padding, see Figure 7(b). Note that adding empty (or completely filled) rows or
columns does not change the difficulty of the puzzle. All cells of N will also be con-
tained in the curved expert nonogram C we created based on N. We will call these
cells the original cells.

Now, conceptually, we will trace a single wvital curve through all w + 1 vertical
and h + 1 horizontal line segments that make up the grid of the puzzle (excluding
the section that contains the clue sequences); refer to Figure 7(c). Doing this will
concatenate the clue sequences from all rows and columns of the original nonogram
into a single clue sequence; specifically, it will intersperse the clue sequences of the
columns (from left to right) and the rows (from top to bottom). We will refer to the
resulting clue sequence as the wvital clue sequence.

However, this alters the difficulty of the puzzle, as the information which sections
of the vital clue sequence belong to separate rows or columns is lost. To solve this,
we again pad the original nonogram, but now with rows and columns, which we will
force to be entirely colored in a solution of C' as follows.

We let k = 1+ max (|%],[%]); this value is chosen to ensure that 2k is more
than either w or h. We first construct another padded w + 2 + 2k by h + 2 + 2k
grid: the original grid with a single empty and k full rows added on all sides. Refer
to Figure 8(a). All filled /empty cells that are added by this procedure are called the
filled/empty padding cells.

Then, we construct a curved nonogram C' which consists of this grid surrounded
by some additional potentially non-rectangular cells (which will be called boundary
cells). In total, it consists of 4k + 5 curves: k + 1 straight lines on each side of the
input picture, plus 1 very long curve £ which contains all original grid lines. Refer to
Figure 8(b). Note that by construction all clue sequences which consists of a single
clue require their entire sequence to be filled. Settling all cells of these sequences to be
filled also uniquely determines a fix for all sequences with clue sequences consisting
of two clues and we state the following observation.

Observation 2 Any sequence other than Sy has a clue sequence of length one or two. More-
over all boundary and filled padding cells can trivially be settled to be filled and all empty
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Figure 8: (a) An even more padded version of the nonogram from Figure 7. (b)
The final construction including k£ = 3 additional rows and columns of filled cells on
all sides. Original filled cells are yellow; padding cells are orange. In the vital clue
sequence, numbers are orange if they are at least 2k and yellow otherwise.

padding cells can trivially be settled to be empty. Every unsettled cell is an original cell and
contained in Sy . O

Next we consider the vital clue sequence D. We can partition D into 2(w+h+4)+1
(possibly empty) parts, s.t., these parts alternatingly correspond to the clue sequence
of a column or row of N and clues which require 4k — 1 consecutive filled cells (with
the exception of the first and last part, which require exactly k+1 filled cells). We call
the parts requiring 4k — 1 cells blockers. Note two things. First there is a matching of
already settled cells along the vital sequence and blockers, s.t., all blockers are fulfilled
and second there are either w + 2 or h + 2 unsettled cells between two consecutive
chains of 4k — 1 already filled cells and therefore no blocker can be fulfilled in such
a space. Therefore this matching is the only possible realization of the blockers and
we know that every chain of unsettled original cells in C' has to accommodate exactly
the clues that the original row or column in N had to realize. With this we state the
following.

Observation 3 If we restrict the solution of C to its original cells, we obtain exactly the
solution of N.

Lemma 1 If N has a unique solution the constructed curved expert nonogram C' also has
only a single solution. Moreover C is simple.
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16 Solving Simple Curved Nonograms

Proof The first part of the lemma follows as a direct consequence of Observation 2 and 3.
Over all solutions of C, any padding and boundary cell in C' can have exactly one value (filled
or unfilled) and any original cell can have at most as many values as the corresponding cell
in N over all valid solutions of N. If this solution of N is unique, every original cell can have
only one such value.

The second part of the lemma statement is a consequence of Observation 2. Since the
value of all cells, which are not part of the vital sequence can trivially be settled, if we would
apply the SETTLE procedure to the vital sequence, we would settle all remaining cells, since
they can have only one value in a solution (because this solution is unique). O

Observe that Lemma 1 will be the crucial property to show that the reduction is
parsimonious.

4.1.3 Correctness

We are now ready to prove the main theorem.

Theorem 3 Solving SiMPLE CURVED EXPERT NONOGRAM is (a) at least as hard as 1-SN
and (b) in NP.

Proof To prove statement (a) it suffices to show that we can construct C' based on a given
nonogram N in polynomial time and given a solution of SIMPLE CURVED EXPERT NONO-
GRAM, i.e., a filled version of C, we can construct a solution to 1-SN for the instance N in
polynomial time. The first part is immediate as the construction as described in Section 4.1.2
which yields C based on a given N adds only a polynomially many cells to N and the curves
can be obtained by connecting at most a polynomial number of grid lines. Since N has a
unique solution by definition of 1-SN, it follows from Lemma 1.

The second part, i.e., constructing a solution for N based on a given solution for C follows
from Observation 3. By simply settling all cells in N according to the value of the original
cells in C, we obtain the solution.

To prove statement (b) observe that, given a solution for SIMPLE CURVED EXPERT NONO-
GRAM, we can enumerate all polynomially many sequences, and check in polynomial time if
their fix is consistent with their clue sequence. This concludes the proof. O

Finally after completing the reduction we state a last observation based on the fact
that, by Lemma 1, the reduction from 1-SN to SIMPLE CURVED EXPERT NONOGRAM
guarantees that the uniqueness of the solution for 1-SN is preserved.

Observation 4 The reduction from 1-SN to SimMPLE CURVED EXPERT NONOGRAM 1is
PArsiMoOnious.

We note that the construction of our hardness proof produces a simple curve
arrangement, i.e., there are no three curves intersect in the same point, no two curves
touch without crossing, and no curves locally overlap in more than a single point.

As previously mentioned we only show with Theorem 3 that SiIMPLE CURVED
EXPERT NONOGRAM is at least as hard as 1-SN. While it seems reasonable to expect
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1-SN to be NP-hard (equivalent to the generalized problem, i.e., finding a solution to
any classic nonogram), this remains open. However in the following section we will
see that it is nevertheless unlikely that there is an efficient algorithm for 1-SN.

4.2 Reduction from Unambiguous-SAT to Classic Nonograms

In this section, we show that 1-SN and therefore solving a simple curved expert nono-
gram is at least as hard as Unambiguous-SAT, for which no polynomial-time algorithm
exists unless RP=NP [32]. Our reduction is presented in three steps:

® a parsimonious reduction from SAT to 1-IN-3-SAT (Section 4.2.1);

® a parsimonious reduction from 1-IN-3-SAT to 3-dimensional matching
(Section 4.2.2); and

® a parsimonious reduction from 3-dimensional matching to nonogram solvability
(Section 4.2.3).

4.2.1 Parsimonious reduction from SAT to 1-IN-3-SAT

It is not hard to come up with parsimonious reduction from SAT to 3-SAT, and
a parsimonious reduction from 3-SAT to 1-IN-3-SAT is given in [34, Appendix B],
crediting [35], where this is mentioned as a corollary of a much more general result.?
Taken together, these reductions yield a parsimonious reduction from SAT to 1-IN-
3-SAT. For completeness, we sketch a direct parsimonious reduction from SAT to
1-IN-3-SAT:

Proposition 2 There is a parsimonious reduction from SAT to 1-IN-8-SAT.

Proof Consider a clause a1 VagV ---Vap with k > 2 literals. We think of evaluating it from
left to right in the form

(((((a1 Vaz2) Vaz) V--+)Vag_2)Vag_1)Vay
and model it accordingly as the conjunction of the formulas

a1 Vag <> by
ba Vaz <> b3

bp—3 V ag—2 <> bi_2
bg—2 Vag_o <> b1
bp_1V ag.
Given ay,...,a, the values of the auxiliary variables bs,...,bir_1 with the intermediate
results are uniquely determined.

Each formula of the form (2 Vy) 4> z is transformed into a formula with two 1-IN-3-SAT
clauses and two (ordinary disjunctive) 2-SAT clauses:

(xVy) <z (z,7,m2) A(yV-r) A (y,s,-2)A(zV—s)

2see also https://cs.stackexchange.com/questions/125440/unique-3sat-to-unique-1-IN-3sat
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Figure 9: Variable gadget (a) with two rings of 6k = 18 vertices (2k red, 2k blue and
2k green). The triplets that are unique to the variable gadget are shown in light green.
They overlap in the core vertices. Blocks {RT,GT, BT} of tip vertices are indicated
with an orange backdrop, and blocks { R¥", G¥', BY'} with a blue one. Dashed backdrops
indicate unused blocks; each such block can be covered with a separate triple: these
are the gray and black triples in (b), where the black triple is used in the true state
and the two gray triples are used in the false state. The true state (b) leaves the tip
vertices of the { RF", G¥', BI'} blocks uncovered (the brown connections).

with additional variables r and s. Here, a comma-separated triplet denotes 1-IN-3-SAT clause,
which evaluates to true if exactly one of the three literals is true. It is easy to check that,
for each of the four combinations of values of z and y, the clauses on the right-hand side
determine z,r, s uniquely, and z gets the correct value. Finally, any 2-SAT clause is easily
translated into a 1-IN-3-SAT clause with an additional variable ¢:

rVy <= (-z,y,t) O

4.2.2 Parsimonious reduction from 1-IN-3-SAT to
Three-Dimensional Matching (3DM)

In the Three-Dimensional Matching Problem (3DM), there are three disjoint sets
R, G, B of vertices of the same size |R| = |G| = |B| = n, and a set of three-colored
triplets (a,b,c) with a € R,b € G,c € B. The task is to pick n triplets that partition
the set RUG U B.

The usual reduction from 3SAT to Three-Dimensional Matching (3DM) can be
made to be parsimonious when adapting it to 1-IN-3-SAT. The following reduction is
a slight extension of the standard reduction found in the literature, see, for example,
[36, Section 3.1.2] or [37, pp. 481-485].

Proposition 3 There is a parsimonious reduction from 1-IN-3-SAT to 8DM.
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(a) (b)
Figure 10: Clause gadget with triplets in the gadget: diagonal triplets in purple,
singleton triplets in turquoise, snake triplets in orange and blocks from the variable
gadget in brown. For a fixed choice of a diagonal triplet, e.g., {l;, r1,92}, all other
vertices of the gadget can be covered (a) while using exactly one singleton triplet,
one snake triplet and one block. Any choice of singleton triplet different from #gb,
as in (b) or (c) necessarily leaves b; uncovered. Examples of triplets which cannot be
chosen are shown with a hatched fill.

Proof Each variable is represented by a variable gadget as follows, see Figure 9. Let k be
the number of clauses in which the variable appears. There is an inner ring of 6k core
vertices and an outer ring of 6k tip vertices. The core vertices are involved in no other
triplets. Therefore there can be only two solutions, which either cover the “even” tips or
the “odd” tips. One solution represents setting the variable to true, the other solution to
false. We partition the 3k covered tips of the true state arbitrarily into k£ multicolored blocks
(RT,GT,BTY, {RY,GE BLY, ... {RF,GT, BL'} of size three, and similarly, we form k mul-
ticolored blocks {RY", GT', BI'}, {RY,GE, BY}, ... {RE GF B}, from the 3k covered tips
of the false state. Each block is used to represent the corresponding literal in one clause in
which that literal appears.

Since there are 2k blocks (for positive and negative literals) but only k occurrences of
literals, k blocks will remain unused. For each unused block of the variable gadget, we add a
triplet that can cover that block.

Clause gadgets.

For each 1-IN-3-SAT clause of three literals, we form a clause gadget, which involves three
blocks with three vertices each from the variable gadgets that represent the literals, plus
three extra vertices 7, g, B, for a total of 12 vertices, see Figure 10a. For simplicity of notation,
we refer to the vertices of the three blocks as {r1,g1,b1}, {r2,g2,b2}, and {rs, g3, bs}. This
numbering is local to the clause gadget, and each clause gadget has separate vertices 7, g, b.

There are nine triplets that are specific to the clause gadget, and they come in three
types. The construction is symmetric under cyclic permutation of indices modulo 3. There are
three diagonal triplets (Tl,gg,i)), (r2,g3,6), and (r3,g1,6); three singleton triplets (7, g,b1),
(7, g,b2), and (7, g, bs); and three snake triplets (ra, g1, b2), (r3,g2,b3), and (r1, g3, b1). All of
these are shown in Figure 10a.
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Clearly, to cover 7, g, and l;, we must use exactly one diagonal triplet, and exactly one
singleton triplet. From the variable gadgets, we have the option to cover any of the blocks
{ri,9:,b;} that are arranged in a column in Figure 10b. Assume w.l.o.g. that we use the
diagonal triplet (r1, g2, 5), see Figure 10b.

The only snake triplet that we may use is (r2, g1, b2), because the other snake triplets
intersect the chosen diagonal triplet (3, r1,g2). If we use the singleton triplet that covers by
(Figure 10b), the only possibility to generate a matching is to cover the column {rs, gs,bs}
from the respective variable gadget.

If the singleton triplet covers by or bs (Figure 10c—d), b; can be covered neither by a
snake triplet nor from the variable gadgets as part of the column {r1, g1, b1 } from the variable
gadgets.

It follows that the only possibility is to use exactly one column, corresponding to a literal
that is true, and once that column is chosen, the solution is unique within the clause gadget.

Our previous reduction to 1-IN-3-SAT does not produce clauses with less than three
literals, but if we had a “1-IN-2-SAT” clause with only 2 literals, we could handle it as
follows: We use these literals for the columns {r1,g1,b1} and {r2, g2,b2}, and we add three
new vertices forming the column {rs, g3, b3}. Since these vertices cannot be covered from the
vertex gadgets, the clause gadget works in the intended way. (]

4.2.3 Parsimonious reduction from 3DM to Nonogram Solvability

Ueda and Nagao [24, Theorem 3.1] present a parsimonious reduction from 3DM to
solving a classical grid nonogram. Since the reduction is parsimonious this reduction
together with the reduction of the previous section yields the following result, which
we believe is of independent interest.

Theorem 4 The problem of finding the solution of a (classical) nonogram, under the con-
dition that it has a unique solution, is at least as hard as Unambiguous-SAT. Therefore, it
admits no polynomial-time solution unless RP=NP.

4.3 Combining the Reductions

We now have all pieces in place to combine the above reductions in the following way.
Starting with an instance of Unambiguous-SAT, we use the reduction of Section 4.2.1
to create an instance of 1-IN-3 SAT which, by the fact that the reduction is parsimo-
nious, also has a unique solution. Then we create an instance of 3DM, again with a
unique solution, via the reduction of Section 4.2.2. Next we employ Ueda and Nagao’s
parsimonious reduction from 3DM to NONOGRAM. This reduction creates a classical
grid nonogram with a unique solution, and thus is an instance of 1-SN. And finally we
use our own parsimonious reduction explained in Section 4.1, which creates a simple
curved expert nonogram.

If there were a polynomial-time algorithm for SIMPLE CURVED EXPERT NONO-
GRAM, we would immediately obtain a polynomial-time algorithm for Unambiguous-
SAT, which does not exist unless RP=NP [32], which is summarized in our final
result.
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Theorem 5 The problem of finding the solution of a simple expert curved nonogram is at
least as hard as Unambiguous-SAT. Therefore, it admits no polynomial-time solution unless
RP = NP.

5 Conclusions

We have shown that the concept of simple nonograms extends to curved nonograms
to some extent. In general, simple curved nonograms are not necessarily easy to solve:
even the problem of testing for progress on a single clue sequence is already as hard as
solving a classic nonogram under the assumption that it has a unique solution, which
in turn we show is at least as hard as Unambiguous-SAT. However, for the restricted
classes of basic and advanced curved nonograms, we show that simple puzzles can be
solved in polynomial time. It would be of interest how other measures of difficulty like
the ones proposed by Batenburg and Kosters [39] extend to curved nonograms.
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= A Python program for the settle algorithm
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# indices start at 0 (following Python conventions) and not at 1 (as in the paper)
from collections import defaultdict

def decomposition_tree(f, show=False):

"""construct the binary decomposition tree.

f s a the "face pattern”, a string (or list of numbers or other objects)
with one entry for each segment of the curve.

Equal letters indicate segments belonging to the same face.

Tree has three types of nodes, see Figure 5:
* "Singleton”, a leaf.
* "Separate"”, with two children (white node).
* "Progressive"”, with two children (black node): progressive sleuth + bracket
"Separate" and "Progressive" store a triplet (i,j,k) of indices:
fli..k] (fl[i:k+1] in Python notation) is the current range,
and it ts split after f[7]. """
assert all(c!=d for c,d in zip(f,f[1:]1)) # Consecutive letters must be distinct.
where = defaultdict(list)
for i,c in enumerate(f):
where[c] .append(i) # store in which positions each letter appears

# The tree is built by the recursive procedure "decompose". This s
# not described in the paper.
def decompose(i,j):
"miEither flil=f[j7]=c and % <s the first occurrence of c, or =0,
or the symbol f[i-1] occurs again after f[i..j5] but not in f[<..75]."""
c = £[j] # pick pieces from the end
first = where[c] [0]
if first<i: # 4llegal pattern
d = f[i-1]
raise ValueError(c,first,j, d,i-1,f.index(d,i))
if i==j:
return ("Singleton",i)
if first>i:
return("Separate", (i,first-1,j),
decompose(i,first-1),
decompose(first,j)) # complete group
# else: # first==1
where[c] .pop()
prev=where[c] [-1]
return("Progressive", (i,prev,j),
# progressive sleuth
decompose (i,prev),
# plus bracket
("Separate", (prev+1,j-1,3),
decompose (prev+1,j-1),
("Singleton",j)))
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def

def
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try:
Tree = decompose(0,len(f)-1)
except ValueError as err:
c,i1,i2, d4,j1,j2 = err.args
print(f"Error: Sequence {f} has interleaving faces.")
print (£"f [{i1}]=f [{i2}]={c}, f[{j1}I=f[{j2}]1={a}")
assert f[il1]==f[i2]==c and f[j1]==f[j2]==
assert c!=d
assert 11<j1<i2<j2
return
if show:
print("decomposition tree for",repr(f)+":")
print_tree(Tree,f)
return Tree

print_tree(t,f,level=0):

typ = t[0]
if typ == "Singleton":

print(" "xlevel,xt, f[t[1]])
else:

ranges = t[1]
print(" ‘"*level,typ,ranges,f[ranges[0] :ranges[-1]+1])
for sub in t[2:]:

print_tree(sub,f,level+1)

settle(progress_descriptor, clue_sequence, face_pattern, show_tree=False):
"""progress_descriptor ts a string of '0', '1', and '?’'

It is assumed that @t contains the added artificial '0O' at the

beginning and at the end.

clue_sequence ts a sequence of positive integers (clues)

face_pattern gives the sequence of inctdent faces along the curve segments.
face_pattern has the same length as progress_descriptor.
mmnn
f = face_pattern
clue_bitstring = [0]
for n in clue_sequence:
clue_bitstring += [1]*n+[0]

a = ''.join(str(c) for c¢ in clue_bitstring) # convert to 0-1 string
k = len(a)
1 = len(face_pattern)

assert l==len(progress_descriptor)

psi = progress_descriptor

print(£"{a=} {k=}\n{f=} {1=}\nprogress_descriptor {psi=1}")
T = decomposition_tree(face_pattern, show=show_tree)

Match = defaultdict(bool) # defaults to False
# For convenience, we use dictionaries instead of arrays.
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def solve_bottom_up(t):
if t[0]=="Singleton":
j = tl1]
for i in range(k):

Match([i,i, j,j] = psil[jl=="7" or psil[jl==alil

else:
typ,split, subl,sub2 =t
solve_bottom_up(subl) # wisit subproblems first
solve_bottom_up(sub2)

lenient = typ=="Separate" # (strict for typ=="Progressive')

j1,j2,33 = split
for il in range(k):

for i3 in range(il,k): # recursion (2) of the paper

Match[il,i3, j1,33] = (
any (
Match[il,i2, j1,j2] and
Match[i2+1,i3, j2+1,3j3] and
(lenient or al[i2]==a[i3])
for i2 in range(il,i3))
or
any(al[i2]=="0" and
Match[il,i2, j1,j2] and
Match[i2,i3, j2+1,3j3] and
(lenient or al[i2]==a[i3])
for i2 in range(il,i3+1))
)
def solve_top_down(t):
if t[0]=="Singleton":
j = tl[1]
if psi[jl=="7":
for i in range(k):
if Extensible[i,i,j,j]:
Possible_letters([j,ali]] = True
else:
typ,split, subl,sub2 =t

lenient = typ=="Separate" # need not check extra equality

j1,j2,33 = split
for il in range(k):
for i3 in range(il,k):
if Extensible[il,i3, j1,j3]:
for i2 in range(il1,i3):
if (Match[il,i2, j1,j2] and
Match[i2+1,i3, j2+1,33] and
(lenient or ali2]==ali3])):
Extensible[il,i2, j1,j2]
Extensible[i2+1,i3, j2+1,33
for i2 in range(il,i3+1):
if (al[i2]=="0" and
Match[il,i2, j1,j2] and

]

True
= True
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Match[i2,i3, j2+1,j3] and
(lenient or al[i2]==a[i3])):
Extensible[il,i2, j1,j2] = True
Extensible[i2,i3, j2+1,3j3] = True
solve_top_down (subl)
solve_top_down (sub2)

solve_bottom_up(T)
result = Match[0,k-1, 0,1-1]
assert result

Extensible = defaultdict(bool)
Extensible[0,k-1, 0,1-1] = True
Possible_letters = defaultdict(bool)

solve_top_down(T)

Settlestring = list(psi)
for i,ps in enumerate(psi):
if ps=="7":
if not Possible_letters[i,"0"]:
Settlestring[i]="1"
if not Possible_letters[i,"1"]:
Settlestring[i]="0"
return "".join(Settlestring)

#H##### A FENW TEST CASES #######

print ("Example from the paper, Fig.4/5")
decomposition_tree("abcdefghebib", show=True)

print("\nBad example: not nested, should raise an error.")
decomposition_tree("ababcdefghebib", show=True)

print("\nExample from the paper, Fig.3 (simple nonogram)")

Psi = "07?7717771077177070"
se = settle( Psi, (5,1,2), list(range(len(Psi)))) # f is trivial (basic nonogram)
print(f"settled: '{se}'\n")

assert se=="077711771077170000" # as claimed in Fig.3

print ("Example from the paper, Fig.6 (advanced nonogram)")
print("settled:", settle( Psi, (5,1,2), "abcdedfghigjdklmbn", show_tree = True))
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