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1 Introduction

1.1 Visualization by Isosurfaces

In many scientific fields huge amounts of spatial data are produced, either
by measurements or by computer simulations. Examples are electromagnetic
waves in nuclear spin tomography, heat distribution in fuel cells, or molecu-
lar structures in X-ray crystallography. The field of Scientific Visualization is
concerned with methods that help the user to extract meaningful information
from the data in a visual and intuitive way.

One way to visualize data is by displaying level sets or isocontours, which are
also called isosurfaces for volumetric data and isolines for planar data [20,21].
Specifically, for a volumetric dataset, which consists of tuples (v, f(v)) where
v is a 3D sample point representing a vertex of the input mesh and f is a
scalar function defined over 3D points, the level set or isosurface at isovalue
h is a set of points (a surface) in the volume whose scalar function value
is h; similarly for planar datasets and isolines. Figure 1a shows isolines of a
bivariate function f(x, y) and Figure 4 shows some examples of isosurfaces. For
volumetric data, it may not be possible to view many isosurfaces at different
isovalues simultaneously because they may occlude each other. Therefore it is
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Fig. 1. (a) a contour map of isolines, (b) the corresponding contour topology tree,
(c) the join tree, and (d) the split tree. Minima and maxima are indicated by full
and empty circles, and squares denote saddle points. The isolines in (a) are labeled
with the isovalues, and these isovalues are indicated in the trees of (b), (c), and (d).
The critical point F changes only the topology of a contour and not the number of
contours; the contour tree is the tree in (b) with the degree-two vertex F removed
between C and G.
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important for the user to select the isovalues interactively in order to get an
intuitive understanding of the data. An efficient interactive system must be
able to display isocontours quickly.

Isosurface extraction is one of the most effective and powerful techniques for
the investigation of volumetric datasets. It has been used extensively in scien-
tific visualization applications such as biology, medicine, chemistry, computa-
tional fluid dynamics, and so on [16]. It has also found extensive applications
in computer graphics such as simplification [19] and implicit modeling [33].

1.2 The Contour Tree and the Variants

1.2.0.1 The Contour Tree. The contour tree is a fundamental data
structure that represents the relations between contours (i.e., connected com-
ponents of the level sets) embedded in a dataset. Connected components that
merge together or split as one continuously changes the isovalue are repre-
sented as edges that join or branch apart at a node of the tree; see Figure 1b.

This structure was used by Bajaj and van Kreveld et al. [3, 41] to speed up
isosurface extraction in the seed-cell propagation paradigm: given an isovalue,
one generates the isosurface by exploring the neighboring cells in the volume
starting from the seed cells. To guarantee that no connected component of the
isosurface would be missed, one has to find a seed cell at the given isovalue
for every edge of the contour tree which is intersected at this isovalue.

1.2.0.2 The Contour Topology Tree. As one continuously changes the
isovalue, there may be other topological changes of the contours besides split-
ting and joining: a contour might touch itself and form a ring, thus trans-
forming itself into a surface of different genus, or a contour might touch the
boundary and develop a hole. If we subdivide the edges of the contour tree
by additional nodes which represent these topology changes, we obtain the
contour topology tree, which records the complete information about topology
changes of the level sets. This tree has been introduced by Pascucci [30, 32]
under the name augmented contour tree (ACT). The same term has, however,
been used in [8] to denote the subdivision of the contour tree by all vertices
of the input mesh. Therefore, we have chosen the more specific term contour
topology tree.

In two and three dimensions, we will give a complete classification of all critical
points at which these topological changes occur, and this will allow us to build
the contour topology tree.
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1.2.0.3 Surface Networks and the Morse-Smale Complex. In the
area of topological surface modeling by surface networks, one constructs the
ridges and ravines by following the lines of steepest ascent and steepest descent
from saddle points. For a smooth surface (and simple saddles), these curves
generically extend all the way to the maxima and minima without meeting,
and they dissect the surface into quadrilateral faces which form the Morse-
Smale complex. Like the contour tree, the Morse-Smale complex is a structure
which can be used as a tool to analyze the geometry and topology of a surface.
This concept was recently extended to piecewise linear functions on a triangu-
lated surface [15]. There is a close similarity with our algorithm, since both our
algorithm and the algorithm of [15] follow monotone paths. However, we have
not explored the relation between contour trees and Morse-Smale-complexes
more deeply. Moreover, the connection does not extend to higher dimensions,
as the Morse-Smale complex of a three-dimensional manifold is formed by
surface patches which partition the given domain into volume pieces, whereas
for the contour trees, we are interested in one-dimensional structures.

1.2.0.4 Further Applications. The succinct encoding of the isosurface
topologies in the contour tree also leads to other important applications. Ba-
jaj et al. [2] proposed the display of the contour tree to provide the user with
insights into the topological structures of the isosurfaces embedded in the
volume data. This approach was further explored and extended by Carr and
Snoeyink [7]. Pascucci and Cole-McLaughlin [32] gave an elegant algorithm
for computing and associating the Betti numbers (β0, β1, β2) with the contour
topology tree so that the isosurface topologies, including the number of con-
nected components and the genus number, can be completely determined and
displayed; see also [30, 31]. Recently, Chiang and Lu [9] developed a volume
simplification technique that preserves all isosurface topologies by making use
of the contour topology tree.

1.3 Previous Work

We assume that the scalar function f is defined on an input mesh with n
vertices and N cells, and m edges. For structured meshes, the data points
form a regular grid and the underlying cell topology of the mesh is a cube or a
box, while for unstructured meshes the vertices are irregularly sampled (with
higher resolutions at places of more features) and the underlying cell topology
is a simplex (e.g., a tetrahedron in the 3D case).

The first efficient algorithm for computing the contour tree in 2D was given by
de Berg and van Kreveld [14], with running time O(N log N). The algorithm
makes a single pass over the data. It sweeps from the highest to lowest function
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values through the sorted data and keeps track of the level set components
which are cut by the sweep plane in its current position.

Independent of this work, Takahashi et al. [36] constructed discrete analogs of
surface networks formed by ridges and ravines for piecewise linear functions of
two variables, starting at all saddle points and simply following a path from
each vertex to the highest or lowest neighbor, respectively. They described
an algorithm to convert the resulting surface network into the contour tree,
but no run-time analysis was given. (According to our own analysis, it takes
O(N) time for reading the data, O(nt′) time for finding the paths and O((t′)2)
time for constructing the tree, where t′ is the number of critical points.) The
approach has been extended to three dimensions in a technical report [37],
using the term “Volume Skeleton Tree” for the contour topology tree.

Following de Berg and van Kreveld [14], Bajaj and van Kreveld et al. [3, 41]
developed algorithms for computing the contour tree in 2D with the same
running time O(N log N) (but simpler) in the plane and with O(N2) time in
higher dimensions. They also showed how to compute a small seed-cell set
for fast isosurface extraction using the contour tree. Tarasov and Vyalyi [38]
improved the complexity of computing the contour tree in 3D to O(N log N)
time.

Carr et al. [8] simplified and extended the method of Tarasov and Vyalyi [38]
so that the contour tree can be computed in any dimension in O(N + n log n)
time. They used two separate sweeping processes resulting in a join tree and
a split tree, which can then be merged to obtain the contour tree. We review
this simple and elegant algorithm in Section 4.2. It is the basis for our new
algorithm.

Cox et al. [13] defined the criticality tree which is comparable with “one half”
of the contour tree, namely the join tree, augmented with the critical points.

Pascucci and Cole-McLaughlin [32] extended the construction of contour trees
from linear interpolation to interpolants of higher degrees. Independent of our
work and almost around the same time, Carr and Snoeyink [7] proposed the
use of path seeds in the seed-cell propagation paradigm [3,41] for fast isosurface
extraction mentioned above. A more extensive overview about the history and
literature of contour trees is given in the paper [7].

1.3.0.5 Output-Sensitivity. The first output-sensitive algorithm for com-
puting the contour tree was given by Pascucci and Cole-McLaughlin [32], with
running time O(n + t′ log n), for 3-dimensional structured meshes with t′ crit-
ical points. Note that for structured meshes, N = O(n) and thus N does not
appear in the bound, and that t′ is an upper bound on the size of the contour
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tree. As mentioned above, they also gave a very nice method to associate the
Betti numbers to the contour tree to enable the computation of isosurface
topologies.

This contour-tree algorithm is based on the divide-and-conquer paradigm. At
each step, the volume is recursively subdivided into two halves of roughly equal
number of vertices, with the common boundary (the separator) having O(n2/3)
vertices and edges. This splitting step can be performed trivially on a struc-
tured mesh in O(1) time—just take a plane cutting through the median of the
volume. In each half, the corresponding contour tree is built recursively, and
then the two contour trees, one on each side, are merged to form the final con-
tour tree. In the merge step, the two contour trees from the two sub-volumes
can interact with each other only at the O(n2/3) vertices on the separator; for
the rest of the two contour trees we just need to copy them, which takes O(t′)
time at each recursive level. Therefore, the merging step takes O(n2/3α(n)+t′)
time (by merging the separator vertices from both sides into a combined sorted
list and then performing the sweeping algorithm of Carr et al. [8] with Union-

Find operations [12], plus copying the unchanged portions of the two contour
trees). Here, α(n) is the extremely slowly growing inverse of the Ackermann
function. Since the merge step (as well as the splitting step) takes less than
linear time in n, the overall complexity is O(n + t′ log n).

In [32] the authors also mentioned that their method might be extended to
unstructured meshes, by pointing out the O(n)-time algorithms [26, 27] for
finding a separator with O(n2/3) vertices in unstructured meshes. However,
even with these separator algorithms, the output-sensitive bound no longer
holds: The volume splitting step, originally taking O(1) time in each recursion
for structured meshes, now takes O(n) time —the overall complexity for all
splitting steps is O(n logn) already, and thus it does not pay off to use the
more complicated separator algorithms [26,27], compared to the simple sorting
step used in the algorithm of Carr et al. [8].

1.4 Our Algorithm

We will follow the idea of Carr et al. [8] of constructing the join tree and
the split tree separately. Our algorithm differs in the way how these trees are
constructed. The key idea of our algorithm is to avoid sorting all vertices.
Instead, we identify all critical points first, sort them, and then connect them
appropriately. In order to determine the connectivity of the components which
meet (locally) at a vertex v, we start a monotone path from v into every
component until we hit a previously visited vertex. It is very easy to follow a
monotone path, by just searching through the neighbors.
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The main advantage is that only the component-critical points have to be
sorted. These points must be found in an initial (unordered) scan of the data.
A component-critical point can be identified by looking at its neighbors. The
running time of our algorithm is O(N +t log t) if there are t component-critical
points. (The component-critical points form a subset of all critical points and
thus t ≤ t′ if there are t′ critical points.) The algorithm works for structured as
well as for unstructured meshes, in any dimension. It is output-sensitive, and
is simple and easy to implement. In addition, as a by-product, the monotone
paths implicitly give a reasonable seed set, to be used in the seed propagation
paradigm [3, 41] for fast isosurface extraction. In two and three dimensions,
an easy extension can compute the contour topology tree in O(N + t′ log t′)
time if there are t′ critical points.

It can be shown that there is a lower bound of Ω(N +t log t) on the complexity
of computing the contour tree by the lower bound construction of Bajaj et
al. [3]; see Section 5.1 for the details. Thus, our algorithm is optimal in the
worst case.

We have implemented our algorithm and performed experiments on datasets
from real-world scientific visualization applications. The experiments show
that typically t is less than 5% of the overall number n of the input vertices, and
that our algorithm compares favorably with the previous best algorithm [8].
We refer to Section 6 for the details.

Our method has additional advantages for huge datasets that do not fit into
main memory. This is discussed in the concluding section (Section 7).

Our algorithm bears some resemblance to the approach of Takahashi et al. [36,
37], as both algorithms follow monotone paths. There are some differences,
however. In [36], one always follows the “steepest” path (to the highest or
lowest neighboring vertex) with the objective to approximate critical flow lines,
i.e., ridges and ravines, and one follows these lines all the way to the maximum
or minimum. In our algorithm, we can follow an arbitrary monotone path, and
we stop when we reach a visited vertex. (In our computational experiments,
we also follow steepest paths, but the objective is to (heuristically) keep paths
short.) Also, by combining our algorithm with the techniques of [8], we are
able to obtain a simple algorithm with a provably good running time.

1.4.0.6 Overview. Section 2 states the basic definitions and assumptions.
Section 3 is devoted to the definition and characterization of critical points.
We describe our algorithm in Section 4, present the analysis of its running time
in Section 5, and report the experimental results in Section 6. Section 7 gives
comparisons with previous algorithms and lists some extensions and further
questions.
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This work was started concurrently and independently by Yi-Jen Chiang and
Xiang Lu [10], and as the Master’s thesis of Tobias Lenz [25] under the su-
pervision of Günter Rote. The results were presented at the 19th European
Workshop on Computational Geometry in Bonn, March 24–26, 2003.

2 Definitions

We assume that the scalar function f is specified as a piecewise linear inter-
polated function on some n data points V . We are given a triangulation T of
a domain M ⊂ R

d with vertex set V , and the values f(v) ∈ R for v ∈ V . The
triangulation T can be given explicitly as a list of N d-simplices (an unstruc-
tured mesh), or, when the data points V form a grid (a structured mesh), the
triangulation can be implicitly given by some fixed triangulation of the grid
following a regular pattern. For an unstructured mesh we assume that each
simplex is linked to its d + 1 neighboring simplices. For a structured mesh,
we will have N = O(n). In the worst case, N = O(ndd/2e), although we do
not think that triangulations with super-linear N will be very useful in this
context.

We have to assume that M is a simply-connected d-dimensional manifold
with boundary. For example, a convex domain M will do. The graph of the
triangulation (consisting only of the vertices and edges) is denoted by G =
(V, E).

2.0.0.7 Technical Assumption. We assume that all n values f(vi), vi ∈
V , are distinct. If we would allow values at adjacent vertices to be equal, the
notion of critical points has to be adapted, and this causes technical difficul-
ties. Given the intended purpose of contour trees (visualization of measured
data), it is appropriate to resolve such cases by perturbation, see Section 4.3.
(However, Cox et al. [13] have managed to extend the notion of critical points
and saddles also to the case where the function is constant on a whole d-
dimensional cell.)

On the other hand, we could allow non-adjacent vertices to have equal values
without difficulty. In this case, our assumption is merely a convenience. These
are the same assumptions used in Carr et al. [8] or for piecewise linear Morse
functions in Banchoff [4,5]. Under these assumptions, the critical points only
occur at the vertices v ∈ V [4–6, 23, 24].
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2.0.0.8 Level Sets and Contours. The upper level set, the lower level
set, and the (equality) level set of f at height h are defined as

M>h := { x ∈ M | f(x) > h },
M<h := { x ∈ M | f(x) < h },
M=h := { x ∈ M | f(x) = h }.

A level set at a certain height or isovalue h is called isoline in a 2D mesh and
isosurface in a 3D mesh. A contour is a connected component of a level set
M=h. As we sweep through the data by increasing h, the set M<h grows while
M>h shrinks continuously, and M=h is their common boundary. The join tree
represents the evolution of the components of the set M<h as h varies. The
split tree is defined similarly for M>h.

4 See Figures 1c and 1d.

The contour tree is obtained by contracting each contour to a point while pre-
serving the adjacency information between contours. In topology, this struc-
ture is also known as a Reeb graph. In general, it can be a graph of arbitrary
structure, but if the underlying domain is simply connected, this graph is a
tree [3, 41]. Each leaf node represents a local minimum or maximum of f , at
which a contour appears or disappears, and each interior node represents the
joining and/or splitting of two or more contours at a component-critical point
(to be defined in Section 3). Reeb graphs for surfaces which are not simply con-
nected were recently considered in [11], where an algorithm for constructing
the Reeb graph in O(n log n) time was presented.

3 Critical Points

In classical (smooth) Morse theory [28, 35], a critical point is a point where
the gradient vanishes. The basic theorems of Morse theory assert (under some
additional assumptions) that these points are precisely the points where the
topology of the level sets change. For piecewise linear functions, we therefore
mean by a critical point a point where the topology of the level set changes
as the height passes through this point. A precise definition is given below in
Theorem 1. A point which is not critical is called a regular point or ordinary
point.

In this section, we show how to identify critical points locally, for 2- and 3-
dimensional manifolds. It turns out that it is only necessary to count connected
components of lower and higher neighbors of a vertex. In dimension four and

4 The names join tree and split tree refer to the convention of sweeping from lower
to higher values. The sweeping direction is not consistent in the literature, therefore
the terms join and split are used inversely in other papers.
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higher, it appears more difficult to test whether a point is regular or critical.
We discuss this issue in the conclusions, Section 7.

The link graph N(v) of a vertex v in a triangulated manifold M is the graph
obtained by taking all vertices and edges of the simplices containing v, and
removing v (and the edges incident on v). In topological terms, this is the
skeleton of the link of v. 5 Let N+(v) and N−(v) be the subgraphs induced by
the vertices w with f(w) > f(v) and f(w) < f(v) respectively, and C+(v) and
C−(v) respectively denote the numbers of connected components in N+(v) and
in N−(v). We omit the reference to v when it is clear from the context.

Definition 1 A maximum is a point with C+ = 0 (and hence C− = 1). A
minimum is a point with C− = 0 (and hence C+ = 1). A join candidate is a
point with C− > 1 (and hence C+ ≥ 1), and a split candidate is a point with
C+ > 1 (and hence C− ≥ 1).

Note that the notions of join candidate and split candidate are not exclusive:
a vertex with C− > 1 and C+ > 1 is simultaneously a join candidate and split
candidate.

In two dimensions, these are all critical vertices. In a trivariate function de-
fined over a bounded domain, we have to introduce additional types of critical
points:

Definition 2 Let v be a point with C− = C+ = 1. Then v is a boundary min-
imum (boundary maximum) if v is on the boundary of M and is a minimum
(maximum) among the neighbors of v which lie on the boundary.

Note that C− and C+ are taken with respect to the whole neighborhood (as
usual), not just restricted to the boundary. It is also important to note that
the above definition explicitly excludes points which fall under Definition 1; in
particular, minimum/maximum and boundary minimum/maximum are mu-
tually exclusive.

Theorem 1 (Critical points in three dimensions) Let f be a piecewise
linear function defined on a simplicial decomposition of a three-dimensional
manifold M , and let v be a vertex of this decomposition. Suppose that v is the
only vertex with value f(v). Then precisely one of the following two alternatives
holds:

5 The link graph is not the neighborhood in the graph-theoretic sense, i. e., the
subgraph of the skeleton G induced by the neighbors of v. There might be an edge
between two neighbors of v which does not belong to a common simplex with v, in
the triangulation. However, the subsequent Lemma 5 would remain true even if we
used the graph-theoretic neighborhood instead of the link graph in the definition of
component-critical points.
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(1) v is a maximum, a minimum, a split candidate, a join candidate, a bound-
ary maximum or a boundary minimum.

(2) There is an ε > 0 such that all level sets M=h are homeomorphic, for
f(v) − ε ≤ h ≤ f(v) + ε.

PROOF. See Appendix A. 2

If the second alternative holds, we call v a regular point, otherwise v is a
critical point, and h(v) is called a critical value. Thus we propose the following
definition of a regular point in three as well as in two dimensions.

Definition 3 Let f be a piecewise linear function on a simplicial decomposi-
tion of a two- or three-dimensional manifold M , and let v be a vertex of this
decomposition with the unique value f(v). Then v is called regular point if
and only if there is an ε > 0 such that all level sets M=h are homeomorphic,
for f(v) − ε ≤ h ≤ f(v) + ε.

For a regular point, the homeomorphism is in fact an isotopy:

Theorem 2 Under the assumptions of Theorem 1, let [a, b] be an interval
which contains no critical value. Then there is an isotopy between all level
sets in this range, i. e., a continuous map

g : M=b × [a, b] → M,

where g(·, h) is a piecewise linear homeomorphism between M=b and M=h, for
every h ∈ [a, b].

PROOF. See Appendix A. 2

Note that g is not necessarily a piecewise linear function of both variables.
The condition is also necessary: If [a, b] contains a critical value, the topology
changes at this point, and there can be no homotopy.

It seems that such basic statements about piecewise linear functions ought to
be known, but we could not find them explicitly in the literature. Therefore,
we provide proofs in the appendix.

Table 1 lists the types of critical points. For illustration, there is a typical
example of a smooth function for which the origin is a critical point of the
respective type. The first four types in their pure form are the generic criti-
calities of smooth Morse functions. The critical points which are not minima
or maxima are the saddle points. Note that monkey saddles and saddles of
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Table 1
Critical points for a function of three variables.

critical point C− C+ smooth example Morse index

minimum 0 1 x2 + y2 + z2 0

join candidate > 1 x2 + y2 − z2 1

split candidate > 1 x2 − y2 − z2 2

maximum 1 0 −x2 − y2 − z2 3

join and split candidate > 1 > 1 z(z2 − x2 − y2)

boundary maximum 1 1 −x2 − y2 + z (z ≥ 0)

boundary minimum 1 1 x2 + y2 − z (z ≥ 0)

even higher multiplicity are not exceptional for piecewise linear functions, in
contrast to the smooth setting of Morse theory.

For the contour tree, we are only interested in the components of level sets,
not in their complete topology. So we need to consider only a subset of the
critical points: the component-critical points.

Definition 4 A component-critical point is a join candidate, a split candi-
date, a maximum, or a minimum.

Note that a boundary minimum/maximum is not a component-critical point.
In other words, a vertex which is not component-critical is characterized by
C− = C+ = 1. We summarize the criticality classification of a vertex v in a
bounded three-dimensional triangulated manifold M in the following proce-
dure.

Procedure Criticality Classification in 3D.

(1) If the condition C− = C+ = 1 does not hold, then v is component-critical.
(2) Else (C− = C+ = 1), we distinguish two cases:

(a) If v is on the boundary of M and is minimum (maximum) among
all its neighbors that lie on the boundary of M , then v is boundary
minimum (boundary maximum). (In this case, v is critical but not
component-critical.)

(b) Otherwise, v is regular.

For the contour tree, Step 1 above suffices to identify all component-critical
points, which are all we need to consider: The maxima and minima become
leaves of the contour tree, and the join candidates and split candidates are
the vertices which may generate join and split vertices in the contour tree.
To identify component-critical points in higher dimensions, we show that the
following statement holds in all dimensions.
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Lemma 5 If h passes a vertex v of a d-dimensional triangulated manifold
which is not component-critical, the number of connected components of M>h,
of M=h, and of M<h is unchanged.

PROOF. It is easy to see that, when restricted to a neighborhood Bε(v)
of v, M<h has a single component for all values h in some neighborhood of
f(v), and the same holds for M>h. (A formal argument can be given with
the help of Lemma 7 below.) By the d-dimensional (polyhedral) analog of the
Jordan curve theorem applied to Bε(v), a level set M=h consisting of k > 1
components inside Bε(v) would partition Bε(v) into at least k+1 pieces where
f is uniformly larger or smaller than h. It follows that M=h must also consist
of a single component.

It is clear that the connectivity of the components of M>h, M=h, and M<h

does not change outside Bε(v) or when h does not pass a vertex. 2

For completeness, we also discuss the situation for two-dimensional manifolds,
which is easier. In two dimensions, every join candidate is automatically a
split candidate and vice versa, except at the boundary. Each join and split
candidate will always be a join or split vertex (or both) in the contour tree
when M is a subset of the plane. Candidates at the boundary do not necessarily
become vertices of the contour tree. Thus we have the critical points in Table 2.
The regular vertices on a two-dimensional manifold are characterized by the
condition C− = C+ = 1.

Theorem 3 (Critical points in two dimensions) Let f be a piecewise lin-
ear function defined on a triangulation of a two-dimensional manifold M , and
let v be a vertex of this decomposition. Suppose that v is the only vertex with
value f(v). Then v is a regular point if and only if C− = C+ = 1. 2

The above characterization allows us to find the component-critical points or
the critical points in linear time by scanning through the triangulation. For
each vertex v, we have to scan the link graph N(v) and split it into connected

Table 2
Critical points for a function of two variables.

critical point C− C+ smooth example Morse index

minimum 0 1 x2 + y2 0

join and split candidate > 1 > 1 x2 − y2 1

maximum 1 0 −x2 − y2 2

split candidate 1 > 1 x2 − y (y ≥ 0)

join candidate > 1 1 −x2 + y (y ≥ 0)

13



200 200

300

300

400

300

400

500 500

600

600

x

y

(b)

300

400400400400

400

200 200

300

300

400

300

400

500 500

600

600

x

y

(a)

300

400400400400

400

Fig. 2. Two possible treatments of the boundary that correspond to closing the
“holes” in the contours meeting the boundary, by setting the function values outside
the domain to be (a) −∞ and (b) +∞. We show the effects on the contours at height
300 in the example of Figure 1.

components of the same sign (“+” or “−” depending on whether the function
values are larger or smaller than f(v)). This can be done in linear time in
the size of the graph. Each simplex of the triangulation contributes to only a
constant number of edges to all link graphs. (In d dimensions, this number is
d(d− 1)(d− 2)/2.) Hence the total size of all link graphs is O(N), if there are
N simplices. Thus we have:

Lemma 6 For a two- or three-dimensional manifold with N simplices, the
critical vertices can be identified in O(N) time. In any dimension, the com-
ponent-critical vertices can be identified in O(N) time. 2

3.1 Treatment of the Boundary

We have assumed that a contour is cut at the boundary of the domain M .
Thus, a contour can be a manifold with boundary. Another approach has also
been proposed in the literature. One may regard the function f as defined
over the whole space R

d by setting f(x) = +∞ or f(x) = −∞ (or some “very
large” or “very small” value) whenever x lies outside M . This corresponds to
closing the “holes” in the contours in one of two possible ways; see Figure 2.
For example, if f represents a density function, and the density is indeed
concentrated well inside M , then it makes sense to set f(x) to zero outside M .
The isovalues at which the contour would touch the boundary are so low that
this event and the corresponding critical point is not a “critical value” that
would be of interest to the user. On the other hand, in case of a turbulence
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simulation in some portion of space, one might prefer to have the contour
surfaces simply cut at the boundary, without ”artificially” closing the holes.

If the approach of extending the domain of f and thereby closing the holes
at the boundary is taken, all boundary effects on topology of the level sets
disappear. In three dimensions, there are no boundary minima and maxima,
and component-critical and critical vertices coincide.

We remark that an alternative treatment of the boundary effects in three di-
mensions has been proposed by Gerstner and Pajarola [17]. At a boundary
vertex v, one can essentially “reflect” the neighborhood of v at the boundary
to obtain a structure which, together with the original neighborhood, com-
pletely surrounds v. Then v can be classified like an interior vertex: v is a
regular vertex if and only if C+ = C− = 1 in the combined neighborhood. The
resulting classification gives the same result as our more explicit classification
in Theorem 1 (and Procedure Criticality Classification in 3D).

It is interesting to see why the “reflection” method [17] gives the same classifi-
cation result as our Procedure Criticality Classification in 3D. By our method,
a boundary vertex v is regular if and only if (a) C+ = C− = 1 (without the
“reflection”) and (b) v is not a boundary minimum or a boundary maximum.
If condition (a) does not hold, then v is critical by both methods. Now suppose
condition (a) is true. If v has both “+” and “−” boundary neighbors (i.e., v
is not a boundary minimum/maximum), then the “+” boundary neighbors
belong to the single “+” component, and the reflected and the original “+”
components are merged into a single component via the “+” boundary neigh-
bors; similarly for the “−” component(s). Therefore we have C+ = C− = 1 in
the combined neighborhood, and v is regular by both methods. On the other
hand, if v is a boundary minimum, then its boundary neighbors are all in the
“+” component, and thus the original and reflected “−” components cannot
be merged, resulting in C− = 2 and C+ = 1 in the combined neighborhood,
and v is a critical point by both methods; similarly for a boundary maximum.
Therefore the two methods give the same classification result. Our method is
more explicit and easier to use; see Chiang and Lu [9] for its use in tetrahedral
volume simplification preserving all isosurface topologies.

4 The Monotone Path Algorithm

4.0.0.9 Review: The Sweep Algorithm. We briefly review the algo-
rithm of Carr et al. [8] for computing the contour tree. It consists of the
following steps.

(1) Sort all n vertices of the mesh by their function values.
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(2) Perform a sweep of the n vertices from the smallest function value to the
largest function value, and build the join tree.

(3) Perform another sweep of the n vertices, now from the largest function
value to the smallest function value, and build the split tree.

(4) Merge the join tree and split tree together and remove all degree-two
nodes in the resulting tree to obtain the contour tree.

Step 2 and Step 3 are completely symmetric, and are essentially the same
process performed in the opposite sweeping directions. We will describe the
procedure for constructing the join tree after describing our own method for
this task. (The authors of [8] make different claims about the running time of
their algorithm in various parts of their paper. At the end of Section 4.1 they
claim a running time of O(m+ tα(t)) for t component-critical vertices if there
are m edges in the graph G = (V, E). (Recall from Section 2 that G consists
only of the vertices and edges of the triangulated mesh.) According to our own
analysis, the construction of the join tree from the sorted sequence of n vertices
as described in [8] takes O(mα(m, n)) time. However, this discrepancy does
not influence the overall running time, which is dominated by the O(n log n)
sorting step, when m = O(n).)

Step 4 can be performed in time linear in the total size of the join and split
trees:

Theorem 4 ( [8, Section 4.2]) The contour tree can be constructed in lin-
ear time from the join tree and the split tree. 2

Including the sorting time in Step 1, and the time for extracting the graph
G from the input, the overall time is O(N + n log n). (The claimed running
time of O(m + n log n) in [8] apparently assumes that the m edges of the
graph G are already available in an appropriate data structure. Otherwise it
is impossible to solve the problem without looking at the whole input, which
is of size O(N). In dimensions higher than three, the number N of simplices
can be much larger than the number m of edges.)

A related algorithm (constructing the contour tree from the surface network)
is described in [36], but without run-time analysis. By our own analysis, the
overall algorithm takes O(N + nt′ + (t′)2) time if there are t′ critical points.

4.0.0.10 The Monotone Path Algorithm. We give an outline of our
new algorithm. The algorithm for the contour topology tree and for the contour
tree differ only in the first and the last steps.

(1) For constructing the contour tree, identify the component-critical ver-
tices in the mesh. For constructing the contour topology tree, identify all
critical vertices in the mesh.
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(2) Sort those vertices by their function values.
(3) Build the join tree: Process those sorted vertices by increasing function

values. For each current vertex vi perform the following:
(a) Start a monotone descending path (defined later) from every compo-

nent in N−(vi) until a vertex which was already visited is found.
(b) Connect vi to the appropriate tree component if vi is not already

connected.
(4) Build the split tree: This is symmetric to Step 3. Now process the sorted

vertices by decreasing function values.
(5) Merge the join tree and the split tree together. If the contour topology

tree is desired, the algorithm stops here.
(6) To get the contour tree, remove the nodes of degree two from the tree.

The identification of the critical or component-critical vertices in Step 1 can
be done in O(N) time by Lemma 6. Steps 5 and 6 are identical to Step 4 of
the sweep algorithm and take linear time, by Theorem 4. Step 3, which is new,
is described in the following section.

4.1 Constructing the Join Tree

We describe the incremental construction of the join tree. We scan all critical
or component-critical vertices v in increasing order of f(v). Each v is processed
as follows: First we create a new node that represents v in the join tree. If v
is a local minimum, processing of v is completed and the new node remains
isolated. Otherwise, we select a neighbor w in each of the C−(v) components of
N−(v). These neighbors are processed sequentially. We process w by starting
a monotone descending path at w, continuing until we hit a previously visited
vertex. A monotone descending path is a path on which the function values of
the vertices are monotonically decreasing. We will always meet a previously
visited vertex, because the only way to get stuck would be in a local minimum.
However, this minimum is a component-critical vertex and thus has already
been visited previously.

Before describing how to connect the node v in the join tree, we need a little
lemma about the connection between connected components of level sets (in
the topological sense) and connected components in the graph G. Let G<h be
the subgraph of G induced by the vertices v with f(v) < h.

Lemma 7 (see [8, Lemma 4.2]) For any value h, the number of connected
components of M<h is equal to the number of connected components of G<h

(in the graph-theoretic sense).

PROOF. A simplex cannot (partially) belong to more than one connected
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component of M<h, and if it belongs to a component of M<h, then some
vertex of the simplex must belong to M<h. On the other hand, all vertices v
of a simplex with f(v) < h lie in the same connected component of G<h. The
lemma follows from these observations. 2

Let H denote the graph of all traversed edges in all monotone paths before the
current vertex v is processed, including all local minima that were visited. Let
H ′′ denote the same graph after the current vertex has been processed, and let
H ′ denote the graph H ′′ with the vertex v removed. We have H ⊆ H ′ ⊆ H ′′.
The following invariant is maintained throughout the algorithm.

Lemma 8 Both the graph H and the graph H ′ has precisely one connected
component in every component of M<f(v).

PROOF. This is proved by induction. The lemma holds for the smallest
vertex v because H , H ′, and M<f(v) are all empty.

Assume that the lemma holds for the graph H for the current vertex v. H ′

is obtained from H by starting monotone paths from certain neighbors w of
v with f(w) < f(v). Each path starts in one component of M<f(v), and since
we only walk downwards, the path cannot leave that component. So it will
connect to the corresponding component of H . Thus the lemma holds for H ′,
too.

We will now show that the statement of the lemma holds for H ′′ and M<f(v)+ε,
for some small ε.

When we increase h from f(v) to f(v) + ε, all components of M<h in the
neighborhood of v become connected. This is reflected in H ′′ because H ′′

contains an additional edge from v to a vertex w in each component of M<h in
the neighborhood of v. If v is a minimum, a new component appears in M<h,
and at the same time, H ′′ contains a new isolated vertex. Thus, in any case
the statement of the lemma holds for H ′′ and M<f(v)+ε.

H ′′ is the graph H for the next vertex v̂ that will be processed. By Lemma 5,
the component structure of M<h remains unchanged if we increase the height
h further until it reaches f(v̂). Thus, the lemma holds for the graph H for the
next vertex v̂. 2

We now describe how we manage the connected components of H and how we
build up the join tree. The natural representation for maintaining connected
components under insertions is of course a Union-Find data structure. Our
ground set is the set of critical or component-critical vertices determined in
Step 1. We choose as a representative of a component of H the highest critical
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vertex (that was added last) in that component. This critical point is at the
same time the highest point in the component of the join tree that has been
constructed so far, in which all ascending paths (in the join tree) in that
component come together.

As we walk along a monotone path from a neighbor w of v, we mark the visited
vertices and give them a pointer to v. (The vertex v will become the highest
vertex in their component.) The vertices on the path do not become part of
the Union-Find structure; their pointers are never changed.

Now, if a monotone path hits a vertex z which was already visited, we first
follow the pointer from z to its (component-)critical vertex (unless z happens
to be a (component-)critical vertex itself). Then we query this (component-)
critical vertex in the Union-Find structure and Find its representative r. If
it turns out that z is already in the same component as v (r = v) we do not
have to do anything else. Otherwise, we add an edge from v to r into the join
tree, perform the Union of the components containing v and r, and select v
to be the representative of the resulting set. In this way we ensure that the
representative of a component is always the highest vertex of that component.

To show correctness, we can note that the algorithm maintains the following
invariant:

Lemma 9 At the time when a vertex v is about to be processed, we have
constructed all parts of the join tree with values below f(v). In each component
of the partial join tree, there is a highest vertex which is reachable from all other
vertices in that component by a monotone ascending path.

PROOF. We proof the lemma by induction. The base case is trivially true.
For the induction step, we see that the edge between v and r is the correct
edge that must be added to the join tree: This edge represents the single
connected component of M<h containing r as h varies from f(r) to f(v), since
r is the highest point in the component of the join tree that corresponds to this
component. The parts of the join tree below r have already been constructed
by induction hypothesis.

After processing v, all such edges (v, r) described above are correctly added
to the join tree, and the components of the partial join tree below f(v) that
belong to the component of v are all connected to v and have v as their highest
vertex in the join tree. Thus, the invariant stated in the lemma is maintained.

2

4.1.0.11 Seed Sets. When we add a new edge (v, r) to the join tree, we
can also remember the initial portion of the monotone path in the mesh, from
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v down to the height of r, as a possible seed set for this tree edge (v, r). This
is not necessarily a very good, i.e., small, seed set, but it has the nice property
that the successive h-intervals on the path are disjoint, except for the last edge,
whose interval may overlap with other intervals. The selection of optimal or
approximately optimal seed sets was discussed in [3, 41]. However, it is more
in line with our minimalist approach to be satisfied with reasonable seed sets
that are given by simple heuristics, instead of spending much time striving for
the optimum.

If we associate the sorted list of seed edges with every contour tree edge we can
find seed edges for a given isovalue h by first determining the affected edges
of the contour tree, and then for each such edge, find a seed edge by binary
search. This approach is also used for the “flexible isosurface” of Carr and
Snoeyink [7] which allows to select contours of different isovalues in different
branches of the contour tree.

Carr and Snoeyink [7] also proposed a method which reduces the amount of
storage for storing seeds at the expense of running time when constructing
seeds: They store only the first edge and re-generate the path for a single
contour tree edge on the fly when a seed at a given height is required. In this
way the storage is reduced to O(t). The additional time for seed extraction is
often dominated by the actual contour extraction which follows it.

A more flexible trade-off between storage and construction time is offered by
the following idea. If we store every, say, 10th edge of a monotone path, then a
seed at a particular isovalue can be found after scanning at most 10 successive
edges of the monotone path (provided that a deterministic strategy for finding
paths is used).

4.2 Constructing the Join Tree by the Sweep Algorithm

The original sweep algorithm of Carr et al. [8] for computing the join tree can
be described as a variation of the monotone path algorithm where all vertices
are processed, not only the (component-)critical vertices. In this case, there is
no need to walk along monotone paths, as each neighbor w has already been
visited and the path can stop there. Also, it is easier to just visit every lower
neighbor w of the current vertex v instead of finding connected components
in N−(v) and picking one neighbor in each component.

The treatment of the connected components using the Union-Find struc-
ture is then essentially the same as described above for the monotone path
algorithm.
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4.3 Precision and Degeneracy

Our algorithm only compares the function values of the mesh vertices and
does not perform any calculations with them. Therefore, round-off error in
floating-point calculations is not an issue.

A degenerate case for our algorithm is given when two vertices have the same
scalar function value. This can be resolved with an easy perturbation scheme.
In the implementation we used the following simple symbolic perturbation:
If two vertices u and v have the same scalar value f(v) = f(u), then we
use the vertex ID’s to break the tie. The tie breaking is needed both in the
critical-point identification and in the sorting steps of our algorithm.

This symbolic perturbation also ensures that the scalar values at all vertices
are distinct, to satisfy the technical assumption of Section 2.0.0.7 and to guar-
antee that critical points only occur at mesh vertices.

4.4 A Possible Simplification

There is a possible simplification, which, however, does not improve the asymp-
totic complexity. Therefore we only sketch it briefly.

When generating the join tree, one just has to process the sorted list of join
candidates, and when generating the split tree, one just processes the sorted
list of split candidates. Maxima and minima are not processed explicitly. When
walking along a monotone descending path, it may happen that one gets stuck
in a local minimum before hitting a previously visited vertex. Then one must
create a new vertex for this minimum in the join tree. In this way all minima
are eventually discovered.

In the correctness proof, the statement of Lemma 8 must be modified: The
components of H and H ′ lie in all components of M<h except those that
contain only a single (component-)critical point (which must then be a local
minimum).

There is a slight twist when the join tree and the split tree are combined
into the contour tree: the join tree and the split tree have different sets of
vertices. The join tree does not contain any maxima, and the split tree does
not contain any minima, and some other vertices may be present in only one
tree. However, the algorithm of [8] mentioned in Theorem 4 can be adapted
without much difficulty to accommodate this, see [8, end of Section 4.2]. It
may even happen that the two trees have completely disjoint sets of vertices,
in which case some special treatment is required. The details are described
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in [25, Chapter 7].

5 Analysis

The first step in the algorithm is to identify the critical or component-critical
vertices (see Section 3). This can be done in O(N) time by Lemma 6.

The time for exploring the monotone paths is proportional to the number of
edges visited, which is bounded by the total number m of edges of the graph
G. But in practice, the number of visited edges is much smaller than m; see
Section 6.

If there are t component-critical points v1, v2, . . . , vt, and a total of s =
∑t

i=1 C−(vi) of their neighbors are processed, the algorithm performs at most
t Union and at most s Find operations to construct the join tree. The dom-
inating step is usually the walking of the paths, because this is repeated for
each of the s neighbors, and the paths may be very long. But as mentioned
above, in the worst case this is bounded by the total number m of edges of
the graph G, which is O(N) and thus dominated by the initialization time.
All other operations are linear in t and s. Including the time for sorting the t
component-critical points, the time is

O(N + t log t + sα(s, t)) = O(N + t log t),

where α(s, t) is the extremely slowly growing inverse of the Ackermann func-
tion. We use the version from Tarjan’s original paper about the analysis of
the Union-Find algorithm [39, p. 221]:

α(m, n) := min{ i ≥ 1 | A(i, 4dm/ne) > log2 n },
where A(i, j) is a version of Ackermann’s function that starts with A(1, x) =
2x. The term sα(s, t) is thus dominated by the first two terms: For s >
t log log t, we have α(s, t) = 1, and sα(s, t) = O(s) = O(N). For s ≤ t log log t,
we have sα(s, t) ≤ t log log t α(s, t) ≤ t log log t α(t, t) = O(t log t).

For the contour topology tree, one can apply the same analysis, except that
one deals with a larger set of t′ critical points.

Theorem 5 The monotone path algorithm computes a contour tree in a tri-
angulated d-dimensional mesh with N cells and t component-critical points in
O(N + t log t) time and O(N) space.

The monotone path algorithm computes a contour topology tree in a trian-
gulated two- or three-dimensional mesh with N cells and t′ critical points in
O(N + t′ log t′) time and O(N) space. 2
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Fig. 3. Only a few points are visited.

Figure 3 shows a two-dimensional example with a grid of n = 65536 points.
There are 75 join or split candidates, and only 5622 points are visited on
monotone paths. The visited points are highlighted in black.

5.1 Optimality

The nodes in the contour tree are sorted along each monotone path in the tree.
Bajaj et al. [3] have used this property to prove a lower bound of Ω(t log t) on
the worst-case time to construct the contour tree by a reduction from sorting.
For any given set of t numbers, they showed how to construct a bivariate
piecewise linear function on a triangulated domain of size O(t), so that the
contour tree contains a long monotone path from which the sorted sequence of
t numbers can be read off. Together with the Ω(N) time for reading the input,
this gives a lower bound of Ω(N + t log t) on the running time for computing
the contour tree. Therefore, our complexity of O(N + t log t) is worst-case
optimal.

6 Experimental Results

We have implemented both our new monotone path algorithm presented in
Section 4 and the sweep algorithm [8] described in Section 4.2 in C++/C,
and ran our experiments on unstructured three-dimensional meshes. (Another
set of independent implementation and experiments, programmed in Java and
tested on structured three-dimensional meshes, was reported in the Master’s
thesis of Tobias Lenz [25].) The experiments are not extensive enough to draw
a definite conclusion, but the results suggest that our algorithm compares
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favorably with the sweep algorithm [8].

We conducted our experiments on a Sun Blade 1000 workstation with 750MHz
UltraSPARC III CPU and 4GB of main memory. The datasets are from real-
world scientific visualization applications: The Blunt Fin (blunt, blunt2), the
Liquid Oxygen Post (post, post2), and the Delta Wing (delta, delta2) datasets
are from NASA, and the Combustion Chamber (comb, comb2) datasets are
from Vtk [34] (generated from a combustion simulation). These datasets are all
given as tetrahedral meshes, and each pair of datasets (e.g., blunt and blunt2)
have the vertices sampled at different resolutions and hence their input sizes
are different. Some representative isosurfaces generated from our experiments
are given in Figures 4.

Fig. 4. Representative isosurfaces from our test datasets. The upper two are from
the Blunt Fin dataset. The ones in the bottom are from the Combustion Chamber
dataset.

Since the sweep algorithm [8] only computes the ordinary contour tree rather
than the contour topology tree, for the purpose of comparisons we focused on
computing the ordinary contour tree in the experiments. In our monotone path
algorithm, we thus only need to consider the component-critical points rather
than all critical points; recall from Section 4. Also, as described in Section 4, to
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Table 3
Experimental results: some characteristics of the datasets. For each dataset, we
list the number N of cells, the number n of vertices, the number t of component-
critical points, the ratio t/n, the number s′ of edges in the mesh with at least one
component-critical endpoint, and the ratio s′/N .

Dataset N n t t/n s′ s′/N

blunt 187395 40960 1820 4.44% 20072 10.7%

comb 215040 47025 524 1.11% 5791 2.7%

post 513375 109744 927 0.84% 10349 2.0%

delta 1005675 211680 1462 0.70% 17307 1.7%

blunt2 749580 228355 1833 0.80% 58159 7.8%

comb2 860160 262065 533 0.20% 13615 1.6%

post2 2053500 623119 947 0.15% 24241 1.2%

delta2 4022700 1217355 2042 0.17% 52913 1.3%

start a monotone path when constructing the join tree, it is sufficient to start
from one representative of each of the C− components of the lower neighbors,
and similarly for the split tree. In our current implementation, for each “−”
component we record the neighbor of the lowest function value and for each
“+” component we record the neighbor of the highest function value. We do
this for every vertex, component-critical or not, in the initial step of identifying
component-critical points. The recorded neighbors can then also be used for
quickly walking along a monotone path. We remark that the simplification
of Section 4.4 is not implemented, and hence we need to sort all component-
critical points, including all minima and maxima. However, as will be seen,
the sorting step turned out to be very fast, and did not create a bottleneck of
the running time.

In Table 3, we show some statistics of the datasets. It is very interesting to
see that for all the datasets tested, the number t of component-critical points
is typically fairly small, ranging from 0.15% to 4.44% of the input vertices.
This certainly shows the importance of having an output-sensitive contour tree
algorithm, where the size of the output contour tree is O(t) rather than O(n).
The number s′ of edges with at least one component-critical endpoint is less
than 3% of the number N of cells for all but two datasets tested. Recall from
Section 5 that s =

∑t
i=1 C−(vi), where the sum is over all component-critical

points vi; clearly s′ is a crude upper bound on s. Therefore 2s′ is a crude
upper bound on the total number of monotone paths started as well as the
total number of Find operations performed in computing both the join tree
and the split tree. The overall Union-Find operations take time O(s ·α(s, t));
with α(s, t) growing so slowly that it can be regarded as a constant no more
than 4 for all practical purposes [12], we see that s·α(s, t) is much smaller than
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N , meaning that the time for performing the Union-Find operations is by
far dominated by the initial O(N)-time scan. For a triangulated 3-manifold,
the number m of edges can be roughly estimated as m ≈ n + N , by using
Euler’s formula and neglecting the effect of the boundary faces.

Table 4
Experimental results: some statistics of the algorithms. For each dataset, we list the
number of vertices (and the percentage) visited by our monotone path algorithm in
computing the join tree (Vjoin and Vjoin/n) and in computing the split tree (Vsplit and
Vsplit/n), respectively, as well as the total number of vertices visited in computing
both trees by our algorithm (Vpath) and by the sweep algorithm [8] (Vsweep), and
their ratio in percentage.

Dataset Vjoin Vjoin/n Vsplit Vsplit/n Vpath Vsweep = 2n
Vpath

Vsweep

blunt 9958 24.3% 8345 20.4% 18303 81920 22.3%

comb 4953 10.5% 3257 6.9% 8210 94050 8.7%

post 12163 11.1% 4544 4.1% 16707 219488 7.6%

delta 13669 6.5% 10157 4.8% 23826 423360 5.6%

blunt2 9894 4.3% 8310 3.6% 18204 456710 4.0%

comb2 4802 1.8% 3180 1.2% 7982 524130 1.5%

post2 11927 1.9% 3906 0.6% 15833 1246238 1.3%

delta2 16875 1.4% 12028 1.0% 28903 2434710 1.2%

Table 4 shows the number of the vertices visited by our algorithm on the
monotone paths during the construction of the join tree and the split tree. We
see that the number of visited vertices is indeed very small, ranging from as
low as 0.6% to 24.3% of n, showing that our algorithm only explores a small
portion of the input, and the theoretical O(m) time bound for exploring all
monotone paths is only a pessimistic estimate. We also list the total number
Vpath and Vsweep of the visited vertices in computing both the join and split
trees, respectively for our monotone path algorithm and the sweep algorithm
of [8]. Note that the sweep algorithm performs a sweep over all vertices in
computing each tree, and thus Vsweep = 2n. It can be seen that the ratio of
Vpath/Vsweep ranges from 1.2% to 8.7% except for the blunt dataset (whose
ratio is 22.3%), showing a very interesting and advantageous behavior of our
algorithm.

In Table 5, we compare the running times of our algorithm with those of the
sweep algorithm [8]. We give a break-up of the running times into the suc-
cessive steps of the two algorithms: for the sweep algorithm, we list the times
for sorting all vertices, computing the join and split trees, and the total run-
ning time; for our algorithm, we list the times for identifying the component-
critical points, sorting all component-critical points, computing the join and
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Table 5
Experimental results: running times. For each dataset, we list the running times
(in seconds) for certain steps of the sweep algorithm [8] (sorting all vertices, com-
puting the join and split trees, and the total time) and of our monotone path
algorithm (identifying the component-critical points, sorting all component-critical
points, computing the join and split trees, and the total time). The total times do
not include the time for reading the input file from disk.

Sweep (sec) Path (sec)

Dataset Sort J+S Trees Total Critical Sort J+S Trees Total

blunt 0.08 1.43 1.51 1.28 0.01 0.02 1.31

comb 0.10 1.74 1.84 1.47 0.01 0.01 1.49

post 0.27 4.14 4.41 3.54 0.03 0.03 3.60

delta 0.53 8.54 9.07 6.94 0.06 0.06 7.06

blunt2 0.53 6.50 7.03 5.35 0.06 0.05 5.46

comb2 0.60 8.18 8.78 6.17 0.06 0.04 6.27

post2 1.48 19.68 21.16 14.79 0.14 0.09 15.02

delta2 4.30 41.85 46.15 28.90 0.31 0.19 29.40

split trees, and the total running time. The total running times exclude the
time for reading the input from disk and the time for merging the join tree and
the split tree. These steps are the same for both algorithms, and moreover,
the time for merging the two trees is usually negligible.

It is interesting to see from Table 5 that the sorting step of the sweep algo-
rithm, although contributing to the dominating term in the theoretical run-
time complexity, ran very fast in practice, and that the sweeping operations
for computing the join and split trees are by far the bottleneck steps for the
sweep algorithm. Our algorithm, on the other hand, significantly reduced the
running time of computing these two trees (the speed-up can be more than 220
times as fast!) so that it is no longer a bottleneck. This is due to the fact that
typically our algorithm only visited 1.2%–8.7% of the vertices visited by the
sweep algorithm, as seen in Table 4. Our algorithm also reduced the sorting
time, as we only sort t component-critical vertices rather than all n vertices.
This improvement is less crucial, however, since the sorting step is already
very fast in the original sweep algorithm. It is important to observe that the
above benefits of our algorithm have to be offset by the initial step of identify-
ing the component-critical points, which is by far the major bottleneck of our
algorithm. This bottleneck step is still faster than the bottleneck steps of the
sweep algorithm (computing the join and split trees) in all tested datasets,
and the speed difference increases as data size increases. Finally, comparing
the total running times of the two algorithms, we see a clear advantage of our
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algorithm: our algorithm is always faster, and 1.57 times as fast in the best
case. The savings in running time by our algorithm become more pronounced
for larger data; for the largest dataset in Table 5, we reduce the running time
from 46.15 seconds to 29.40 seconds.

7 Conclusions

7.1 Comparisons to Previous Algorithms

7.1.0.12 Theoretical Comparisons. The best previous algorithm takes
time O(N+n logn). The new complexity O(N+t log t) is superior if t � n and
if n log n dominates N . For “nice” meshes, N = O(n) and the last condition
is always fulfilled. The size of t depends of course very much on the data. It is
easy to construct a planar mesh with about n/2 saddle points and n/4 maxima
and minima. However, if one thinks about reasonably smooth functions that
are successively represented on a finer and finer grid, the number of critical
points stays essentially constant and does not grow with n. When comparing
the figures in Table 3 for different sampling rates (for example blunt and
blunt2), one can see that the number of component-critical vertices is indeed
independent of the resolution, for these examples. On the other hand, in cases
of simulations of complicated physical phenomena like turbulence or in noisy
data resulting from measurement, a large fraction of vertices may be critical.

7.1.0.13 Practical Issues for Large Datasets. From a practical point
of view, sorting of data is not an issue in practice. Numeric data that come
from real-world applications are usually reasonably well-behaved and can be
sorted in linear expected time by bucketing techniques. Radix sort is a practical
way to sort even arbitrary sets of floats or doubles in linear time. Thus, the
theoretical Θ(n log n) lower bound on sorting does not play a role in comparing
different algorithms. Also, the experiments in Section 6 show that sorting is
not the bottleneck.

However, for huge datasets, our algorithm has other advantages. Assume that
the input data (the data points together with connectivity information) do
not fit into main memory, but are kept in virtual memory or even in external
memory (on a disk), or on a read-only medium (a CD-ROM).

In the initialization phase, the algorithm scans the data once and selects the
critical points. This is a purely local operation if the neighboring cell infor-
mation is available locally. Under the assumption that the critical points are
only a small fraction of the data, they can be kept in main memory and sorted
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quickly. Walking along monotone paths is an operation that accesses the data
in a spatially coherent fashion. If the layout of the data in its storage medium
could be arranged so that it reflects spatial locality (points which are con-
tiguous in space and which are connected in the mesh tend to be stored in
adjacent memory cells), we may expect that our algorithm will perform well
with today’s hierarchical memory systems.

Contrast this with an algorithm that processes all points in sorted order. This
will lead to a rather random access pattern, which limits the size of problems
that can be treated to what can fit into main memory. The datasets for our
experiments in Section 6 are too small to show any effect of this sort.

In our algorithm, we must mark the visited points. This is the only place
where the original dataset is modified. However, even this can be avoided if
the visited vertices on all monotone paths are still a small enough subset. Then
we can keep a copy of the visited vertices in memory, storing them in a hash
table, for example. Thus, all access to the original data is read-only.

If a deterministic rule for walking along monotone paths is chosen (see below),
one can save more space by storing only every, say, 10th vertex of the monotone
paths. This comes at a small expense in running time: a later path will continue
for at most 10 extra steps after reaching a vertex that has already been visited.
This is the same idea as described for the seed set method in Section 4.1.0.11.

7.2 Extensions and Future Work

7.2.0.14 Betti Numbers. In three dimensions, each edge of the contour
topology tree can be augmented with information about the topology of the
corresponding contour in the form of its Betti numbers (β0, β1, β2): β0 is always
1; β1 gives the number of independent tunnels, and β2 is 0 or 1, depending on
whether the contour is a surface with boundary or a surface without bound-
ary. Pascucci and Cole-McLaughlin [32] gave an algorithm for this task which,
however, requires the assignment of all vertices to edges of the contour topol-
ogy tree and thus relies on the O(n log n)-time sweep algorithm (N = O(n)
since they consider structured meshes) for computing the contour topology
tree.

We are currently exploring whether we can compute topological information
about the contours, like the Betti numbers, the genus, or the number of holes,
within our framework, using only local information at the critical vertices. It
would be interesting to compute this information about the upper and lower
level sets as well.
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7.2.0.15 Higher Dimensions. It should be possible to extend the char-
acterization of critical points to 4-dimensional domains: a regular vertex ought
to be a vertex v such that the level set through v dissects the link of v, which
is a 3-dimensional sphere, into two 3-dimensional “half-spheres” (topological
balls) meeting at a 2-dimensional sphere. It is easy to recognize when a 2-
dimensional polyhedral manifold embedded in 3-space is a 2-sphere. By the
three-dimensional Schönflies Theorem (see [1]), it follows that the two compo-
nents into which the manifold cuts the link of v are homeomorphic to 3-balls.
Thus, the proposed regularity condition should be easy to check.

We are not able to see any classification of regular and critical points in di-
mensions higher than 4. Intuition does not carry that far, and many properties
which are true in low dimensions fail in higher dimensions. It is conceivable
that such questions might be NP-hard or even undecidable.

7.2.0.16 Different Strategies for Monotone Paths. Our description
of the monotone path algorithm leaves some freedom in the selection of the
next outgoing edge in a monotone walk. There is a trade-off between several
criteria. Our current implementation uses a steepest-descent-type selection
rule: It always selects the vertex with highest or lowest value in the direction
of the walk. Such a rule might lead to paths that achieve a big height difference
and reach the bottom quickly, and to small seed sets. On the other hand, it
may lead to a path that runs for a long time straight “in parallel” to an existing
older path, where a movement to the side would lead to quick termination.

Other heuristics, like the first edge in cyclic order (starting at some chosen
starting edge), some combination of left-most and right-most (in the plane),
or completely random selection might perform better in practice. Of course,
all of these may depend on the characteristic of the data, and are open to
experimental evaluation.
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A Characterization of Critical Vertices

In this section we prove Theorems 1 and 2. It seems that such a basic state-
ment should be well-known, but we could not find in the literature an explicit
statement with a satisfactory proof.

Morse Theory for piecewise linear functions has been treated in Brehm and
Kühnel [6, Section 2]; see also Kühnel [23, Chapter 7] for a more detailed
account. Critical points are defined and the topology changes at these points
are analyzed at the level of homology. For our case of two and three dimensions,
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this implies that regular points, where the homology is trivial, do not incur
a topology change when the level set passes them, and there is a piecewise
linear homeomorphism between different level sets [18]. This leads to the easy
characterization of critical points in Theorem 1.

Our proof given below may still have merits since it constructs the isotopy
quite explicitly. This might even be interesting for applications, for example
when an isosurface is labeled by some characteristic pattern, which should be
preserved as the surface is morphed across a non-critical point.

Apparently, Theorem 1 is so obvious that it is often taken for granted and not
even stated. The fundamental work of Banchoff [4], who introduced Morse the-
ory for piecewise linear functions, does not even define critical points (although
it contains a Critical Point Theorem). Banchoff’s more popular account [5] of
the two-dimensional case defines critical points by the criterion in Theorem 3,
but the connection to topology is not made.

Interestingly, in Morse theory for continuous functions [24,29], the criterion for
the definition of a regular point v is just a local version of the conclusion of our
Theorem 2: the existence of an isotopy between level sets in the neighborhood
of v, i. e., some height-preserving homeomorphism between some neighborhood
of v and the Cartesian product of a manifold with an interval of height values
(such as the “cylinder” in Figure A.5).

A recent paper by Cox et al. [13] contains the statement of Theorem 1 for the
interior vertices of the domain: the characterization of regular vertices by the
condition C+ = C− = 1. The proof proceeds at a very high level and is not very
detailed. The paper also claims (and proves) that the same characterization
works in higher dimensions. This is not true. The standard smooth counter-
example is the function x2 + y2 − u2 − v2 of four variables which has a critical
point of Morse index 2 at the origin. A piecewise linear version of this example
is given by the 4-dimensional cross-polytope formed as the convex hull of the
eight points (±1, 0, 0, 0), (0,±1, 0, 0), (0, 0,±1, 0), (0, 0, 0,±1); see [22]. We
add the origin as a vertex and triangulate the polytope by connecting the
origin to each of the 16 facets, giving rise to one simplex in each orthant. The
piecewise linear function defined by the values f(0, 0, 0, 0) = 0, f(±1, 0, 0, 0) =
f(0,±1, 0, 0) = 1, f(0, 0,±1, 0) = f(0, 0, 0,±1) = −1 has C+ = C− = 1 at
the origin, although the topology of M≤h changes at h = 0. (In this example,
interestingly, the level sets M=+ε and M=−ε are homeomorphic for all ε, by
symmetry. This homeomorphism does not extend to an isotopy across h =
0, and it can be destroyed by appropriately extending M around the cross-
polytope.) To achieve general position, the equal values f(v) = 1 and f(v) =
−1 at the vertices would have to be slightly perturbed, but this does not affect
the situation at the origin.
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A.0.0.1 Proof of Theorem 2. Let us first assume that no vertex has
a value in the range [a, b]. We can construct the isotopy separately in each
tetrahedron T of M through which the level set M=h passes. Let T+ be the
convex hull of the vertices of T with high values (higher than b), and let T− be
the convex hull of the vertices with low values. In three dimensions, there are
two possibilities: either one of these sets is a point and the other is a triangle
(Figure A.1a) and the level sets are triangles, or we have two line segments
and the level sets are quadrilaterals inside T (Figure A.1b). Every point of T
lies on a unique line between a point in T+ and a point in T−. (This is true
in any dimension.) This defines a canonical mapping between different level
sets that pass between T+ and T−. For different tetrahedra which share a face,
the mapping coincides on the common face and defines an isotopy between all
level sets in the range [a, b].

(a) (b) (c)

T+

T−

Fig. A.1. (a) The canonical mapping between different level sets by projection
from A, the unique vertex of T+. (b) The non-linear canonical mapping when
|T+| = |T−| = 2. (c) Each quadrilateral is decomposed into two triangles, and
the mapping is defined separately for each triangle.

Note however, that this mapping is in general not linear when T+ and T−
are line segments, as in the case of Figure A.1b. To make it linear, we can
arbitrarily select a diagonal which triangulates the quadrilateral and define the
mapping by linear interpolation, see Figure A.1c. The mapping is unchanged
at the boundary of the tetrahedron, and thus it is still smooth across different
tetrahedra.

Let us now consider the case that only a single vertex v has a value in the range
[a, b]. A described above, we can construct the isotopy inside all tetrahedra
which do not contain this vertex. To define the isotopy inside the tetrahedra
which contain the vertex v, we have to look at the structure of its neighbor-
hood. The star S of v consists of all cells which contain v. This is illustrated
for a two-dimensional manifold in Figure A.2. Alternatively, this figure can be
interpreted as a cross-section through a three-dimensional neighborhood of v.

Let v be an interior point of the three-dimensional manifold M . The link L
of v can be obtained by intersecting a small sphere centered at v with M . It
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M=f(v)

M=a

M=b

v

N+

N−

Fig. A.2. The star S and the neighborhood of a vertex v in two dimensions, and a
few level sets above and below v.

has the structure of a triangulated 2-sphere. Its vertices, edges, and triangles
come from the tetrahedra, triangles, and edges of M which are incident to M .
The neighborhood N(v) is the underlying graph of L.

Figure A.3a shows an example of a neighborhood as a plane graph. Let us look
at the one-dimensional manifold X in which the level set M=f(v) intersects the
link. (In Figure A.2, X is represented by the two dots on the level set through
v.) Every triangle of L which contains both a vertex of N+(v) and a vertex
from N−(v) contributes an edge to X, and every edge of L which connects
N+(v) with N−(v) contributes a vertex to X, see Figure A.3b. It follows that
X consists of disjoint cycles. These cycles separate N+(v) from N−(v).

Now, if v is a regular point, then N+(v) and N−(v) each form a single connected
component, and hence X is a single cycle. X cuts the triangles between N+(v)
and N−(v) into triangles and quadrilaterals.

For h = f(v) the level set M=h inside S has the structure shown in Figure A.4e:
A single cycle X connected to the central vertex v like a wheel. At the upper
end the level set M=b inside S has the structure shown in Figure A.4a: It con-
sists of the subgraph of N(v) generated by N+, and the triangles and quadri-
laterals at the interface between N+ and the boundary cycle. This boundary
cycle has the same number of sides as X. As h varies from b to f(v) the graph
generated by N+ shrinks gradually down to a point. All triangles and edges
in N+ shrink proportionally in size. The triangles and quadrilaterals at the
boundary and the edges of the boundary change their size and shape.

We have to interpolate between the initial and the final situation through all
intermediate situations. One option would be to proceed through a number of
steps and construct the isotopy accordingly. For example, one can successively
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(a) (b)

Fig. A.3. (a) The link and the neighborhood graph of v. Higher and lower vertices
are marked with + and −. N+ and N− have only one component each, and the
dotted lines run between these two components. Although the graph is drawn with
straight lines, it is intended to represent a decomposition of the sphere about v into
spherical triangles. (b) The isoline X.

collapse N+ to a point. Or one can use a sequence of elementary subdivision
operations (by inserting a new vertex into a triangle) and their inverse weld-
ing operations. (This process of transforming a triangulated version of the
structure shown in Figure A.4a into the wheel of Figure A.4e is called star-
ring [18, Theorem II.11].)

In contrast, we will use a “one-shot” approach to construct the isotopy. We
start with the situation of Figure A.4a. We triangulate the quadrilateral faces
(arbitrarily). Now we find a plane straight-line embedding this graph in which
the outer face is a regular polygon P , as in Figure A.4b. By the theorem of
Tutte [40], such a straight-line drawing exists.

The following construction is essentially the Alexander trick, which has been
used to extend a piecewise isotopy from the boundary of two manifolds to their
interior. We create the prism Z = P × [a, b], see Figure A.5. On the top face
P ×{b} we embed the triangulation of Figure A.4b that we have constructed.
On the lower face P ×{a} we embed an analogous triangulation for M=a. The
sides are formed by vertical quadrilaterals. Now we partition Z by connecting
each face of the boundary with the central vertex in P ×{f(v)}, which is going
to represent the vertex v. The typical intersection of Z at height h (f(v) <
h < b) looks as in Figure A.4c: A shrunk copy of P connected to the outer
polygon in the original size of P by a ring of quadrilaterals. We triangulate
these quadrilaterals (arbitrarily) and obtain the triangulation in Figure A.4d:
We have the piecewise linear mapping g1 : M=b → P defined through the
compatible triangulations of M=b and P (Figure A.4b). It is straightforward
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(a) (b)

(e)(c) (d)

Fig. A.4. (a) The structure of the level set M=b in the cells incident to v, drawn
as a plane graph. (b) The same graph, triangulated, is the top face of Z. (c) The
same polygon with a shrunk copy of N+. (d) The same graph, triangulated, is a
horizontal section of Z at an intermediate level. (e) Horizontal section of Z at f(v),
having the same structure as the level set M=f(v) in the cells incident to v.

M=f(v)

M=b

M=a

Fig. A.5. The prism Z.

to extend this to a mapping g2 : M=b × [a, b] → Z by g2(x, h) := (g1(x), h).
To get the desired isotopy we have to provide a mapping g3 from Z to M
respecting the heights, i.e., f(g3(y, h)) = h.

Figure A.6 shows typical cases of the evolution of M=h inside a single tetra-
hedron T = vABC as h varies from b to f(v). The triangle ABC belongs to
boundary of the star of v, and the mapping has to coincide with the mapping
given for the tetrahedra which do not contain v. The points on ABC must
be mapped to a quadrilateral side of Z. We concentrate on the upper part
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v

v

M=b

M=b

M=h

M=h

u

w

(a) (b)

u
w

w′

u′
u′

w′

A

B

C

M=a

B C

A

Fig. A.6. (a) The decomposition of a cut through a tetrahedron into four triangles
when two vertices are higher than v. (b) The decomposition of a cut through a
tetrahedron into three triangles when one vertex is higher than v.

h ≥ f(v).

In the case of Figure A.6a, when T has two vertices A and B which are higher
than v and one vertex C below v, the intersections with M=h are quadrilaterals.
The two edges AC and BC, which cross M=f(v), intersect M=b in two points
u, w. They represent boundary vertices of Z on the top face. In each level
set M=h, we define points u′ and w′ on the lines vu and vw, and we use the
segment u′w′ to partition the quadrilateral M=h ∩T into two quadrilaterals: a
trapezoid and another quadrilateral which is a scaled copy of the quadrilateral
in M=b. These two quadrilaterals can be mapped to the corresponding pieces
of P ×{h} ⊂ Z (Figure A.4d) after triangulating them accordingly, as shown
in Figure A.6a.

In the case of Figure A.6b, when T has one vertex higher than v and two
vertices below v, the intersections with M=h are triangles. Similarly as above,
we cut each triangle into a triangle and a trapezoid, and after triangulating
the trapezoid, we can map everything to P × {h} ⊂ Z.

The easy case when T has three vertices higher than v is not shown. In this
case, the intersections with M=h are triangles which can be trivially mapped
to the corresponding triangles of N+(v).
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It is now easy to see that the mapping which has been defined is piecewise
linear for each height h ≥ f(v), and it interpolates smoothly between M=b

and M=f(v). The lower half, from M=f(v) to M=a can be treated similarly.

The above arguments can be adapted to the case when v lies at the boundary
of M without difficulty.

This concludes the treatment of the case when [a, b] contains a single vertex v.
If several vertices have a value in this interval, we partition it into subintervals
containing only a single vertex (this is possible by our assumption that all
values f(v) are distinct), and we connect the resulting isotopies. In fact, the
argument extends to the case of vertices with equal values as long as these
vertices are not adjacent. This concludes the proof of Theorem 2. 2

As mentioned above, the isotopy g(x, h) is piecewise linear only as a function
of x. It would be interesting to find a construction in which the “orbit” g(x, h)
of every point x ∈ M=a is also piecewise linear as a function of h.

1.0.0.2 Proof of Theorem 1. One direction of Theorem 1 is obtained
as an easy corollary of Theorem 2: If v is not one of the critical points listed,
then all level sets immediately above and below v are homeomorphic. The
other direction is easy. 2
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