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Sequences with subword complexity 2n

G�unter Rote

Abstract

We construct and discuss in�nite 0-1-sequences which contain 2n di�erent sub-

words of length n, for every n.

1 Introduction

For an in�nite word w = w1w2w3 : : : over some �nite alphabet, we denote by L =
fwiwi+1 : : :wj : 1 � i � j g the set of its �nite subwords (factors). Let Ln = fx 2
L : jxj = n g denote the set of subwords of length n. Then the function Pw(n) := #Ln

which gives the cardinalities of the sets Ln is called the (subword) complexity of the

sequence w. Usually, w is �xed by the context and we will write P (n) for Pw(n).
This paper considers sequences with complexity P (n) = 2n. We give more general

and more speci�c methods for constructing them.
In�nite words (sequences) over some �nite alphabet have been the study of research

since the pioneering work of Thue [1906]. Areas of application include such diverse

areas as iteration theory, ergodic theory and dynamical systems, formal languages,
probability theory, and number theory (see Allouche [1987]).

If P (n) � n for some n, then the word is ultimately periodic, and P (n) is in fact
bounded. The lowest possible complexity for an interesting in�nite word is thus P (n) =
n + 1. Sequences with complexity P (n) � n + 1 are called Sturmian sequences, and

they are well understood (cf. Morse and Hedlund [1940] or Coven and Hedlund [1973]).
There are several di�erent ways by which one can construct any Sturmian sequence.

Recently, Arnoux and Rauzy [1991] went one step further and investigated sequences
with complexity 2n + 1. They showed that, under certain conditions, such sequences

can be represented in a geometric way like Sturmian sequences: as the orbit of a point

under a simple one-to-one mapping of the unit circle into itself.
In this paper we consider an intermediate case: sequences with complexity 2n. We

show how one can in principle construct all such sequences (section 2). The tools that
we use are purely combinatorial, similar to the methods of Arnoux and Rauzy [1991].

Since P (1) = 2, the ground alphabet has two symbols, and we will assume that our
alphabet is f0; 1g.

In section 2, we give the main graph-theoretic construction. In section 3 we give

three concrete examples of sequences with di�erent properties that arise from this con-
struction, and we give alternate methods for constructing special classes of sequences of

complexity 2n. The special class of sequences which are closed under complementation

has a strong connection with the class of Sturmian sequences. This relation is explored

in section 4. The last section mentions some open questions.
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2 A construction using graphs

The main tool in this section is the set of directed graphs �n which are related to the

sets of n-letter subwords Ln. The vertices of �n are the elements of Ln, and the arcs

correspond to the elements of Ln+1: for each word axb 2 Ln+1, where a; b 2 f0; 1g and
x 2 f0; 1gn�1, the graph has an arc from ax to xb. For example, the graph �4 of the

word 011001100100110011011001: : : is shown in �gure 1.
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Figure 1: The graph �4, its line graph, and the graph �5,
for the word 01100110010011001101100110010011: : :

The line graph D(�n) of a word graph �n is de�ned as usual in graph theory: D(�n)
has a vertex for each arc of �n, and two vertices u and v of D(�n) are joined by an
arc from u to v if the endpoint of the arc u in �n coincides with the initial point of v.
Figure 1 shows an example. Naturally, the vertices of D(�n) are labeled by the words

of Ln+1, and its arcs are labeled by words of length n + 2: for an arc (u; v), the �nal

n + 1 letters of u must coincide with the �rst n + 1 letters of v, i. e., we can write
u = axb and v = cyd with xb = cy. Then we label the arc (u; v) by axbd = acyd.

In our construction of an in�nite word w with complexity P (n) = 2n we will con-
centrate on successively constructing the graphs �n, for n = 1; 2; : : :. Let us therefore

discuss the required properties of those graphs, and the relation between �n and �n+1.

The arcs of the line graph D(�n) are all possible words of length n+2 whose (n+1)-
letter subwords belong to Ln+1. Clearly, Ln+2 must be a subset of those words. In other
words, the graph �n+1 can be formed from D(�n) by removing some edges (or possibly

no edges).

Since we are interested in words with complexity 2n, we want �n to have 2n vertices

and 2n+ 2 arcs. In particular, �1 has 2 vertices and 4 arcs, i. e., we have no choice for
�1; it must be the \complete" graph with vertex set f0; 1g and arc set f00; 01; 10; 11g.
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Thus we can state the following algorithm:

Algorithm for constructing the sequence of graphs �n, for n = 1; 2; : : :

Let �1 be the graph with vertex set f0; 1g and arc set f00; 01; 10; 11g.
for n := 1 to in�nity do

Construct the line graph D(�n) of �n.

if D(�n) contains 2n + 4 arcs

then let �n+1 := D(�n).

if D(�n) contains more than 2n + 4 arcs

(�) then remove the correct number of arcs from D(�n) to obtain �n+1.

if D(�n) contains less than 2n + 4 arcs

(��) then STOP.

end for.

In the step marked (�) we actually have a choice of the arcs which we remove. We

will therefore derive further necessary properties of �n+1 and formulate a set of rules
that will guide us in step (�).

Let us consider the number of arcs of D(�n). This number decides about the course
that the algorithm takes, and in particular it decides whether the algorithm may get
stuck in step (��). D(�n) has an arc for each pair consisting of an arc of �n that

leads to a vertex v and an arc leaving this vertex v. The numbers of these arcs of �n

are called the indegree ��(v) and the outdegree �+(v), respectively. Thus D(�n) hasP
v2Ln

��(v) � �+(v) arcs. Since our alphabet has only two symbols, there are only two
possible arcs that can leave a vertex v, namely v0 and v1. Therefore, we always have
�+(v) � 2, and similarly, ��(v) � 2.

Since the n-letter subsequences of w starting at positions 1; 2; 3; : : : trace out an

in�nite path through �n which visits every vertex and every arc, the graph must have
a vertex from which every other vertex can be reached. We will even insist on the
stronger requirement that all graphs �n are strongly connected, i. e., every vertex can
be reached from every other vertex.

Rule 1: Keep �n+1 strongly connected.

The following theorem states what this rule amounts to.

Theorem 1 Let w = w1w2w3 : : : be an in�nite word. Then the following are equivalent:

(i) All graphs �n are strongly connected.

(ii) Every subword that occurs in w occurs at least twice.

(iii) Every subword that occurs in w occurs in�nitely often.

Proof. (i) implies (ii): Let x = w1w2 : : :wn be an initial subword of w. Since �n has

an arc entering x there must be a second occurrence of x in w. Thus (ii) holds for all
initial subwords. Since any subword of w is contained in an initial subword, (ii) follows

in general.

(ii) implies (iii): Let x be a subword of w. By (ii), there is a subword x0 of w in
which x occurs twice. By applying (ii) again, there is a subword x00 of w in which x0
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occurs twice. This word x00 must contain at least three occurrences of x. Similarly, a

word x000 which contains x00 twice contains at least four occurrences of x. Continuing

inductively, we conclude that x is contained in�nitely often in w.

(iii) implies (i): Consider any two subwords x and y of length n. After any occurrence

of x there must still follow another occurrence of y in w, and hence there is a path from

x to y in �n. 2

Rule 1 implies in particular that we will always have ��(v) � 1 and �+(v) � 1,

for all v. �n has P (n) = 2n =: t vertices and P (n + 1) = t + 2 arcs. The possible

topologies of strongly connected directed graphs with t vertices and t+2 arcs and with

��(v); �+(v) � 2 are listed in the middle column of �gure 2. In these pictures, each

curved arrow represents a path of one or more arcs. The cases are classi�ed according

to the set of degree pairs (��(v); �+(v)) of �n, which is listed in the leftmost column

of the �gure. The possible degree pairs are subject to the condition that the sum of

the indegrees ��(v) and the sum of the outdegrees �+(v) of the t vertices v equals the

number of arcs, which is t + 2. This leaves only the three possible degree sequences

given in the table.
The right column of �gure 2 shows the topologies of the resulting line graphs. In

these pictures, the curved arrows denote paths consisting of zero or more arcs, whereas
the short straight arrows denote single arcs. The table states also in each case the
number of arcs that have to be removed from D(�k) in order to get a graph �k+1 with
t + 4 arcs. In the bottom-most case, this number is zero, and since we do not have to
make any choice in this case, we need not care about the possible topologies.

Since the table lists all possible degree sequences, we see that case (��) cannot arise,
and the algorithm can never get stuck.

In the line graphs, some arcs are marked by little lines crossing through them. One
way of satisfying rule 1 is the following more speci�c rule:

Rule 10: Select the arcs that are to be removed from D(�n) only from
among the marked arcs in �gure 2

As can be checked from the pictures, this ensures that the graph Ln+1 is strongly
connected.

Lemma 1 If a sequence of graphs �n with vertex sets Ln is constructed according to

rule 1, then every word of Ln is contained in some word of Ln+1, and hence, in some

word of Ln0 for every n0 � n.

Proof. Every vertex x of �n has at least one arc incident to it. This arc is a vertex of
�n+1 and therefore a word of Ln+1 containing x. 2

So far, we have succeeded to construct sequences of word sets Ln with cardinality
#Ln = 2n and the property that the language L =

S
1

n=1 Ln is closed under taking

subwords. However, we must still make sure that L is the set of subwords of an in�nite
sequence. Therefore, the sequence L1; L2; : : : that we will construct must have the

following property:

Extension property: There is a subsequence Ln1 ; Ln2 ; Ln3 ; : : : (n1 < n2 <

n3 < � � �) and a sequence of words x1; x2; x3; : : : with xi 2 Lni such that xi+1
starts with xi and contains all words of Lni .
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Figure 2: The possible degree sequences and topologies of �n, and the corresponding
topologies of the line graphs D(�n) from which �n+1 is obtained.
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The following elementary lemma states that this property is necessary and su�cient

for our purposes.

Lemma 2 A set L of �nite words is the set of �nite subwords of an in�nite word

w1w2w3 : : : if and only if

(i) every word of length n in L is contained in some word of length n+ 1 in L; and

(ii) the sequence L1; L2; : : :, where Ln = fx 2 L : jxj = n g is the set of subwords of

length n, ful�lls the extension property.

Proof. Note �rst that (i) is the property stated in lemma 1. The two properties

are clearly necessary. They are also su�cient because the extension property ensures

that the in�nite word w = w1w2w3 : : : which is the limit of the sequence x1; x2; x3; : : :

contains every word of Ln1 , Ln2 , etc. Together with property (i) this implies that w

contains every word of L. 2

There are more marked arcs than we must remove; we will use this freedom of choice
for achieving the extension property.

Lemma 3 Let x and y be two di�erent vertices in Ln, and let d be the distance from

x to y. Then we can choose the correct number of arcs to be removed from the line

graph D(Ln) such that the resulting graph Ln+1 contains two vertices xa and cy, (which

correspond in Ln to an arc leaving x and an arc entering y) such that the distance from

xa to cy in Ln+1 is d� 1.

Proof. Let xa and cy be the �rst and last arc on the shortest path from x to y in Ln.
Then the line graph contains a (shortest) path from xa to cy of length d � 1.

Now we simply have to check for all possibilities in the table that for any speci�ed
shortest path in the line graph, we can always select the correct number of marked arcs

to be removed and still leave this shortest path intact. If we have to remove p arcs from
among q marked arcs, it su�ces to show that no shortest path can contain more than
q � p marked arcs.

For example, in case 1A, where two arcs are to be removed, we have to show that a
path using three of the four marked arcs cannot be a shortest path. Such a path would

have to contain the two marked arcs in the left half of the picture or the two marked
arcs in the right half of the picture. In any case, there is an arc from the starting

point of the �rst marked arc to the endpoint of the second marked arc, and this would
shortcut the path. 2

We will now use this lemma to inductively construct Lni+1 and xi+1 from Lni and xi
so that the extension property is ful�lled. We call this transition from i to i+1 a stage

of the algorithm.

Suppose we have already constructed a graph Lk with k � ni and a word u 2 Lk

which starts with xi and contains a certain number of other words of Lni as subwords.
(At the start of a stage we have k = ni and u = xi.) If u already contains all words of

Lni as subwords, we can take ni+1 = k and xi+1 = u and we have completed the stage

and can start the next one. Otherwise, select some word of Lni which is not contained

in u and �nd a word v in Lk which contains it. (Such a word v exists by lemma 1.)

Declare v to be the current target word and call u the current start word.
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Let d be the distance from u to v. By the previous lemma, Lk+1 contains a word ua

whose distance to some word cv containing v is d � 1 in D(�k). We declare ua to be

the new start word and cv to be the new target word. We can ensure that the distance

from ua to cv in �k+1 is d� 1, if we obey the following rule:

Rule 2: Do not remove any arcs that lie on a shortest path from the start

vertex to the target vertex.

We iterate this process of declaring the new start word and the new target word and

constructing Lk+1 by rules 1 and 2. After d steps, we have a graph Lk+d and a word

uw 2 Lk+d which contains v. This means that the current start word uw contains an

additional word of Lni .

In this way, we can pick up one word of Lni after the other until we have a word

containing all of them, and the stage is completed. We summarize the result of the

preceding arguments in the following lemma.

Lemma 4 By following rule 2 we can ensure that the extension property is ful�lled. 2

Together with lemma 2 this implies plainly that sequences of complexity 2n exist.

Such sequences can be constructed by following rules 1 and 2. The rules leave some
freedom of choice (except in case 3 of �gure 2), and thus there are many sequences of
complexity 2n.

Note that we need not abide by rule 2 all the time. In fact, we can remove arbitrary
arcs subject only to rule 1 as long as we like (but not inde�nitely); there is always time

for repentantly returning to rule 2 and �nishing the stage.

3 Some particular sequences

3.1 A �rst sequence

By following rules 1 and 2 and choosing among the possibilities o�ered by these rules
according to a particular pattern I constructed a couple of sequences of complexity 2n.

One such sequence w can be described in the following way. We start with the word
consisting of the single symbol =, and repeatedly transform it by the set of substitutions

given in �gure 3a. When we apply the substitution, we apply it to all elements of a

word in parallel. Since the replacement string for the start symbol = starts with =,
the word that results from applying the substitution k + 1 times is an extension of the
word which we get after k substitution steps. This means that the sequence of words

converges to an in�nite sequence, which is shown in the upper part of �gure 3c. The

little marks above and below the sequence show how far the word extends after 0,1,2,: : :
substitutions. To the in�nite word over the four-letter alphabet f=; n; ; g we �nally
apply the letter-to-letter substitution in �gure 3b, to obtain the 0-1-sequence w, which

is shown in the lower part of �gure 3c. The graphs in �gure 1 of section 2 are the

graphs �4 and �5 of this sequence. The four symbols =, n, , and correspond to the
four arrows in case 1A of the middle column of �gure 2. The up and down movement

of the word indicates the transitions between the two vertices of the �gure.

In the theory of formal languages, a system like the one above for generating an
in�nite word is called a tag system (cf. Cobham [1972]), or when it is viewed as a method
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(a) �� ! ��

AA ! AA

! �� AA �� AA

! AA �� AA ��

(b) �� ! 0

AA ! 1

! 0

! 1

(c)

�� AA �� AA ��AA �� AA �� AA�� AA �� AA ��AA �� AA �� AA�� AA �� AA �� AA�� AA �� AA ��AA �� AA �� AA�� AA �� AA : : :

01100110010011001101100110010011001101100110011011001100100110011011001100

Figure 3: The substitutions and the in�nite word w which they generate.

of generating a sequence of �nite words, a CD0L system (cf. the book of Rozenberg and
Salomaa [1980]).

We can generate the above sequence w by another mechanism, namely as the orbit

of the mapping x 7! (x+ �) mod 2, with � = 1� 1=
p
5 � 0:5528:

wn =

�
0; if n� mod 2 2 [0; 1),
1; if n� mod 2 2 [1; 2).

(1)

This construction can be generalized by choosing a di�erent breakpoint than the
midpoint of the interval [0; 2) for selecting between the cases wn = 0 and wn = 1. For
reasons which will become apparent in section 4, we have chosen the interval [0; 2) as
the domain of our iteration mapping. In the following theorem and in the remainder of
this section we take the more natural choice [0; 1).

Theorem 2 Let c, ', and � be real numbers with 0 < ' < 1, 0 < � < min('; 1 �
'), � irrational, and n� 6� ' (mod 1), for all integers n. Then the sequence w =
w1w2w3 : : : which is de�ned below has complexity P (n) = 2n:

wn =
�
1; if (c+ n�) mod 1 2 [0; '),

0; if (c+ n�) mod 1 2 ['; 1).

Proof. Let us �rst see why the condition � < min('; 1 � ') is necessary: if � � '

it is easy to check that the subword 11 cannot occur in w, and similarly, if � � 1 � '

the subword 00 cannot occur. Thus one of the four words 00, 01, 10, 11 of length 2 is

missing and we cannot have P (2) = 4.

For the proof note that the subword wnwn+1 : : : wn+l�1 depends only on the value
xn := (c + n�) mod 1. We can view the mapping x 7! (x + �) mod 1 that maps xn to

xn+1 as a rotation of the unit circle by the angle � � 2�. The real numbers modulo 1,
which are represented by the interval [0,1), correspond then to the points on the unit

circle. The letter wn+d depends on the position of xn+d = (xn+d�) mod 1 relative to the

interval [0; ') on the unit circle. In other words, wn+d depends on the relative position
of xn with respect to the two points (0 � d�) mod 1 and ('� d�) mod 1. Thus, the 2l

points (�d�) mod 1 and (' � d�) mod 1, for d = 0; 1; : : : ; l � 1, dissect the circle into

at most 2l half-open circular intervals, and the subword wnwn+1 : : : wn+l�1 of length
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n depends on the interval into which xn falls. It follows that P (n) � 2n. To show

equality, we inductively prove the following claim:

Claim: There are exactly 2l circular intervals; and they correspond to 2l dif-

ferent subwords of length l.

The �rst part of the claim is true because the irrationality assumptions on ' and �

guarantee that the 2l boundary points of the intervals are distinct. The second part

is proved by induction on l. It is clearly true for l = 1. For the conclusion from l to

l + 1, note that the two \new" boundary points (�l�) mod 1 and (' � l�) mod 1 fall

into two di�erent subintervals of the 2l subintervals so far, because they are for example

separated by the two previous points (�(l�1)�) mod 1 and ('�(l�1)l�) mod 1. (Here

the assumption 0 < � < min('; 1�') is used: the four points in question can be rotated

to the points 0, ', �, and � + ', for which the situation is clear.) This implies that

for the 2 subintervals which are split by the new points, the corresponding subwords

of length l are extended to length l + 1 in two possible ways, whereas the remaining

2l� 2 subwords are extended in only one way. This clearly gives 2l+ 2 di�erent words
of length l + 1 for the 2l + 2 circular intervals. This concludes the proof of the claim.

Since the points xn, n = 1; 2; : : :, are dense in [0,1), every half-open circular subinter-
val contains such a point, and thus every word which correspond to a half-open circular
subinterval actually occurs as a subword. 2

Remark. Without the assumption 0 < � < min('; 1� '), we still have proved P (n) �
2n. In fact, there is some threshold n0 such that for all n > n0, even P (n) = 2n is true;

i. e., P (n) is de�cient only at the beginning.
The following lemma gives two further properties of the sequences which are gener-

ated as described above.

Lemma 5 Let an in�nite word of complexity 2n be constructed according to theorem 2.

(a) The parameter ' gives the approximate relative frequency of ones in long subwords

of w. More precisely, let #1(u) denote the number of ones in the �nite subword u,

and let Ln(w) denote the number of n-letter subwords of w. Then

lim
n!1

max

(
#1(u)

n
: u 2 Ln(w)

)
= lim

n!1
min

(
#1(u)

n
: u 2 Ln(w)

)
= ':

(b) The number of occurrences of the pattern 01 in a substring of length n+1 is either

bn�c or dn�e. Thus, � gives the approximate relative frequency of the pattern 01

in long subwords of w.

(c) The number of occurrences of the pattern 10 in a substring of length n+1 is either

bn�c or dn�e. Thus, � gives the approximate relative frequency of the pattern 10

in long subwords of w.

Proof. (a): This follows from the classical fact that the sequence xn = (c+ n�) mod 1

is uniformly distributed in [0; 1): #1(wlwl+1 : : : wl+n�1)=n equals the proportion of the

points xl; xl+1 : : : xl+n�1 which lie in the interval [0; '), and this proportion converges

to ' as n goes to 1.
(b): The pattern 01 occurs at position l precisely if yl := c + l� 2 [i � 1; i) and

yl+1 = c+(l+1)� 2 [i; i+1), for some integer i. In a sequence of n+1 successive values
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yl; yl+1; : : : ; yl+n this happens byl+nc � bylc = byl + n�c � bylc times. For any value of

yl, this number is equal to one of the two values stated in the lemma.

Part (c) is analogous to (b). 2

The method of theorem 2 for generating an in�nite sequence is very similar to

a method for generating Sturmian sequences. There is in fact a very close relation

between sequences with ' = 1=2 (like the sequence w of �gure 3 and (1)) and Sturmian

sequences, which will be investigated in section 4.

3.2 Another sequence

In this subsection give a di�erent sequence which cannot be generated by theorem 2. It

is again described by a substitution on a four-letter alphabet f=; n; L; g (see �gure 4a).
The start symbol is =. The �nal homomorphism to the alphabet f0; 1g, which is shown

in �gure 4b, is now not just a letter-to-letter mapping, but maps di�erent symbols to

0-1-words of di�erent lengths. (In formal language theory this is called a HD0L system.)

The resulting words are shown in �gure 4c. In this sequence, the only case among the
rows in �gure 2 that arises is case 2D, apart from the trivial case 3.

(a) �� ! ��

AA ! AA��

! AA�� ��AA

! AA�� ��

(b) �� ! 0

AA ! 1

! 10110

! 101

(c)

�� AA�� ��AA�� �� AA�� ��AA�� AA�� �� AA�� ��AA�� AA�� ��AA�� : : :

0p101p1p0p10110p0p1p0p10110p0p101p1p0p10110p0p1p0p101p1p0p10110p0p101p1p0p10110p0p1p0p101p1p0p10110p0p1p0p10110p

Figure 4: Another set of substitutions generating an in�nite word with complexity 2n.

The dots in the last line are for orientation only; they separate the words that correspond

to single symbols of the �rst line.

By studying the eigenvalues of the 4�4-matrix which speci�es the number of symbols

of each type in the replacement string for each symbol in �gure 4a one can compute

the limiting relative frequency ' of ones and the limiting relative frequency � of the
subword 01. The exact expression of these numbers by radicals is unwieldy and therefore

not given; their approximate values are ' � 0:5346 and � � 0:3737. By lemma 5, if
our sequence is constructed according to theorem 2, it must have these values of ' and

�. It is easily checked that such a sequence contains the subword 0100, which is not

contained in the sequence of �gure 4. On the other hand, the latter sequence contains
1100, which is contained in no sequence generated by theorem 2 with the given values

of ' and �.
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3.3 A third sequence

All sequences considered so far have the property that the distance between any two

adjacent occurrences of a given �nite word is bounded. I conclude this section with a

sequence of complexity 2n for which this is not true. Figure 5 shows the substitution

and the resulting sequence. This substitution is particularly simple and works directly

with the �nal alphabet f0; 1g. The start symbol is 0. Clearly, the sequence contains

arbitrarily long blocks of ones, and thus there is no bound n0 such that, for example,

the subword 00 is contained in every subword of length n0.

0 ! 001

1 ! 111

00p1001p111001001111p111111111001001111001001111111111111p1111111111111111: : :

Figure 5: Another substitution generating an in�nite word with complexity 2n.

4 A relation with Sturmian sequences

According to Morse and Hedlund [1940], an in�nite 0-1-sequence is called Sturmian, if
the lengths of any two subwords which start and end with zero and contain the same
number of zeros di�ers by at most one. Equivalently, the number of ones in any two
subwords of the same length di�er by at most one (see also Coven and Hedlund [1973],

section 3).
We recall a few basic facts about Sturmian sequences from the papers cited above.

Note that we deal only with one-way in�nite sequences (rays), whereas the word \se-
quences" in the cited papers includes also doubly-in�nite sequences (trajectories, series)
and �nite sequences (blocks).

A Sturmian sequence is either periodic from some point on, in which case the com-
plexity is bounded, or it has complexity P (n) = n+ 1. Any sequences with complexity

P (n) = n+ 1 is an aperiodic Sturmian sequence.

Such an aperiodic Sturmian sequence � = �1�2�3 : : : can be generated in the follow-
ing way. For given real numbers c and � between 0 and 1 with � irrational, we either

de�ne �n for n = 1; 2; 3; : : : as

�n :=

�
1; if (c+ n�) mod 1 2 [0; �),
0; if (c+ n�) mod 1 2 [�; 1).

(2)

or as

�n :=

�
1; if (c� n�) mod 1 2 [0; �),
0; if (c� n�) mod 1 2 [�; 1).

(20)

Lemma 6 An in�nite sequence has complexity P (n) = n + 1 if and only if it can be

constructed by (2) or by (20) with some irrational �. 2
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These aperiodic sequences are called irrational Sturmian sequences. In such a se-

quence, the number of zeros in a subword of length n is either bn�c or dn�e. It follows
that the proportion of zeros in subwords of increasing length converges to �. Similarly,

the number of ones divided by the number of zeros tends to a limit � = �=(1� �) which

is called the frequency of the sequence.

By setting c = � = 1� 1=
p
5 and using (2) we get a Sturmian sequence whose close

relation to the sequence w which was de�ned by (1) in the section 3.1 is obvious:

�n :=

�
1; if (n+ 1)� mod 1 2 [0; �),

0; if (n+ 1)� mod 1 2 [�; 1).

In fact, we have

�n =

�
1; if wn+1 6= wn,

0; if wn+1 = wn.

In other words, �n = (wn+1�wn) mod 2 is a kind of di�erence sequence or derivative of

the sequence w. On the other hand, wn = (�1+�2+ � � �+�n�1) mod 2 can be obtained
as the partial sums sequence of the sequence �.

The sequence w has a strong symmetry property with respect to complementation
of its symbols (interchanging zeros and ones). For any �nite subword of w, the comple-
mented word also occurs in w. This can be easily seen from the de�nition in �gure 3a{b,

because the rules are completely symmetric with respect to exchanging = with n, with
, and 0 with 1. We call a 0-1-sequence with this property complementation-symmetric.
We will show that any sequence with complexity 2n that ful�lls this symmetry condi-
tion is obtainable from a Sturmian sequence in the way described above, namely as its
partial sums sequence.

Theorem 3 An in�nite 0-1-sequence w = w1w2w3 : : : is a complementation-symmetric

sequence with complexity P (n) = 2n if and only if its di�erence sequence � = �1�2�3 : : :,

which is de�ned by �n = (wn+1 � wn) mod 2, is an irrational Sturmian sequence.

Proof. \Only if": Consider the set Ln+1 of subwords of w of length n + 1. Every
subword x of � of length n can be obtained as the \di�erence word" of some word
y 2 Ln+1. Ln+1 contains Pw(n + 1) = 2n + 2 di�erent words, but two words y 2 Ln+1

which are complements of each other yield the same di�erence word x. This gives

P�(n) = Pw(n+ 1)=2 = n+ 1 di�erent words x of length n.

\If": For an irrational Sturmian sequence � with complexity n + 1, we have to
show that its partial sums sequence wn, which is de�ned by wn = (w1 + �1 + �2 +
� � � + �n�1) mod 2, where w1 can be arbitrarily set to 0 or 1, has complexity 2n and

is complementation-symmetric. Each subword x of � of length n gives rise to one of

two complementary subwords y of w of length n+ 1, depending on the position where
it occurs: for x = �l�l+1�l+2 : : : �l+n�1, the word y = wlwl+1wl+2 : : : wl+n is one of the

two words whose di�erence word is x, depending on wl. If we show that both of these
words occur in Ln+1, for a given x, we have at once proved that w is complementation-

symmetric and that is has the correct complexity: each of the P�(n) = n + 1 words x

of length n gives 2 words y of length n+ 1, and thus Pw(n+ 1) = 2(n + 1).
To �nish the proof of theorem 3, we will need a de�nition and an intermediate

theorem.
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De�nition. Suppose that a subword x occurs in two di�erent positions in an in�nite

word w, i. e., the word w can be written in the form w = ux : : : = uvx : : :, for some

words u and v. Then we call v the o�set between these two occurrences of x.

In other words, the o�set is the subword between the \starting points" of the two

occurrences. Note that the o�set includes the �rst occurrence of x (or at least part of it

if the two occurrences of x overlap).

Theorem 4 Every subword x of an irrational Sturmian sequence has two occurrences

with an o�set containing an odd number of ones.

Note that this is what is needed for the proof of theorem 3, because the two occur-

rences x give rise to both words y whose di�erence word is x.

Note also that the above de�nition of the o�set is somewhat arbitrary because

it depends on some \reference point" of x. (In our case this is the starting point.)

However, it is easy to see that the parity of the number of ones does not change if we

choose a di�erent reference point in the de�nition of the o�set, as long as the reference
point lies inside x or at the boundary of x.
Proof. In w, each zero is followed either by b�c ones or by d�e ones. If the pattern
x consists of at most b�c ones and no zeros, the theorem follows directly: we �nd in

a block of d�e ones two occurrences of x whose o�set is a single 1, and the theorem is
proved.

Otherwise, we use a transformation which reduces w to another in�nite sequence w0

and the pattern x to a shorter pattern x0. (This is essentially the same as the process
called derivation in Morse and Hedlund [1940] and transformation (B) in Flor [1962].)

This reduction has the property that every occurrence of x0 in w0 corresponds to some
occurrence of x in w.

We take the sequence w and cut it before each 0, thus decomposing it into blocks
which consist of an initial zero followed by ones. A possible initial block of ones is
discarded.

There are two types of blocks, with b�c ones and with d�e ones, respectively. Now
we replace each block that has an even number of ones by a 0 and each block with
an odd number of ones by a 1, and we call the resulting sequence w0 the reduced

sequence. According to Morse and Hedlund [1940, section 8] the reduced sequence is
again irrational Sturmian, with frequency �0 = (��b�c)=(1� (��b�c)) if b�c is even
and �0 = (1� (�� b�c))=(� � b�c) if b�c is odd.

We also have to reduce the pattern x. Before replacing blocks that start with zero

by single letters as above, we apply some \cosmetic" changes to x that do not a�ect
the occurrences of x in w in an essential way. If x starts with d�e ones, we can prepend

a zero to x: since any sequence of d�e ones in w is preceded by a zero, this does not

change the occurrences of x and is therefore permitted. (An initial occurrence of x as

the starting word of w might be lost.)

Now we are sure that x contains at least a zero. If x contains ones before the
�rst zero, there can be at most b�c of them, and we omit them. Again, this does not

introduce additional occurrences of x in w. (Remember that, before forming w0, we
have deleted initial ones from w; hence there will be no additional occurrence of the

shortened x close to the beginning of w.)

If the last zero of x is followed by fewer than d�e ones, we discard this zero and
the following ones. (It is possible that x becomes the empty word.) Now we apply
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the reduction procedure to x, as described above for w, yielding x0. Every occurrence

of x0 in w0 corresponds uniquely to an occurrence of x in w. (This is true even if x0

is the empty word; the empty word occurs at every position of w0.) Furthermore, the

o�set between two occurrences of x0 in w0 contains an odd number of ones if and only

if this holds for the o�set between the corresponding occurrences of x in w. Thus it is

su�cient to prove the theorem for x0 and w0 in place of x and w.

In each reduction step, the pattern x will be shortened: if x contains ones, the ones

will either be deleted or they will be merged with a preceding zero into a single letter;

and if x consists only of zeros, the last zero will be canceled. It follows that the sequence

of reductions eventually bottoms out in a pattern with at most b�c ones for which the

direct proof works. (This case includes the empty pattern.) 2

With this proof the proof of theorem 3 is also complete.

Note that the proof even proves the existence of two adjacent occurrences of x

with an o�set containing an odd number of ones (i. e., two occurrences with no other

occurrences in between). Since there is nothing special about the symbol 1, we also

know that there are adjacent occurrences of x with an o�set containing an odd number

of zeros. It is an easy matter to prove that every subword x has two (not necessarily
adjacent) occurrences with an o�set containing an even number of ones (or an even
number of zeros).

The technique of the proof of theorem 3 has also been used by Allouche [1992] to
relate the complexity of generalized Rudin{Shapiro sequences in the sense of Mend�es
France and Tenenbaum [1981] to the complexity of paperfolding sequences. (For a

survey on various aspects of paperfolding sequences see for example Dekking, Mend�es
France, and van der Poorten [1982].) A generalized Rudin{Shapiro sequencew is de�ned
as the partial sums sequence of a paperfolding sequence u, and the property of theorem 4
holds for every paperfolding sequence, which yields Pw(n) = 2Pu(n� 1).

Corollary An in�nite 0-1-sequence w = w1w2w3 : : : is a complementation-symmetric

sequence with complexity P (n) = 2n if and only if it can be generated according to

theorem 2 with ' = 1=2.

Proof. It is easy to see that the sequences generated by theorem 2 with ' = 1=2 are

complementation-symmetric. The other direction follows with the help of lemma 6. 2

Note that the sequences generated by theorem 2 with ' = 1=2 were essentially

already considered by Flor [1962], who investigated sequences of �1's that can be
written as

sgn sin 2�(c+ n�):

Apart from the possible occurrence of zeros in these sequences, they coincide with the
complementation-symmetric sequences considered in this section.

5 Future work

We have presented a general method and a couple of special methods for constructing

sequences of complexity 2n, and we have given several examples with di�erent proper-
ties. However, the totality of these sequences is far from being well understood.

By a more careful analysis it should be possible to give a scheme for generating all

words of complexity 2n using the expressive power of L-systems (see Rozenberg and
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Salomaa [1980]), as in �gures 3, 4, and 5. For Sturmian sequences such a scheme is

known, see Rauzy [1985] or Arnoux and Rauzy [1991]. I will investigate this question

in a future paper.

It seems less di�cult to extend the methods of section 2 to complexity functions like

P (n) = 2n+ k, for a �xed positive k, or to relax the condition of strong connectedness

(rule 1), cf. theorem 1. It would only be necessary to include in �gure 2 cases with

��(v) = 3, ��(v) = 4, and �+(v) = 3. It should also be no problem to include doubly

in�nite sequences.
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