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Abstract. A face in a curve arrangement is called popular if it is bounded
by the same curve multiple times. Motivated by the automatic genera-
tion of curved nonogram puzzles, we investigate possibilities to elimi-
nate the popular faces in an arrangement by inserting a single additional
curve. This turns out to be NP-hard; however, it becomes tractable when
the number of popular faces is small: We present a probabilistic FPT-
approach in the number of popular faces.

Keywords: Puzzle generation · Curve arrangements · Fixed-parameter
tractable (FPT).

1 Introduction

Let A be a set of curves which lie inside the area bounded by a closed curve,
called the frame. All curves in A are either closed, or open with endpoints on
the frame. We refer to A as a curve arrangement, see Figure 1a. We consider
only simple arrangements, where no three curves meet in a point and there are
only finitely many total intersections, which are all crossings (no tangencies).

The arrangement A can be seen as an embedded multigraph whose vertices
are crossings of curves and whose edges are curve segments. A subdivides the

⋆ Authors are sorted by seniority.

(a) (b) (c) (d)

Fig. 1. (a) A curve arrangement in a rectangular frame. (b) The top right face is
incident to two disconnected segments of the red curve, making it popular. (c) All
popular faces are highlighted. (d) After inserting an additional curve, no more popular
faces remain.
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Fig. 2. Two nonogram puzzles in solved state. (a) A classic nonogram. (b) A curved
nonogram.

region bounded by the frame into faces. A face is popular when it is incident to
multiple curve segments belonging to the same curve in A (see Figures 1b–c). We
study the Nonogram 1-Resolution (N1R) problem: can one additional curve
ℓ be inserted into A such that no faces of A ∪ {ℓ} are popular (see Figure 1d)?

Nonograms. Our question is motivated by the problem of generating curved
nonograms. Nonograms, also known as Japanese puzzles, paint-by-numbers, or
griddlers, are a popular puzzle type where one is given an empty grid and a set
of clues on which grid cells need to be colored. A clue consists of a sequence of
numbers specifying the numbers of consecutive filled cells in a row or column.
A solved nonogram typically results in a picture (see Figure 2a). There is quite
some work in the literature on the difficulty of solving nonograms [1,3,6].

Van de Kerkhof et al. [8] introduced curved nonograms, in which the puzzle
is no longer played on a grid but on an arrangement of curves (see Figure 2b).
In curved nonograms, clues specify numbers of filled faces of the arrangement in
the sequence of faces incident to a common curve on one side. Van de Kerkhof et
al. focus on heuristics to automatically generate such puzzles from a desired
solution picture by extending curve segments to a complete curve arrangement.

Nonogram complexity. Van de Kerkhof et al. observed that curved nono-
grams come in different levels of complexity — not in terms of how hard it is to
solve a puzzle, but how hard it is to understand the rules (see Figure 3). They
state that it would be of interest to generate puzzles of a specific complexity
level; their generators can currently do this only by trial and error.
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Fig. 3. Three types of curved nonograms of increasing complexity [8], shown with
solutions. (a) Basic puzzles have no popular faces. (b) Advanced puzzles may have
popular faces, but no self-intersections. (c) Expert puzzles have self-intersecting curves.
We can observe closed curves (without clues) in (a) and (c).

– Basic nonograms are puzzles in which each clue corresponds to a sequence of
distinct faces. The analogy with clues in classic nonograms is straightforward.

– Advanced nonograms may have clues that correspond to a sequence of faces
in which some faces may appear multiple times because the face is incident
to the same curve (on the same side) multiple times. When such a face is
filled, it is also counted multiple times; in particular, it is no longer true that
the sum of the numbers in a clue is equal to the total number of filled faces
incident to the curve. This makes the rules harder to understand.

– Expert nonograms may have clues in which a single face is incident to the
same curve on both sides. They are even more confusing than advanced nono-
grams. Expert nonograms are only suitable for experienced puzzle freaks.

It is easy to see that arrangements with self-intersecting curves correspond
exactly to expert puzzles. The difference between basic and advanced puzzles is
more subtle; it is exactly the presence of popular faces in the arrangement.

One possibility to generate nonograms of a specific complexity would be to
take an existing generator and modify the output. Recently, Brunck et al. [5]
have investigated how popular faces in a nonogram might be removed by recon-
figuring and/or reconnecting parts of curves at small local areas, which they call
switches (e.g. around curve crossings), and they have proved that this problem
is NP-hard. As an alternative, one may try to get rid of the popular faces by
adding extra curves that cut the popular faces into smaller pieces. In this paper,
we explore what we can do by inserting a single new curve into the arrange-
ment. Clearly, inserting curves will not remove self-intersections, so we focus on
changing advanced puzzles into basic puzzles; i.e., removing all popular faces.

1.1 Results.

After discussing in Section 2 how a singular face is resolved, we show in Sec-
tion 3 that deciding whether we can remove all popular faces from a given curve
arrangement by inserting a single curve – which we call the N1R problem – is
NP-complete. However, often the number of popular faces is small, see Figure 4.
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Fig. 4. Real puzzles (without clues) with all popular faces highlighted.

Hence, we are also interested in the problem parametrized by the number of
popular faces k. we show in Section 4 that the problem can be solved by a
randomized algorithm in FPT time.

2 Resolving one popular face by adding a single curve

As a preparation, we analyze how a single bad face F can be resolved. If F is
visited three or more times by some curve, it cannot be resolved with a single
additional curve ℓ, and we can immediately abort. Otherwise, there are popular
edges among the edges of F , which belong to a curve that visits F twice. As a
visual aid, we indicate each such pair of edges by connecting them with a red
curve (a curtain), see Figure 5a or 8b.

Observation 1 To ensure that a popular face F becomes unpopular after inser-
tion of a single curve ℓ into the arrangement, it is necessary and sufficient that
the curve ℓ has the following properties.

1. It visits the face F exactly once;
2. It does not enter or exit through a popular edge;
3. It separates each pair of popular edges. In other words, ℓ cuts all curtains.

⊓⊔

The ways how ℓ can traverse a popular face F can be modeled as a graph:
We place a vertex on every edge of F except the popular edges. We then connect
two such vertices u, v if for every curtain c, the endpoints of c alternate with the
vertices u and v around F , as shown in Figure 5b. This representation can be
condensed as shown in Figure 5c and explained in Appendix D.

In our arguments, we will often use the dual graph Ad of a curve arrange-
ment A, where every face of A is represented by a vertex and edges represent
faces which share a common boundary segment (not just a common crossing
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Fig. 5. Resolving a popular face F . (a) Curtains model popular edges. (b) Possible
ways how ℓ can pass through F . (c) A more compact representation

point). In particular, a curve ℓ traversing A and crossing a sequence of faces
F1, . . . , Fk in that order can be expressed as a path P = (F1, . . . , Fk) in Ad.

3 N1R is NP-complete

In order to prove NP-hardness, we reduce from Planar Non-intersecting Eulerian
Cycle. This reduction assumes ℓ to be a closed loop, but it can easily be adapted
to work for an open curve ℓ′ starting and ending at the frame.

3.1 Non-intersecting Eulerian cycles

An Eulerian cycle in a graph is a closed walk that contains every edge exactly
once. An Eulerian cycle in a graph embedded into the plane (a plane graph)
is non-intersecting if every pair of consecutive edges (a, b), (b, c) is adjacent in
the radial order around b. Intuitively, an Eulerian cycle is non-intersecting if it
can be drawn without repeated vertices after replacing each vertex by a small
cycle linking the incident edges in circular order (see Figures 6a and 6b). The
Eulerian cycle has to visit all of the original edges, but it does not have to cover
the small vertex cycles (see Figure 6c). The following problem was proved to be
NP-complete by Bent and Manber [2, Theorem 1].

Problem 1 (Planar Non-Intersecting Eulerian Cycle PNEC). Given a planar
graph embedded into the plane graph G, decide whether G contains a non-
intersecting Eulerian cycle.

3.2 NP-completeness reduction

We will present a polynomial-time reduction from PNEC to N1R, i.e., we will
create a curve arrangement A containing popular faces based on a planar input
graph G of PNEC, s.t. there exists a curve ℓ for which A∪ ℓ contains no popular
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Fig. 6. Vertices of the graph G (a) are replaced by cycles (b). A non-intersecting cycle
drawn on the modified graph visiting all original edges (c).

faces if and only if G contains a non-intersecting Eulerian cycle. We assume that
G is 2-edge-connected and all vertices have even degree, because otherwise, G
clearly cannot contain an Eulerian cycle. We also replace every self-loop with a
path of length two, without affecting the existence of a planar non-intersecting
Eulerian cycle.

The reduction is gadget based. We will represent every vertex v ∈ V with a
vertex gadget N (v) and every edge e = (u, v) ∈ E with an edge gadget L(e) or
L(u, v). Both gadgets are sets of curves starting and ending at the frame, and
A =

⋃
v∈V N (v) ∪

⋃
e∈E L(e).

Vertex gadgets. The vertex gadgets consist of curves in one of three basic
shapes shown in Figure 7a, which we call beakers. We place one beaker per
incident edge of v, at the position of v, all rotated, s.t. their bases (the lower
ends in Figure 7a) overlap in a specific pattern. The opening of each beaker (the
upper ends in Figure 7a) will point outwards. We use three variants of the vertex
gadget, depending on the vertex degree.

The vertex gadget for a degree-two vertex is simply made up of two overlaying
Type-I beakers (see Figure 7b). Since ℓ must cross the two curtains c1 and c2, it
must connect the two points p1, p2 by crossing the overlap of the two beakers (a
face of degree two, marked in green in Figure 7b). Since by Observation 1, ℓ can
enter any beaker only once, the routing of ℓ as shown in Figure 7c is forced and
corresponds exactly to the traversal of a planar non-intersecting Eulerian cycle
through a vertex of degree two.

The vertex gadget N (v) for a degree-four vertex v consists of four Type-I
beakers, one per incident edge, which form the intersection pattern of Figure 7d.
Since ℓ must cross the four curtains, it must enter or exit the gadget at least four
times through the thick blue edges in Figure 7e and the vertices p1, p2, p3, p4 of
the dual graph Ad. Since ℓ cannot cross itself, there are only two possibilities
how ℓ can pass through N (v): It can connect p1 with p2 and p3 with p4, as in
Figure 7f, or p1 with p4 and p2 with p3. Both possibilities can be realized by
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Fig. 7. (a) Basic beaker curve shapes. (b) Degree two gadget (2 Type-I beakers) and
(c) its forced resolution. (d) Degree four gadget (4 Type-I beakers). (e) Dual graph
of the degree 4 gadget. (f) A possible curve ℓ in light blue; some alternative routings,
which connect the same endpoints, in dashed light blue.

routings of ℓ, and they correspond precisely to the ways how a non-intersecting
Eulerian cycle can pass through the edges incident to v. Note that the exact
routing of ℓ can vary inside N (v) (indicated by the dashed lines in Figure 7).

The vertex gadget for a vertex v of degree d ≥ 6 is more complex. We
place d − 1 Type-II beakers c1, . . . , cd−1 symmetrically around the location of
v (Figure 8a). Each beaker intersects four adjacent beakers (two on each side),
with the exception that cd/2−1 and cd/2+1 (dark green curves in Figure 8a) do
not intersect. We place an additional Type-III beaker cd (the light green curve
in Figure 8a) that surrounds all bases of the Type-II beakers and protrudes
between cd−1 and c1, such that the intersection pattern of Figure 8a arises.

All popular faces and curtains in N (v) are shown in Figure 8b. The dual of
the construction is shown in Figure 8c. The curtains in the green faces force ℓ
to pass from these faces to the adjacent small faces with the blue boundaries.
This constrains ℓ to pass through a chain of faces as shown in Figure 8d. The
passages from these faces to other neighboring faces can now be excluded, and
the corresponding edges have been removed from the dual graph in Figure 8d.

The curtains in the openings of the beakers force the outer blue endpoints
of ℓ. The endpoint in beaker ci will be called pi. Now we analyze which of
these endpoints can be connected with each other. We see that in most cases, pi
can only be connected to pi−1 or pi+1 without going through another endpoint.
The exception is pd/2−1 and pd/2+1, which can be connected via the inner loop
from q1 to q2. However, this connection would cut off pd/2 from the remaining
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Fig. 8. (a) Vertex gadget N (v) for a degree-8 vertex v, (b) its curtains and (c) dual
graph. (d) Highlighted light green faces in (b) force the dark blue connections in the
dual graph and restrict it. (e) One of two symmetric possibilities for the splitting
curve ℓ. The dashed lines show different possible routings of ℓ.

points. We conclude that the visits of ℓ to N (u) must match endpoints pi that
are adjacent in the circular order. There are two matchings, which correspond
to the two possibilities how a non-intersecting Eulerian cycle can visit v. Both
possibilities can be realized by routings of ℓ; one is shown in Figure 8e, and the
other is symmetric.

We now have placed vertex gadgets for all vertices. They require ℓ to connect
to an endpoint in each opening of a beaker. With these openings, we will now
construct the edge gadgets.

Edge gadgets. Let e = (u, v) ∈ E be an edge in G. Then there are two vertex
gadgets N (u) and N (v) already placed. In particular, we placed one beaker in
the gadgets per incident edge at u or v, i.e. two per edge.

We now elongate the open ends of these beakers and route them along the
edge e according to the embedding ofG given in the input (recall thatG is a plane
graph) until they almost meet at the center point of e. We bend the ends of each
beaker outward, routing them into the two faces incident to e. Additionally, we
place two more curves on top (shown in green), forming the intersection pattern
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Fig. 9. Edge gadget L(u, v) connecting two beakers from N (u) and N (v) with two
additional curves. Open ends of all curves are collected into two bundles of parallel
curves that lead into the incident faces. The inside of the two beakers are connected
via a chain of popular faces in L(u, v) (shaded in light green). Other bundles, like the
two groups of four light blue curves in the left half, can freely cross either beaker.

of Figure 9. This results in two bundles A and B, each consisting of four parallel
curves. (The light blue curves in the left half are not part of the gadget; they
are two bundles that come from other gadgets.)

This connects a popular face in N (u) to one in N (v), forming one big popular
face in L(u, v). An arbitrary number of curves may cross the opening of a beaker.
The face is then simply divided into a chain of consecutive popular faces. In
each of these faces, except the left- and right-most faces, which contain the blue
endpoints, ℓ has to leave through two specific edges in order to cut the curtains.
This forces ℓ to pass straight through L(u, v) from N (u) to N (v) along the thin
dark-blue horizontal axis.

It remains to describe how the open ends of the curves in the bundles are
routed to the frame (since all curves other than ℓ have start and end at the
frame). This is not difficult because these bundles can cross quite freely without
creating popular faces. Each bundle consists of a unique set of curves, except
for the two bundles from one edge gadget. A bundle that originates from the
edge gadget L(e) can thus cross any bundle from a different edge gadget without
creating popular faces. It can cross a different edge gadget L(e′) by passing over
one of its beakers, as shown with the light-blue curves.

Since G does not contain self-loops, we route each bundle along a path in the
dual of G to the outer face of G, and then connect it to the frame, see Figure 10.
A popular face might only be created when a bundle crosses the other bundle
from the same edge gadget, which can be avoided by routing them in parallel.

The curves in a bundle run in parallel. Two bundles originating from an edge
gadget L(e) have different curves as their outside curves. Hence, no popular faces
are created between two bundles, and we can make the following statement.

Observation 2 All popular faces in A are contained in vertex gadgets and edge
gadgets (the faces with dashed red curtains in Figures 7b, 7d, 8b, and 9).
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bottom of the figure). A possible routing of ℓ is shown with a black curve.

The next theorem follow from the construction and the resulting correspon-
dence between resolving curves and non-crossing Eulerian cycles. The proof can
be found in Appendix A.

Theorem 1. N1R is NP-complete.

Adaption to open curves. The reduction assumes that ℓ is a closed loop. It
can be adapted to work for open curves, i.e., we can create the arrangement A,
for which there exists an open curve ℓ′ starting and ending at the frame, s.t.
A ∪ ℓ′ does not contain any popular faces, if and only if G contains a planar
non-intersecting Eulerian cycle E(G).

The reduction creates A in the same fashion as above, except that we do not
add the edge gadget for exactly one edge eo = (vo, uo) on the outer face of G.
Instead, the open curves of the openings of the beakers in N (uo) and N (vo),
which would normally form the edge gadget L(uo, vo) are simply connected to
the frame. This forces ℓ′ to start (and end) at the frame between the points at
which the beakers connect to the frame, in order to properly split the popular
face in the opening of these beakers. It is now easy to see that all other properties
still hold and N1R remains NP-complete even when ℓ′ can be an open curve.
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Fig. 11. By routing both ends of an open beaker in parallel to the frame, we force ℓ
to start (or end) at the frame between the two connection points of the beaker.

4 Randomized FPT-algorithm for N1R

In this section, we show that N1R with k popular faces can be solved by a ran-
domized algorithm in O

(
2kpoly(n)

)
time, placing N1R in the class randomized

FPT when parameterized by the number k of popular faces. We model N1R as
a problem of finding a simple cycle (i.e., a cycle without repeated vertices) in a
modified dual graph G, subject to a constraint that certain edges must be visited.

Problem 2 (Simple Cycle with Edge Set Constraints SNESC). Given an undi-
rected graph G = (V,E) and k subsets S1, S2, . . . , Sk ⊆ E of edges, find a simple
cycle, if it exists, that contains exactly one edge from each set Si.

We start with the dual graph of the given curve arrangement A. We replace
the vertex corresponding to the i-th popular face f with a set Si of edges mod-
eling the ways how an additional curve can cut all curtains of f , as described
in Section 2 and shown in Figure 5b. To be specific, we place a vertex on each
curve segment s bounding f and connect it to the vertex of the face that is
adjacent to f across s. Further we connect two such vertices on curve segments
if a curve entering f through one segment and exiting through the other would
cut all curtains of f . The latter connecting edges, which run through f , form
the set Si. There is a one-to-one correspondence between the simple cycles
containing exactly one edge of every set Si and the resolving curves for A.

We will describe a randomized algorithm for Problem 2, extending an algo-
rithm of Björklund, Husfeld, and Taslaman [4].

Theorem 2. (a) The SNESC problem on a graph with n vertices and m ≥
n edges can be solved in O

(
2kmn2 log 2m

n · |V (S1)| ·W
)
time and O(2kn+m)

space with a randomized Monte-Carlo algorithm, with probability at least

1−1/nW , for any W ≥ 1. Here, V (S1) denotes the set of vertices of the edges
in S1 (note that S1 can be chosen to be the smallest set among S1, . . . , Sk).
The model of computation is the Word-RAM with words of size Θ(k+log n).

(b) There is an alternative algorithm (described in Appendix B.3) needing only
polynomial space, namely O(kn+m), at the expense of an additional factor
k in the runtime. It uses words of size Θ(log n).



12 de Nooijer, Terziadis, Weinberger, Masárová, Mchedlidze, Löffler, Rote
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Both algorithms find the cycle with the smallest number of edges if it exists
(with high probability).

If A has n faces, the graph G has O(n) vertices and m = O(n2) edges. The
quadratic blow-up ofm results from the construction as shown in Figure 5b. The
number of edges can be reduced to O(n), as shown in Figure 5c and discussed
in Appendix D. The number k of popular faces is the same as the number k of
edge sets Si.

With the alternative algorithm with polynomial space, since k ≤ n, we get:

Corollary 1. The N1R problem with k popular faces in a curve arrangement
with n faces can be solved in expected time O(2kpoly(n)) and O(kn) space. ⊓⊔

We first give a high-level overview of the algorithm. We start by assigning
random weights to the edges from a sufficiently large finite field Fq of charac-
teristic 2. Such a field exists for every size q that is a power of 2. In a field of
characteristic 2, the law x+ x = 0 holds, and therefore terms cancel when they
occur an even number of times. The weight of a walk (with vertex and edge
repetitions allowed) is obtained by multiplying the edge weights of all visited
edges. Our goal is now to compute the sum of weights all closed walks, of given
length, that satisfy the edge set constraints. The characteristic-2 property will
ensure that the unwanted walks, those which are not simple, cancel, while a
simple closed walk makes a nonzero contribution and leads to a nonzero sum
with high property. The crucial idea is that, while these sets of closed walks can
be very complicated, we can compute the aggregated sum of their weights in
polynomial time. We have to anchor these walks at some starting vertex b, and
we choose b to be one of the vertices incident to an edge of S1.

More precisely, for each such vertex b, and for increasing lengths l = 1, 2, . . . , n,
the algorithm computes the quantity T̂b(l), which is the sum of the weights of
all closed walks that

– start and end at b,

– have their first edge in S1,

– use exactly one edge from each set Si (and use it only once),

– and consist of l edges.

We consider the edge weights as variables and regard T̂b(l) as a function
of these variables. The result is a polynomial where each term is a product of
l variables (possibly with repetition), and hence the polynomial has degree l,
unless all terms cancel and it is the zero polynomial. We apply the following
lemma, which is a straightforward adaptation of a lemma of Björklund et al. [4].

Lemma 1. a) Suppose there exists a simple cycle of length l that satisfies the
edge set constraints and that goes through an edge of S1 incident to b. Then
the polynomial T̂b(l) is homogeneous of degree l and is not identically zero.

b) If there is no such cycle of length ≤ l, the polynomial T̂b(l) is identically zero.
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The lemma is based on the fact that each term in the polynomial T̂b(l)
represents some closed walk. A term coming from a walk that visits a vertex
twice can be matched with another walk, which traverses a loop in the opposite
direction and contributes the same term. Since the field has characteristic 2,
these terms cancel. A term coming from a simple walk does not cancel. The
proof of Lemma 1 is given in Appendix B.5.

In case (a) of Lemma 1, it follows from the Schwartz-Zippel Lemma [15,
Corollary 1] (see also [14, Corollary Q1]) that, for randomly chosen weights in Fq,

T̂b(l) is nonzero with probability at least 1− degree/|Fq| = 1− l/q ≥ 1− n/q.
Thus, if we choose q > n2, we have a success probability of at least 1−1/n for

finding the shortest cycle when we evaluate the quantities T̂b(l) for increasing l
until they become nonzero. The success probability can be boosted by repeating
the experiment with new random weights.

In the unlikely case of a failure, the algorithm may err by not finding a
solution although a solution exists, or by finding a solution that is not shortest.
The last possibility is not an issue for our original problem, where we just ask
about the existence of a cycle, of arbitrary length.

In the following, we will discuss how we can compute the quantities T̂b(l),
and the runtime and space requirement for this calculation. We describe the
method for actually recovering the cycle after we have found a nonzero value in
Appendix B.4.

4.1 Computing sums of path weights by dynamic programming

We cannot compute the desired sums T̂b(l) directly, but have to do this incre-
mentally via a larger variety of quantities Tb(R, l, v) that are defined as follows:

For R ⊆ {1, 2, . . . , k} with 1 ∈ R, v ∈ V , and l ≥ 1, we define Tb(R, l, v) as
the sum of the weights of all walks that
– start at b,
– have their first edge in S1,
– end at v,
– consist of l edges,
– use exactly one edge from each set Si with i ∈ R (and use it only once),
– contain no edge from the sets Si with i /∈ R.

The walks that we consider here differ from the walks in T̂b(l) in two respects:
They end at a specified vertex v, and the set R keeps track of the sets Si that
were already visited. The quantities T̂b(l) that we are interested in arise as a
special case when we have visited the full range R = {1, . . . , k} of sets Si and
arrive at v = b:

T̂b(l) = Tb({1, . . . , k}, l, b).

We compute the values Tb(R, l, v) for increasing values l = 1, . . . , n. The
starting values for l = 1 are straightforward from the definition.

To compute Tb(R, l, v) for l ≥ 2, we collect all stored values of the form
Tb(R

′, l − 1, u) where (u, v) is an edge of G and R′ is derived from R by taking
into account the sets Si to which (u, v) belongs. We multiply these values with
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Fig. 12. Input (a,c) and resulting output (b,d) generated by the implementation; the
green curve resolves the popular faces with the smallest number of crossings.

the edge weight wuv and sum them up. If (u, v) is in some Si but i /∈ R, we don’t
use this edge. Formally, let I(u, v) := { i | (u, v) ∈ Si } be the index set of the
sets Si to which (u, v) belongs. Then

Tb(R, l, v) =
∑

(u,v)∈E
I(u,v)⊆R

wuv · Tb(R \ I(u, v), l − 1, u) (1)

4.2 Runtime and space

The finite field additions and multiplications in (1) take constant time, see Ap-
pendix B.2. Similarly, the set operation R \ I(u, v) on subsets of {1, . . . , k} and
the test I(u, v) ⊆ R can be carried out in constant time, using bit vectors. Thus,
for a fixed starting vertex b ∈ V (S1) and fixed R, going from l−1 to l by the re-
cursion (1) takes O(m) time in total, because each edge (u, v) appears in at most
one of the sums on the right-hand side. The overall runtime is O(|V (S1)|2kmn).

As mentioned after Lemma 1, the probability that the algorithm misses the
shortest simple path is at most 1/n. To amplify the probability of correctness,
we repeat the computation W times, reducing the failure probability to 1/nW .

We consider each starting vertex b separately, and do not need to store en-
tries for lengths l− 1 or shorter when proceeding from l to l+ 1; thus the space
requirement is O(2kn).

For recovering the solution, the runtime must be multiplied by O(n log 2m
n ),

see Appendix B.4.
Figure 12 shows initial results of an implementation of our algorithm on two

small test instances; see also [10].

5 Conclusion

In light of our NP-hardness and randomized FPT-algorithm, a natural next step
is a deterministic parameterized algorithm. There are O(n) local possibilities of
resolving a single popular face, however, this does not immediately lead to an
O(nk) algorithm (which would place N1R in XP), since we might need to branch
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additionally over all possible connections between these solutions through the
dual of A, which can have an unbounded size.
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A Proof of Theorem 1

Theorem 1 N1R is NP-complete.

Proof. Assume we are given a non-intersecting Eulerian cycle E(G) of G as a
permutation of the edges. We now show how to construct the curve ℓ. We choose
a random edge e = (u, v) in the permutation and start drawing ℓ at the endpoint
inside the beaker of L(u, v) originating from N (v) along the thin blue axis cross-
ing all popular faces as described above.This will end at an open endpoint inside
N (u). At this point we either connect to the left or right endpoint according
to the next edge in E(G) (which is possible, since E(G) is non-intersecting). We
make this connection either directly or via the forced inner circular part of ℓ in
N (u) if one of the two involved endpoints is in beaker cd(u)/2 (where d(u) is the
degree of u). These connections are made as described above.Now we are again
at an endpoint in a beaker. We can repeat this procedure until we cycle back to
e, at which point we will have reconnected to our starting point. Since E(G) by
definition visits every edge exactly once, before cycling back to the first edge, we
know that every popular face in the edge gadgets is split. Moreover, since E(G)
visits every vertex v exactly δ(v)/2 times and E(G) is non-intersecting, we know
that one of the two possible ways of connecting all endpoints in N (v) can be
chosen to resolve all popular faces in N (v) (and all other vertex gadgets). Since
by Observation 2 there are no other popular faces in A, A ∪ ℓ does not contain
any popular faces.

Now assume we are given a curve ℓ, s.t. A ∪ ℓ does not contain any popular
faces. The order, in which ℓ traverses all edge gadgets gives us a permutation of
all edges. Since both variants of resolving all popular faces in a vertex gadget
connect any endpoint only to an endpoint in a neighboring beaker, consecutive
edges in this permutation share an endpoint and both belong to the same face
and this permutation is a non-intersecting Eulerian cycle. We have shown that
there exists a curve ℓ, s.t., A ∪ ℓ contains no popular faces, if and only if G
contains a non-intersecting Eulerian cycle and therefore N1R is NP-hard.

It is easy to see that N1R is in NP. The input arrangement can be rep-
resented as a plane graph in which the edges are marked as belonging to the
different curves or to the frame boundary. The certificate is an extension of this
arrangement by a resolving curve ℓ. Since ℓ cannot visit a face more than once,
the certificate is of polynomial size. It can be easily verified in polynomial time
whether it is valid, in particular, whether it contains no popular faces. ⊓⊔

B Additional details of the randomized FPT-algorithm

B.1 Assumption on the word length

Our algorithm needs to store a table with Θ(2kn) entries, namely the entries
Tb(R, l, v) with fixed b and l. We assume that these fit in memory and can be
addressed in constant time. Thus, it is reasonable to assume a word length of at
least k + log n bits.
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B.2 Finite field calculations

Each evaluation of the recursion (1) involves additions and multiplications in
the finite field Fq, where q = 2s > n is a power of 2.

We will argue that it is justified to regard the time for these arithmetic
operations as constant, both in theory and in practice. The error probability can
be controlled by choosing the finite field sufficiently large, or by repeating the
algorithm with new random weights.

For implementing the algorithm in practice, arithmetic in F2s is supported by
a variety of powerful libraries. see for example [13]. The size that these libraries
conveniently offer (e.g., q = 232) will be mostly sufficient for a satisfactory success
probability.

For the theoretical analysis, we propose to choose a finite field of size q ≥ n2,
leading to a failure property less than 1/n, and to achieve further reductions of
the failure property by repeating the algorithm W times.

We will describe some elementary approach for setting up the finite field Fq

of size q ≥ n2, considering that we can tolerate a runtime and space requirement
that is linear or a small polynomial in n. Various methods for arithmetic in finite
fields F2s are surveyed in Luo, Bowers, Oprea, and Xu [9] or Plank, Greenan,
and Miller [12]. The natural way to represent elements of F2s is as a polynomial
modulo some fixed irreducible polynomial p(x) of degree s over F2. The coeffi-
cients of the polynomial form a bit string of s bits. Addition is simply an XOR
of these bit strings.

We propose to use the split table method, which is simple and implements
multiplication by a few look-ups in small precomputed tables, see [9, Section 3.3.1]
or [12, Section 6.5].

Let C = ⌈(log2 n)/2⌉, and let q = 24C . Thus, q ≥ n2, as required.
According to [16, Theorem 20.2], an irreducible polynomial p(x) of degree

d = 4C over F2 can be found in O(d4) = O(log4 n) expected time, by testing
random polynomials of degree d for irreducibility. (Shoup [16] points out that
this bound is not tight; there are also faster methods.)

Multiplication of two polynomials modulo p(x) can be carried out in the
straightforward “high-school” way in O(d2) = O(log2 n) steps, by elementwise
multiplication of the two polynomials, and reducing the product by successive
elimination of terms of degree larger than d.

We now consider the bitstring of length d as composed of r = 4 chunks of
size C. In other words, we write the polynomial q(x) as

q(x) = q3(x)x
3C + q2(x)x

2C + q1(x)x
C + q0(x),

where q3, q2, q1, q0 are polynomials of degree less than C. Addition takes O(r)
time, assuming an XOR on words of length C = O(log n) can be carried out in
constant time. Multiplication is carried out chunk-wise, using 2r − 1 = 7 multi-
plication tables. The j-th table contains the products r(x)r′(x)xjC , for all pairs
r(x), r′(x) of polynomials of degree less than C, for j = 0, 1, . . . , 2r − 2. Multi-
plication in the straightforward way takes then O(r3) time. Each multiplication
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table has 2C × 2C = O(n) entries of r = 4 words, and it can be precomputed in
O(nd2) = O(n log2 n) time by multiplying in the straightforward way.

Thus, after some initial overhead of O(n log2 n) time, which is negligible in
the context of the overall algorithm, with O(n) space, arithmetic in Fq can be
carried out in O(1) time in the Word-RAM model, where arithmetic, logic, and
addressing operations on words with Θ(log n) bits are considered as constant-
time operations.

We mention that, with another representation, the initial setup can even
be made deterministic, and its time reduced to O(n) (keeping the O(n) space
bound), see Appendix C.

B.3 Reduction to polynomial space

As described, the algorithm has an exponential factor 2k in the space require-
ment. This exponential space requirement can be eliminated at the expense of
a moderate increase in the runtime, by using an inclusion-exclusion trick that
was first used by Karp [7] for the Traveling Salesman Problem. The possibility
of applying this trick in the context of our problem was already mentioned in
Björklund et al. [4].

For a “forbidden set” F ⊆ {2, 3, . . . , k}, v ∈ V , 1 ≤ l ≤ n, and 1 ≤ j ≤ k let
Ub(F, l, j, v) be the sum of the weights of all walks that
– start at b,
– have their first edge in S1,
– end at v,
– consist of l edges,
– contain no edge from the sets Si with i ∈ F ,
– use in total j edges from the sets Si, counted with multiplicity: If an edge

belonging to p different sets Si is traversed r times, it contributes pr towards
the count j.

The clue is that we can compute these quantities for each F separately in poly-
nomial time and space, by simply removing the edges of Si for all i ∈ F from
the graph. The dynamic-programming recursion is straightforward. In contrast
to (1), we have to keep track of the number j of edges from S1 ∪ · · · ∪ Sk.

We regard each index i ∈ {2, . . . , k} as a “feature” that a walk might have (or
an “event”), namely that it avoids the edges of Si. By the inclusion-exclusion
formula, we can compute the sum of weights of paths that have none of the
features, i.e., that visit all sets Si. In this way, we get the following formula:

Lemma 2.

T̂b(l) =
∑

F⊆{2,3,...,k}

(−1)|F |Ub(F, l, k, b) (2)

Proof. The parameters l and b match on both sides. By the inclusion-exclusion
theorem, the right-hand side is the sum of all walks in which every set Si is
visited at least once. Since the parameter j is equal to k, we know that there
were only k visits to sets Si; thus, every set Si is visited exactly once. ⊓⊔
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The sign (−1)|F | is of course irrelevant over a field of characteristic 2.
To reduce the space requirement as much as possible, we organize the com-

putation as follows. First, each starting point b is considered separately. We
initialize n variables for accumulating the contributions to the quantities T̂b(l)
according to (2). Then, for each forbidden set F separately, we compute the
quantities Ub(F, l, j, v) for all j and v, incrementally increasing l = 1, 2, . . . , n.
Since we need to remember only the entries for two consecutive values l at a
time, this requires only O(nk) space. Along the way, we add the contributions
Ub(F, l, k, b) to (2).

In summary, we can calculate T̂b(1), T̂b(2), . . . in space O(nk). Compared to
the exponential-space algorithm, we need an additional factor k in the runtime,
for the k choices of the parameter j.

B.4 Recovering the solution

The algorithm, as described so far, works as an oracle that only gives a yes-no
answer (and a length l), but it does not produce the solution. To recover the
solution, we will call the oracle repeatedly with different inputs.

Suppose the algorithm was successful in the sense that some number T̂b(l)
turned out to be nonzero, after finding only zero values for all smaller values of l.
By Lemma 1, we conclude that there exists a simple cycle through b satisfying
the edge set constraints, possibly (with small probability) shorter than l.

We will find this cycle by selectively deleting parts of the edges and recom-
puting T̂b(1), T̂b(2), . . . , T̂b(l) for the reduced graph to see whether this graph
still contains a solution. In this way, we will determine the successive edges of
the cycle, and, as we shall see, we will know the cycle after at most 4n log2

4m
n

iterations.
The first edge out of b is an edge of S1, and thus we start by looking for

the first edge among these edges. (The other edge incident to b, by which we
eventually return to b, is not in S1, and thus there is no confusion between the
two edges incident to b.) In the general step, we have determined an initial part
of the cycle up to some vertex u, and we locate the outgoing edge among the
edges (u, v) incident to u, excluding the edge leading to u that we have already
used.

In general, for a vertex u of degree du, we have a set of du−1 potential edges.
We locate the correct edge by binary search: We split the potential edges into
two equal parts, and query whether a cycle still exists when one or the other
part is removed. It may turn out (with small probability) that none of the two
subproblems yields a positive answer. In this case, we repeat the oracle with
new random weights. Since the success probability is greater than 1/2, we are
guaranteed to have a positive answer after at most two trials, in expectation. (We
mention that such repeated trials may be necessary only when the length l for
which we are looking is not the shortest length of a feasible cycle. Otherwise one
can show, using arguments from the proof in Section B.5, that the polynomial
for the original problem is the sum of the polynomials for the two subproblems.
Thus, at least one of the two subproblems must give a positive answer.) After at
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most 2⌈log2(du − 1)⌉ successful queries, we have narrowed down the search to a
single outgoing edge uv, and we continue at the next vertex v.

For a walk W of length l, we use, in expectation, less than Q :=
∑

u∈W 4(1+
log2 du) queries, where

∑
u∈W du ≤ 2m. Q can be bounded by

Q ≤ 4l
(
1 + log2

2m
l

)
≤ 4n

(
1 + log2

2m
n

)
= 4n log2

4m
n ,

as claimed.
During this procedure, it may also turn out that a solution with fewer than

l edges exists. In this case, we know that we must have been in the unlikely case
that the original algorithm failed to produce a nonzero value for the shortest
solution l. We simply adjust l to the smaller value and continue.

Note that this procedure is guaranteed to produce a simple cycle, although
not necessarily the shortest one. The algorithm selects a branch only when the
corresponding polynomial is nonzero, which implies that a simple cycle exists in
that branch.

Some simplifications are possible. For edges that are known to belong to
every solution (for example if some set Si contains only one edge), we can assign
unit weight, thus saving random bits, reducing the degree of the polynomial,
and increasing the success probability. Edges that would close a loop can be
discarded. When the graph is sparse and m = O(n), we can simply try the
du − 1 edges one at a time instead of performing binary search, at no cost in
terms of the asymptotic runtime.

B.5 Proof of Lemma 1

(a) By assumption, there is a simple cycle among the walks whose weights are
collected in T̂b(l), and we easily see that the monomial corresponding to such a
walk occurs with coefficient 1. Hence T̂b(l) is not identically zero. By definition,
T̂b(l) is a sum of weights of walks of length l, and hence it is clear that it is
homogeneous of degree l.

(b) For the second statement of the lemma, we have to show that T̂b(l) is zero
if there is no simple walk of length l or shorter. Since the field has characteristic 2,
it suffices to establish a matching among those closed walks that satisfy the edge
set constraints but don’t represent simple cycles. Let W be such a walk. We will
map W to another walk ϕ(W ) that uses the same multiset of edges, by reversing
(flipping) the order of the edges of a subpath between two visits to the same
vertex v. Our procedure closely follows Björklund et al. [4], but we correct an
error in their description.

An example of the procedure is shown in Figure 13. We look for the first
vertex v that occurs several times on the walk. (During this whole procedure,
the occurrence of b at the start of the walk is never considered.) We look at the
piece [v . . . v] between the first and last occurrence of v and flip it. If the sequence
of vertices in this piece is not a palindrome, we are done. Otherwise, we cut out
this piece from the walk. The resulting walk will still visit an edge from each
Si because such an edge cannot be part of a palindrome, since it is visited only
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W = W0 = 123415651432345461786571 = 1[23415651432]345461786571

W ′
0 = W1 = 12345461786571 = 123[454]61786571

W ′
1 = W2 = 123461786571 = 1234[61786]571

W = 1234156514323454[61786]571

ϕ(W ) = 1234156514323454[68716]571

Fig. 13. Mapping a nonsimple cycle W to another cycle ϕ(W ). The start vertex is
b = 1.

once. Since the resulting walk W ′ is shorter than l, and thus shorter than L, by
assumption, it cannot be a simple cycle, and it must contain repeated vertices.

We proceed with W ′ instead of W . Eventually we must find a piece [v . . . v]
that is not a palindrome. We flip it in the original walk W , and the result is
the walk ϕ(W ) to which W is matched. (The flipped piece [v . . . v] does not
necessarily start at the first occurrence of v in the original sequence W , because
such an occurrence might have been eliminated as part of a palindrome.6)

It is important to note that after cutting out a palindrome [v . . . v], all re-
peated vertices must come after the vertex v. Hence, when the procedure is
applied to ϕ(W ), it will perform exactly the same sequence of operations until
the last step, where it will flip ϕ(W ) back to W .

Since the first edge of the walk is unchanged, the condition that this edge
must belong to S1 is left intact.

This concludes the proof of Lemma 1. ⊓⊔

B.6 Other approaches

The original algorithm of Björklund et al. [4] considers simple paths through
k specified vertices or (single) edges. The treatment of vertex visits leads to
some complications: To make the argument for Lemma 1 valid, Björklund et
al.’s definition of allowed walks had to explicitly forbid “palindromic visits” to
the specified vertices, visiting the same edge twice in succession (condition P4).
Consequently, the algorithm for accumulating weight of walks has to take care
of this technicality.

Another Monte Carlo FPT algorithm for the problem of finding a simple
cycle through k specified vertices was given by Wahlström [17]. It runs in time
O(2kpoly(n)) in a graph with n vertices. This algorithm uses interesting algebraic
techniques, and it is also based on inclusion-exclusion, but it does not seem to
extend to the case where one out of a set of vertices (or edges) has to be visited.

6 Here our procedure differs from the method described in [4], where the flipped sub-
sequence extends between the first and last occurrence of v in W . In this form, the
mapping ϕ is not an involution. The proof in [4], however, applies to the method as
described here. This inconsistency was confirmed by the authors (Nina Taslaman,
private communication, February 2021).
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C Variation: Deterministic setup of finite field
computations in characteristic 2

C.1 Getting a primitive polynomial in quadratic time

There is a completely naive algorithm for constructing Fq in O(q2) time and
O(q) space, for q = 2s, assuming q fits in a word (s bits). Simply try out all
polynomials p(x) over F2 of degree less than s. There are q possibilities.

For each p(x), try to construct the logarithm table (“index table”) in O(q)
steps by trying whether the polynomial x generates the nonzero elements of
F2[x]: Start with the string 00 . . . 01 representing the polynomial 1, and multiply
by x by shifting to the left, and adding p(x) (XOR with the corresponding bit
string) to clear the highest bit if necessary. Repeat q−2 times and check whether
00 . . . 01 reappears. If not, then we are done.

(This will be successful iff p(x) is a primitive polynomial modulo 2. Actually,
it is sufficient to check the powers xk of x where k is a maximal proper divisor
of q − 1. The primes dividing q − 1 can be trivially found in O(

√
q) time, and

there are less than log q of them. Computing xk takes O(s2 log q) = O(log3 q)
time if the O(s2) schoolbook method of multiplication modulo p(x) is applied,
together with repeated squaring to get the power. Thus, O(q log3 q) time instead
of O(q2). Probably a gross overestimate because primitive polynomials modulo 2
are frequent; there are ϕ(q − 1)/s of them.)

C.2 From Fq to Fq2 in O(q) deterministic time and space

This is achieved by a degree-2 field extension. We look for an irreducible poly-
nomial of the form p(x) = x2+x+p0 over Fq. If this polynomial were reducible,
we could write

p(x) = (x+ a)(x+ b) = x2 + (a+ b)x+ ab

with a+ b = 1, hence b = 1 + a, and

p(x) = (x+ a)(x+ (a+ 1)) = x2 + x+ a(a+ 1)

The expression a(a+1) can take at most q/2 different values, because a = c and
a = c + 1 lead to the same product, since (c + 1) + 1 = c. Thus, we can group
the q potential values a into q/2 pairs with the same product, and at least q/2
must be unused. We can find the range of a(a + 1) by marking its values in an
array of size q. Any unmarked value can be used as the constant term p0. This
takes O(q) time and space.

Multiplication of two polynomials a1x+ a0 and b1x+ b0 gives the product

c1x+ c0 = (a1x+ a0)(b1x+ b0)

= a1b1x
2 + (a1b0 + a0b1)x+ a0b0

= a1b1x
2 + (a1b0 + a0b1)x+ a0b0 − a1b1(x

2 + x+ p0)

= (a1b0 + a0b1 + a1b1)x+ (a0b0 + a1b1p0)
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Multiplication can therefore be carried out as follows:

c1 = a1b0 + a0b1 + a1b1

= (a1 + a0)(b1 + b0)− a0b0

c0 = a0b0 + a1b1p0

with four multiplications in Fq (and four additions), using the common term
a0b0 for both coefficients.7

C.3 Setup of a finite field Fq with q > n2 in deterministic O(n)
time and space

Let C = ⌈(log2 n)/2⌉. First we construct Fq for q = 2C = O(
√
n) in O(q2) =

O(n) time, as described in Section C.1. To carry out multiplications in Fq in
constant time, we can store a logarithm and antilogarithm table, in O(q) space,
or we can even compute a complete multiplication table, in O(q2) = O(n) time
and space.

Then, by the method of Section C.2, we go from q = 2C to q = 22C , and
finally from q = 22C to q = 24C , in O(22C) = O(n) time and space.

Then addition and multiplication in F24C can be carried out in constant
time. Multiplication goes down two recursive levels, from q = 24C via q = 22C

to q = 2C , before the 16 resulting multiplications are resolved by table look-up.
If we prefer, we can eliminate the lower level of recursion by building a

log/antilog table for q = 22C = O(n) of size O(n), to do the multiplication by
table look-up already at this level. To prepare the tables, we need a generating
element of F22C . Such a generating element can be constructed in O(22C) = O(n)
time, as shown in the next section C.4.

C.4 Constructing an index table without knowing a generator

We assume that multiplication in Fq takes constant time, but no generating
element for the multiplicative group of Fq is given. Our goal is to construct
logarithm and antilogarithm tables (index tables), of size q− 1, in time O(q). In
order to generate these tables, we need a generating element.

Essentially, we have to find a generator of a cyclic group, which is given by
a multiplication oracle and the list of its elements.

We start with an arbitrary element a1 ̸= 0 and try to construct the index
table by running through the powers of a1. We mark the elements that we find.
If the process returns to 1 before marking all nonzero elements, we pick an
unmarked element a2 and run the same process with a2.

7 This is the same trick as for multiplying two complex numbers with three multiplica-
tions instead of four. By contrast, [12, Section 6.8] propose irreducible polynomials
of the form x2 + p1x+1, leading to five multiplications. On the other hand, in cases
where multiplications are done by index tables, the mere number of multiplication
operations does not determine the runtime alone; a common factor that appears in
several multiplications saves lookup time in the logarithm tables.
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If a1 has order o1 in the multiplicative group (which is cyclic of order q− 1),
and a2 has order o2, we show how to construct an element a of order o =
lcm(o1, o2), which generates the subgroup ⟨a1, a2⟩, as follows:

First we ensure that o1 and o2 are relatively prime, without changing lcm(o1, o2).
For each common prime divisor p of o1 and o2, we determine the largest power
of p dividing o1 and o2, respectively: p

f1 |o1 and pf2 |o2. If f1 ≤ f2 we replace a1
by (a1)

pf1
, dividing the order o1 of a1 by pf1 ; otherwise we proceed analogously

with a2.
After this preparation, o = lcm(o1, o2) = o1o2. Let g be a generator of the

group ⟨a1, a2⟩ = {1, g, g2, . . . , go−1}. Then ⟨a1⟩ is generated by go/o1 = go2 , and
we know that a1 = gj1o2 for some j1. Similarly, ⟨a2⟩ is generated by go/o2 = go1 ,
and a2 = gj2o1 for some j2.

By the extended Eulerian algorithm for calculating the greatest common
divisor of o1 and o2, we find u1, u2 such that

o1u1 + o2u2 = 1.

We claim that a := au2
1 au1

2 generates ⟨a1, a2⟩. To see this, we show that a1 and
a2 are powers of a, in particular, ao2 = a1 and ao1 = a2:

ao2 = (au2
1 au1

2 )o2 = g(j1o2u2+j2o1u1)o2

= g(j1(1−o1u1)+j2o1u2)o2

= gj1o2−j1o1u1o2+j2o1u2o2

= gj1o2(go1o2)−j1u1+j2u2 = a1 · 1−j1u1+j2u2 = a1

The proof of the equation ao1 = a2 is analogous.
In summary, the above procedure shows how we get from an element a1

generating a subgroup ⟨a1⟩ of order o1 and an element a2 that is not in that
subgroup to an element a generating a strictly larger subgroup ⟨a⟩ = ⟨a1, a2⟩,
whose order o is a multiple of o1. The procedure can be carried out in O(o) time,
assuming an array of size q − 1 (corresponding to the whole group) is available.
We repeat this procedure until we have found a generating element for the whole
group. Since the size o is at least doubled in each step, the procedure can be
carried out in O(q) time and space in total.

D Adapting the Edge Set Constraints

In Section 4 we have outlined a modified construction of the graph G on which
a nonintersecting Eulerian cycle is sought, which avoids the quadratic blow-up
of the number of edges.

Here we give more details of this construction, see Figure 5c. We cut off
each run of consecutive edges, like fghi, by an additional edge (shown dotted in
Figure 5c) and place a single terminal node there.

One has to take care that the cycle that is found does not use two such
terminal edges in succession, like the edges crossing f and h, because such a
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cycle would not correspond to a valid curve. This constraint must be added to
the problem definition, and the recursion (1) must be modified accordingly.

The sets Si have a special structure. Each set Si consists of a few vertex-
disjoint edges (the thick edges in Figure 14), which we call central edges. We
call the edges connecting the central edges to the remainder of the graph the
peripheral edges. We don’t want to consider cycles that use two such peripheral
edges (of the same Si) in succession, without going through the central edge. We
impose this as an extra condition on the walks whose weights we accumulate.

Si

r

s

t

u

Fig. 14. A set Si and its connecting edges

It is easy to incorporate this condition in the recursion of Section 4.1: Instead
of the quantities Tb(R, l, v), we work with quantities T̃b(R, l, v, p) that depend
on an additional parameter p. This is one bit that tells whether the last edge
of the walk has traversed a peripheral edge in the direction towards the central
edge. If this is the case, we force the walk to use the central edge in the next
step.

In this way, the additional condition incurs a blow-up of at most a factor 2
in the size of the dynamic programming tables and in the runtime.

We now argue that Lemma 1 still holds for these modified quantities. The
proof in Section B.5 goes through for the following reason. The conditions on
allowed walks ensure that an endpoint of a central edge, like the vertex s in
Figure 14), is always part of a subpath consisting of a central edge surrounded
by two peripheral edges, like (r, s, t, u) or (u, t, s, r). Such a subpath cannot be
part of a palindrome, since (s, t) belongs to a special set Si, and for the same
reason, s can never be a repeated vertex of a walk. If the bijection constructed in
the proof reverses a subpath that goes through the vertex s, this is no problem
because the reversed traversal does not violate the extra condition.
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