
G1

G2

G3

G4

G5

G6

G7

G8

G9

G10

G11

G12

G13

G14

G15

G16

G17

G18

G19

G20

G21

G22

G23

G24

G25

G26

G27

Removing Popular Faces in Curve Arrangements⋆

Phoebe de Nooijer1, Soeren Terziadis2 , Alexandra Weinberger3 , Zuzana
Masárová4 , Tamara Mchedlidze1 , Maarten Löffler1 , and Günter Rote5

1 Utrecht University, Utrecht, the Netherlands
m.loffler@uu.nl | t.mtsentlintze@uu.nl

2 TU Wien, Vienna, Austria | soeren.nickel@ac.tuwien.ac.at
3 Graz University of Technology, Graz, Austria | weinberger@ist.tugraz.at

4 IST Austria, Maria Gugging, Austria | zuzana.masarova@ist.ac.at
5 Freie Universität Berlin, Germany | rote@inf.fu-berlin.de

Abstract. A face in a curve arrangement is called popular if it is bounded
by the same curve multiple times. Motivated by the automatic genera-
tion of curved nonogram puzzles, we investigate possibilities to elimi-
nate the popular faces in an arrangement by inserting a single additional
curve. This turns out to be NP-hard; however, it becomes tractable when
the number of popular faces is small: We present a probabilistic FPT-
approach in the number of popular faces.

Keywords: Puzzle generation · Curve arrangements · Fixed-parameter
tractable (FPT).

1 Introduction

Let A be a set of curves which lie inside the area bounded by a closed curve,
called the frame. All curves in A are either closed, or open with endpoints on
the frame. We refer to A as a curve arrangement, see Figure 1a. We consider
only simple arrangements, where no three curves meet in a point and there are
only finitely many total intersections, which are all crossings (no tangencies).

The arrangement A can be seen as an embedded multigraph whose vertices
are crossings of curves and whose edges are curve segments. A subdivides the

⋆ Authors are sorted by seniority.

(a) (b) (c) (d)

Fig. 1. (a) A curve arrangement in a rectangular frame. (b) The top right face is
incident to two disconnected segments of the red curve, making it popular. (c) All
popular faces are highlighted. (d) After inserting an additional curve, no more popular
faces remain.

https://orcid.org/0000-0001-5161-3841
https://orcid.org/0000-0001-8553-6661
https://orcid.org/0000-0002-6660-1322
https://orcid.org/0000-0002-1545-5580
https://orcid.org/0009-0001-9403-8856
https://orcid.org/0000-0002-0351-5945

2 de Nooijer, Terziadis, Weinberger, Masárová, Mchedlidze, Löffler, Rote

G28

G29

G30

G31

G32

G33

G34

G35

G36

G37

G38

G39

G40

G41

G42

G43

G44

G45

G46

G47

G48

G49

1 1

2 2

5

2 21 1

25

13

26

11 5

8

2 4

4

1

1

1

2

3

6 7

3

6

4

4

1

3 2

3

1 3

2

0

(a)

15

1

1 1 1

4

1
1
6
4

6
2

1
5

1 1
1 4

3

5

1
7

3 2
2

3
4

4 0
2
66

0

10

(b)

Fig. 2. Two nonogram puzzles in solved state. (a) A classic nonogram. (b) A curved
nonogram.

region bounded by the frame into faces. A face is popular when it is incident to
multiple curve segments belonging to the same curve in A (see Figures 1b–c). We
study the Nonogram 1-Resolution (N1R) problem: can one additional curve
ℓ be inserted into A such that no faces of A ∪ {ℓ} are popular (see Figure 1d)?

Nonograms. Our question is motivated by the problem of generating curved
nonograms. Nonograms, also known as Japanese puzzles, paint-by-numbers, or
griddlers, are a popular puzzle type where one is given an empty grid and a set
of clues on which grid cells need to be colored. A clue consists of a sequence of
numbers specifying the numbers of consecutive filled cells in a row or column.
A solved nonogram typically results in a picture (see Figure 2a). There is quite
some work in the literature on the difficulty of solving nonograms [1,3,6].

Van de Kerkhof et al. [8] introduced curved nonograms, in which the puzzle
is no longer played on a grid but on an arrangement of curves (see Figure 2b).
In curved nonograms, clues specify numbers of filled faces of the arrangement in
the sequence of faces incident to a common curve on one side. Van de Kerkhof et
al. focus on heuristics to automatically generate such puzzles from a desired
solution picture by extending curve segments to a complete curve arrangement.

Nonogram complexity. Van de Kerkhof et al. observed that curved nono-
grams come in different levels of complexity — not in terms of how hard it is to
solve a puzzle, but how hard it is to understand the rules (see Figure 3). They
state that it would be of interest to generate puzzles of a specific complexity
level; their generators can currently do this only by trial and error.

Removing Popular Faces in Curve Arrangements 3

G50

G51

G52

G53

G54

G55

G56

G57

G58

G59

G60

G61

G62

G63

G64

G65

G66

G67

G68

G69

G70

G71

G72

G73

G74

G75

G76

G77

G78

1

1

1

1

1 1

1

1 1

2

0

2

(a)

1

1

1

1 1

1

1

1
1

1

5

2

2
2

2

2
2

(b)

1

1
1

1
1

1

1

1
1

3

4

10

(c)

Fig. 3. Three types of curved nonograms of increasing complexity [8], shown with
solutions. (a) Basic puzzles have no popular faces. (b) Advanced puzzles may have
popular faces, but no self-intersections. (c) Expert puzzles have self-intersecting curves.
We can observe closed curves (without clues) in (a) and (c).

– Basic nonograms are puzzles in which each clue corresponds to a sequence of
distinct faces. The analogy with clues in classic nonograms is straightforward.

– Advanced nonograms may have clues that correspond to a sequence of faces
in which some faces may appear multiple times because the face is incident
to the same curve (on the same side) multiple times. When such a face is
filled, it is also counted multiple times; in particular, it is no longer true that
the sum of the numbers in a clue is equal to the total number of filled faces
incident to the curve. This makes the rules harder to understand.

– Expert nonograms may have clues in which a single face is incident to the
same curve on both sides. They are even more confusing than advanced nono-
grams. Expert nonograms are only suitable for experienced puzzle freaks.

It is easy to see that arrangements with self-intersecting curves correspond
exactly to expert puzzles. The difference between basic and advanced puzzles is
more subtle; it is exactly the presence of popular faces in the arrangement.

One possibility to generate nonograms of a specific complexity would be to
take an existing generator and modify the output. Recently, Brunck et al. [5]
have investigated how popular faces in a nonogram might be removed by recon-
figuring and/or reconnecting parts of curves at small local areas, which they call
switches (e.g. around curve crossings), and they have proved that this problem
is NP-hard. As an alternative, one may try to get rid of the popular faces by
adding extra curves that cut the popular faces into smaller pieces. In this paper,
we explore what we can do by inserting a single new curve into the arrange-
ment. Clearly, inserting curves will not remove self-intersections, so we focus on
changing advanced puzzles into basic puzzles; i.e., removing all popular faces.

1.1 Results.

After discussing in Section 2 how a singular face is resolved, we show in Sec-
tion 3 that deciding whether we can remove all popular faces from a given curve
arrangement by inserting a single curve – which we call the N1R problem – is
NP-complete. However, often the number of popular faces is small, see Figure 4.

4 de Nooijer, Terziadis, Weinberger, Masárová, Mchedlidze, Löffler, Rote

G79

G80

G81

G82

G83

G84

G85

G86

G87

G88

G89

G90

G91

G92

G93

G94

G95

G96

G97

G98

G99

G100

G101

G102

G103

Fig. 4. Real puzzles (without clues) with all popular faces highlighted.

Hence, we are also interested in the problem parametrized by the number of
popular faces k. we show in Section 4 that the problem can be solved by a
randomized algorithm in FPT time.

2 Resolving one popular face by adding a single curve

As a preparation, we analyze how a single bad face F can be resolved. If F is
visited three or more times by some curve, it cannot be resolved with a single
additional curve ℓ, and we can immediately abort. Otherwise, there are popular
edges among the edges of F , which belong to a curve that visits F twice. As a
visual aid, we indicate each such pair of edges by connecting them with a red
curve (a curtain), see Figure 5a or 8b.

Observation 1 To ensure that a popular face F becomes unpopular after inser-
tion of a single curve ℓ into the arrangement, it is necessary and sufficient that
the curve ℓ has the following properties.

1. It visits the face F exactly once;
2. It does not enter or exit through a popular edge;
3. It separates each pair of popular edges. In other words, ℓ cuts all curtains.

⊓⊔

The ways how ℓ can traverse a popular face F can be modeled as a graph:
We place a vertex on every edge of F except the popular edges. We then connect
two such vertices u, v if for every curtain c, the endpoints of c alternate with the
vertices u and v around F , as shown in Figure 5b. This representation can be
condensed as shown in Figure 5c and explained in Appendix D.

In our arguments, we will often use the dual graph Ad of a curve arrange-
ment A, where every face of A is represented by a vertex and edges represent
faces which share a common boundary segment (not just a common crossing

Removing Popular Faces in Curve Arrangements 5

G104

G105

G106

G107

G108

G109

G110

G111

G112

G113

G114

G115

G116

G117

G118

G119

G120

G121

G122

G123

G124

G125

A

Bc d

e

f

A

B
g

hi

j

k

(a)

A

A

B

B

c d

e

f

g
hi

j

k

(b)

A

A

B

B

c d

e

f

g

hi

j

k

(c)

Fig. 5. Resolving a popular face F . (a) Curtains model popular edges. (b) Possible
ways how ℓ can pass through F . (c) A more compact representation

point). In particular, a curve ℓ traversing A and crossing a sequence of faces
F1, . . . , Fk in that order can be expressed as a path P = (F1, . . . , Fk) in Ad.

3 N1R is NP-complete

In order to prove NP-hardness, we reduce from Planar Non-intersecting Eulerian
Cycle. This reduction assumes ℓ to be a closed loop, but it can easily be adapted
to work for an open curve ℓ′ starting and ending at the frame.

3.1 Non-intersecting Eulerian cycles

An Eulerian cycle in a graph is a closed walk that contains every edge exactly
once. An Eulerian cycle in a graph embedded into the plane (a plane graph)
is non-intersecting if every pair of consecutive edges (a, b), (b, c) is adjacent in
the radial order around b. Intuitively, an Eulerian cycle is non-intersecting if it
can be drawn without repeated vertices after replacing each vertex by a small
cycle linking the incident edges in circular order (see Figures 6a and 6b). The
Eulerian cycle has to visit all of the original edges, but it does not have to cover
the small vertex cycles (see Figure 6c). The following problem was proved to be
NP-complete by Bent and Manber [2, Theorem 1].

Problem 1 (Planar Non-Intersecting Eulerian Cycle PNEC). Given a planar
graph embedded into the plane graph G, decide whether G contains a non-
intersecting Eulerian cycle.

3.2 NP-completeness reduction

We will present a polynomial-time reduction from PNEC to N1R, i.e., we will
create a curve arrangement A containing popular faces based on a planar input
graph G of PNEC, s.t. there exists a curve ℓ for which A∪ ℓ contains no popular

6 de Nooijer, Terziadis, Weinberger, Masárová, Mchedlidze, Löffler, Rote

G126

G127

G128

G129

G130

G131

G132

G133

G134

G135

G136

G137

G138

G139

G140

G141

G142

G143

G144

G145

G146

G147

G148

G149

G150

G151

G152

G153

G154

(a) (b)

E

(c)

Fig. 6. Vertices of the graph G (a) are replaced by cycles (b). A non-intersecting cycle
drawn on the modified graph visiting all original edges (c).

faces if and only if G contains a non-intersecting Eulerian cycle. We assume that
G is 2-edge-connected and all vertices have even degree, because otherwise, G
clearly cannot contain an Eulerian cycle. We also replace every self-loop with a
path of length two, without affecting the existence of a planar non-intersecting
Eulerian cycle.

The reduction is gadget based. We will represent every vertex v ∈ V with a
vertex gadget N (v) and every edge e = (u, v) ∈ E with an edge gadget L(e) or
L(u, v). Both gadgets are sets of curves starting and ending at the frame, and
A =

⋃
v∈V N (v) ∪

⋃
e∈E L(e).

Vertex gadgets. The vertex gadgets consist of curves in one of three basic
shapes shown in Figure 7a, which we call beakers. We place one beaker per
incident edge of v, at the position of v, all rotated, s.t. their bases (the lower
ends in Figure 7a) overlap in a specific pattern. The opening of each beaker (the
upper ends in Figure 7a) will point outwards. We use three variants of the vertex
gadget, depending on the vertex degree.

The vertex gadget for a degree-two vertex is simply made up of two overlaying
Type-I beakers (see Figure 7b). Since ℓ must cross the two curtains c1 and c2, it
must connect the two points p1, p2 by crossing the overlap of the two beakers (a
face of degree two, marked in green in Figure 7b). Since by Observation 1, ℓ can
enter any beaker only once, the routing of ℓ as shown in Figure 7c is forced and
corresponds exactly to the traversal of a planar non-intersecting Eulerian cycle
through a vertex of degree two.

The vertex gadget N (v) for a degree-four vertex v consists of four Type-I
beakers, one per incident edge, which form the intersection pattern of Figure 7d.
Since ℓ must cross the four curtains, it must enter or exit the gadget at least four
times through the thick blue edges in Figure 7e and the vertices p1, p2, p3, p4 of
the dual graph Ad. Since ℓ cannot cross itself, there are only two possibilities
how ℓ can pass through N (v): It can connect p1 with p2 and p3 with p4, as in
Figure 7f, or p1 with p4 and p2 with p3. Both possibilities can be realized by

Removing Popular Faces in Curve Arrangements 7

G155

G156

G157

G158

G159

G160

G161

G162

G163

G164

G165

G166

G167

G168

G169

G170

G171

G172

G173

G174

G175

G176

T-I

T-II T-III

(a)

c1

c2

(b)

p1

p2

(c)

c1

c2

c4

c3

(d)

p1

p3

p4

p2

(e)

p1

p3

p4

p2

(f)

Fig. 7. (a) Basic beaker curve shapes. (b) Degree two gadget (2 Type-I beakers) and
(c) its forced resolution. (d) Degree four gadget (4 Type-I beakers). (e) Dual graph
of the degree 4 gadget. (f) A possible curve ℓ in light blue; some alternative routings,
which connect the same endpoints, in dashed light blue.

routings of ℓ, and they correspond precisely to the ways how a non-intersecting
Eulerian cycle can pass through the edges incident to v. Note that the exact
routing of ℓ can vary inside N (v) (indicated by the dashed lines in Figure 7).

The vertex gadget for a vertex v of degree d ≥ 6 is more complex. We
place d − 1 Type-II beakers c1, . . . , cd−1 symmetrically around the location of
v (Figure 8a). Each beaker intersects four adjacent beakers (two on each side),
with the exception that cd/2−1 and cd/2+1 (dark green curves in Figure 8a) do
not intersect. We place an additional Type-III beaker cd (the light green curve
in Figure 8a) that surrounds all bases of the Type-II beakers and protrudes
between cd−1 and c1, such that the intersection pattern of Figure 8a arises.

All popular faces and curtains in N (v) are shown in Figure 8b. The dual of
the construction is shown in Figure 8c. The curtains in the green faces force ℓ
to pass from these faces to the adjacent small faces with the blue boundaries.
This constrains ℓ to pass through a chain of faces as shown in Figure 8d. The
passages from these faces to other neighboring faces can now be excluded, and
the corresponding edges have been removed from the dual graph in Figure 8d.

The curtains in the openings of the beakers force the outer blue endpoints
of ℓ. The endpoint in beaker ci will be called pi. Now we analyze which of
these endpoints can be connected with each other. We see that in most cases, pi
can only be connected to pi−1 or pi+1 without going through another endpoint.
The exception is pd/2−1 and pd/2+1, which can be connected via the inner loop
from q1 to q2. However, this connection would cut off pd/2 from the remaining

8 de Nooijer, Terziadis, Weinberger, Masárová, Mchedlidze, Löffler, Rote

G177

G178

G179

G180

G181

G182

G183

G184

G185

G186

G187

G188

G189

G190

G191

G192

c1

c4

c2

c3

c7

c6

c5

c8

(a) (b)

p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1

p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2

p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3

p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2

p8p8p8p8p8p8p8p8p8p8p8p8p8p8p8p8p8

p5p5p5p5p5p5p5p5p5p5p5p5p5p5p5p5p5

p6p6p6p6p6p6p6p6p6p6p6p6p6p6p6p6p6

p7p7p7p7p7p7p7p7p7p7p7p7p7p7p7p7p7

(c)

q1q1q1q1q1q1q1q1q1q1q1q1q1q1q1q1q1 q2q2q2q2q2q2q2q2q2q2q2q2q2q2q2q2q2

p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1

p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2

p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3

p8p8p8p8p8p8p8p8p8p8p8p8p8p8p8p8p8

p5p5p5p5p5p5p5p5p5p5p5p5p5p5p5p5p5

p6p6p6p6p6p6p6p6p6p6p6p6p6p6p6p6p6

p7p7p7p7p7p7p7p7p7p7p7p7p7p7p7p7p7

p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2p4-pd/2

(d) (e)

Fig. 8. (a) Vertex gadget N (v) for a degree-8 vertex v, (b) its curtains and (c) dual
graph. (d) Highlighted light green faces in (b) force the dark blue connections in the
dual graph and restrict it. (e) One of two symmetric possibilities for the splitting
curve ℓ. The dashed lines show different possible routings of ℓ.

points. We conclude that the visits of ℓ to N (u) must match endpoints pi that
are adjacent in the circular order. There are two matchings, which correspond
to the two possibilities how a non-intersecting Eulerian cycle can visit v. Both
possibilities can be realized by routings of ℓ; one is shown in Figure 8e, and the
other is symmetric.

We now have placed vertex gadgets for all vertices. They require ℓ to connect
to an endpoint in each opening of a beaker. With these openings, we will now
construct the edge gadgets.

Edge gadgets. Let e = (u, v) ∈ E be an edge in G. Then there are two vertex
gadgets N (u) and N (v) already placed. In particular, we placed one beaker in
the gadgets per incident edge at u or v, i.e. two per edge.

We now elongate the open ends of these beakers and route them along the
edge e according to the embedding ofG given in the input (recall thatG is a plane
graph) until they almost meet at the center point of e. We bend the ends of each
beaker outward, routing them into the two faces incident to e. Additionally, we
place two more curves on top (shown in green), forming the intersection pattern

Removing Popular Faces in Curve Arrangements 9

G193

G194

G195

G196

G197

G198

G199

G200

G201

G202

G203

G204

G205

G206

G207

G208

G209

G210

G211

G212

G213

G214

G215

G216

G217

u v

N (u) N (v)bundle Abundle Abundle Abundle Abundle Abundle Abundle Abundle Abundle Abundle Abundle Abundle Abundle Abundle Abundle Abundle Abundle A

bundle Bbundle Bbundle Bbundle Bbundle Bbundle Bbundle Bbundle Bbundle Bbundle Bbundle Bbundle Bbundle Bbundle Bbundle Bbundle Bbundle B

Fig. 9. Edge gadget L(u, v) connecting two beakers from N (u) and N (v) with two
additional curves. Open ends of all curves are collected into two bundles of parallel
curves that lead into the incident faces. The inside of the two beakers are connected
via a chain of popular faces in L(u, v) (shaded in light green). Other bundles, like the
two groups of four light blue curves in the left half, can freely cross either beaker.

of Figure 9. This results in two bundles A and B, each consisting of four parallel
curves. (The light blue curves in the left half are not part of the gadget; they
are two bundles that come from other gadgets.)

This connects a popular face in N (u) to one in N (v), forming one big popular
face in L(u, v). An arbitrary number of curves may cross the opening of a beaker.
The face is then simply divided into a chain of consecutive popular faces. In
each of these faces, except the left- and right-most faces, which contain the blue
endpoints, ℓ has to leave through two specific edges in order to cut the curtains.
This forces ℓ to pass straight through L(u, v) from N (u) to N (v) along the thin
dark-blue horizontal axis.

It remains to describe how the open ends of the curves in the bundles are
routed to the frame (since all curves other than ℓ have start and end at the
frame). This is not difficult because these bundles can cross quite freely without
creating popular faces. Each bundle consists of a unique set of curves, except
for the two bundles from one edge gadget. A bundle that originates from the
edge gadget L(e) can thus cross any bundle from a different edge gadget without
creating popular faces. It can cross a different edge gadget L(e′) by passing over
one of its beakers, as shown with the light-blue curves.

Since G does not contain self-loops, we route each bundle along a path in the
dual of G to the outer face of G, and then connect it to the frame, see Figure 10.
A popular face might only be created when a bundle crosses the other bundle
from the same edge gadget, which can be avoided by routing them in parallel.

The curves in a bundle run in parallel. Two bundles originating from an edge
gadget L(e) have different curves as their outside curves. Hence, no popular faces
are created between two bundles, and we can make the following statement.

Observation 2 All popular faces in A are contained in vertex gadgets and edge
gadgets (the faces with dashed red curtains in Figures 7b, 7d, 8b, and 9).

10 de Nooijer, Terziadis, Weinberger, Masárová, Mchedlidze, Löffler, Rote

G218

G219

G220

G221

G222

G223

G224

G225

G226

G227

G228

G229

G230

G231

G232

N (v) N(w)

L(u, v) L(u,w)

L(v, w)

Frame

`

N (u)

Fig. 10. Schematic representation of three vertex and edge gadgets. The bundles are
routed through beakers of other edges ending at the frame (partially shown at the
bottom of the figure). A possible routing of ℓ is shown with a black curve.

The next theorem follow from the construction and the resulting correspon-
dence between resolving curves and non-crossing Eulerian cycles. The proof can
be found in Appendix A.

Theorem 1. N1R is NP-complete.

Adaption to open curves. The reduction assumes that ℓ is a closed loop. It
can be adapted to work for open curves, i.e., we can create the arrangement A,
for which there exists an open curve ℓ′ starting and ending at the frame, s.t.
A ∪ ℓ′ does not contain any popular faces, if and only if G contains a planar
non-intersecting Eulerian cycle E(G).

The reduction creates A in the same fashion as above, except that we do not
add the edge gadget for exactly one edge eo = (vo, uo) on the outer face of G.
Instead, the open curves of the openings of the beakers in N (uo) and N (vo),
which would normally form the edge gadget L(uo, vo) are simply connected to
the frame. This forces ℓ′ to start (and end) at the frame between the points at
which the beakers connect to the frame, in order to properly split the popular
face in the opening of these beakers. It is now easy to see that all other properties
still hold and N1R remains NP-complete even when ℓ′ can be an open curve.

Removing Popular Faces in Curve Arrangements 11

G233

G234

G235

G236

G237

G238

G239

G240

G241

G242

G243

G244

G245

G246

G247

G248

G249

G250

G251

G252

G253

G254

G255

G256

G257

G258

G259

G260

G261

u v

Frame

Fig. 11. By routing both ends of an open beaker in parallel to the frame, we force ℓ
to start (or end) at the frame between the two connection points of the beaker.

4 Randomized FPT-algorithm for N1R

In this section, we show that N1R with k popular faces can be solved by a ran-
domized algorithm in O

(
2kpoly(n)

)
time, placing N1R in the class randomized

FPT when parameterized by the number k of popular faces. We model N1R as
a problem of finding a simple cycle (i.e., a cycle without repeated vertices) in a
modified dual graph G, subject to a constraint that certain edges must be visited.

Problem 2 (Simple Cycle with Edge Set Constraints SNESC). Given an undi-
rected graph G = (V,E) and k subsets S1, S2, . . . , Sk ⊆ E of edges, find a simple
cycle, if it exists, that contains exactly one edge from each set Si.

We start with the dual graph of the given curve arrangement A. We replace
the vertex corresponding to the i-th popular face f with a set Si of edges mod-
eling the ways how an additional curve can cut all curtains of f , as described
in Section 2 and shown in Figure 5b. To be specific, we place a vertex on each
curve segment s bounding f and connect it to the vertex of the face that is
adjacent to f across s. Further we connect two such vertices on curve segments
if a curve entering f through one segment and exiting through the other would
cut all curtains of f . The latter connecting edges, which run through f , form
the set Si. There is a one-to-one correspondence between the simple cycles
containing exactly one edge of every set Si and the resolving curves for A.

We will describe a randomized algorithm for Problem 2, extending an algo-
rithm of Björklund, Husfeld, and Taslaman [4].

Theorem 2. (a) The SNESC problem on a graph with n vertices and m ≥
n edges can be solved in O

(
2kmn2 log 2m

n · |V (S1)| ·W
)
time and O(2kn+m)

space with a randomized Monte-Carlo algorithm, with probability at least

1−1/nW , for any W ≥ 1. Here, V (S1) denotes the set of vertices of the edges
in S1 (note that S1 can be chosen to be the smallest set among S1, . . . , Sk).
The model of computation is the Word-RAM with words of size Θ(k+log n).

(b) There is an alternative algorithm (described in Appendix B.3) needing only
polynomial space, namely O(kn+m), at the expense of an additional factor
k in the runtime. It uses words of size Θ(log n).

12 de Nooijer, Terziadis, Weinberger, Masárová, Mchedlidze, Löffler, Rote

G262

G263

G264

G265

G266

G267

G268

G269

G270

G271

G272

G273

G274

G275

G276

G277

G278

G279

G280

G281

G282

G283

G284

G285

G286

G287

G288

G289

G290

G291

G292

G293

G294

G295

G296

G297

G298

G299

G300

Both algorithms find the cycle with the smallest number of edges if it exists
(with high probability).

If A has n faces, the graph G has O(n) vertices and m = O(n2) edges. The
quadratic blow-up ofm results from the construction as shown in Figure 5b. The
number of edges can be reduced to O(n), as shown in Figure 5c and discussed
in Appendix D. The number k of popular faces is the same as the number k of
edge sets Si.

With the alternative algorithm with polynomial space, since k ≤ n, we get:

Corollary 1. The N1R problem with k popular faces in a curve arrangement
with n faces can be solved in expected time O(2kpoly(n)) and O(kn) space. ⊓⊔

We first give a high-level overview of the algorithm. We start by assigning
random weights to the edges from a sufficiently large finite field Fq of charac-
teristic 2. Such a field exists for every size q that is a power of 2. In a field of
characteristic 2, the law x+ x = 0 holds, and therefore terms cancel when they
occur an even number of times. The weight of a walk (with vertex and edge
repetitions allowed) is obtained by multiplying the edge weights of all visited
edges. Our goal is now to compute the sum of weights all closed walks, of given
length, that satisfy the edge set constraints. The characteristic-2 property will
ensure that the unwanted walks, those which are not simple, cancel, while a
simple closed walk makes a nonzero contribution and leads to a nonzero sum
with high property. The crucial idea is that, while these sets of closed walks can
be very complicated, we can compute the aggregated sum of their weights in
polynomial time. We have to anchor these walks at some starting vertex b, and
we choose b to be one of the vertices incident to an edge of S1.

More precisely, for each such vertex b, and for increasing lengths l = 1, 2, . . . , n,
the algorithm computes the quantity T̂b(l), which is the sum of the weights of
all closed walks that

– start and end at b,

– have their first edge in S1,

– use exactly one edge from each set Si (and use it only once),

– and consist of l edges.

We consider the edge weights as variables and regard T̂b(l) as a function
of these variables. The result is a polynomial where each term is a product of
l variables (possibly with repetition), and hence the polynomial has degree l,
unless all terms cancel and it is the zero polynomial. We apply the following
lemma, which is a straightforward adaptation of a lemma of Björklund et al. [4].

Lemma 1. a) Suppose there exists a simple cycle of length l that satisfies the
edge set constraints and that goes through an edge of S1 incident to b. Then
the polynomial T̂b(l) is homogeneous of degree l and is not identically zero.

b) If there is no such cycle of length ≤ l, the polynomial T̂b(l) is identically zero.

Removing Popular Faces in Curve Arrangements 13

G301

G302

G303

G304

G305

G306

G307

G308

G309

G310

G311

G312

G313

G314

G315

G316

G317

G318

G319

G320

G321

G322

G323

G324

G325

G326

G327

G328

G329

G330

G331

G332

G333

G334

G335

G336

G337

G338

G339

G340

G341

G342

G343

The lemma is based on the fact that each term in the polynomial T̂b(l)
represents some closed walk. A term coming from a walk that visits a vertex
twice can be matched with another walk, which traverses a loop in the opposite
direction and contributes the same term. Since the field has characteristic 2,
these terms cancel. A term coming from a simple walk does not cancel. The
proof of Lemma 1 is given in Appendix B.5.

In case (a) of Lemma 1, it follows from the Schwartz-Zippel Lemma [15,
Corollary 1] (see also [14, Corollary Q1]) that, for randomly chosen weights in Fq,

T̂b(l) is nonzero with probability at least 1− degree/|Fq| = 1− l/q ≥ 1− n/q.
Thus, if we choose q > n2, we have a success probability of at least 1−1/n for

finding the shortest cycle when we evaluate the quantities T̂b(l) for increasing l
until they become nonzero. The success probability can be boosted by repeating
the experiment with new random weights.

In the unlikely case of a failure, the algorithm may err by not finding a
solution although a solution exists, or by finding a solution that is not shortest.
The last possibility is not an issue for our original problem, where we just ask
about the existence of a cycle, of arbitrary length.

In the following, we will discuss how we can compute the quantities T̂b(l),
and the runtime and space requirement for this calculation. We describe the
method for actually recovering the cycle after we have found a nonzero value in
Appendix B.4.

4.1 Computing sums of path weights by dynamic programming

We cannot compute the desired sums T̂b(l) directly, but have to do this incre-
mentally via a larger variety of quantities Tb(R, l, v) that are defined as follows:

For R ⊆ {1, 2, . . . , k} with 1 ∈ R, v ∈ V , and l ≥ 1, we define Tb(R, l, v) as
the sum of the weights of all walks that
– start at b,
– have their first edge in S1,
– end at v,
– consist of l edges,
– use exactly one edge from each set Si with i ∈ R (and use it only once),
– contain no edge from the sets Si with i /∈ R.

The walks that we consider here differ from the walks in T̂b(l) in two respects:
They end at a specified vertex v, and the set R keeps track of the sets Si that
were already visited. The quantities T̂b(l) that we are interested in arise as a
special case when we have visited the full range R = {1, . . . , k} of sets Si and
arrive at v = b:

T̂b(l) = Tb({1, . . . , k}, l, b).

We compute the values Tb(R, l, v) for increasing values l = 1, . . . , n. The
starting values for l = 1 are straightforward from the definition.

To compute Tb(R, l, v) for l ≥ 2, we collect all stored values of the form
Tb(R

′, l − 1, u) where (u, v) is an edge of G and R′ is derived from R by taking
into account the sets Si to which (u, v) belongs. We multiply these values with

14 de Nooijer, Terziadis, Weinberger, Masárová, Mchedlidze, Löffler, Rote

G344

G345

G346

G347

G348

G349

G350

G351

G352

G353

G354

G355

G356

G357

G358

G359

G360

G361

G362

G363

G364

G365

G366

G367

G368

G369

(a) (b) (c) (d)

Fig. 12. Input (a,c) and resulting output (b,d) generated by the implementation; the
green curve resolves the popular faces with the smallest number of crossings.

the edge weight wuv and sum them up. If (u, v) is in some Si but i /∈ R, we don’t
use this edge. Formally, let I(u, v) := { i | (u, v) ∈ Si } be the index set of the
sets Si to which (u, v) belongs. Then

Tb(R, l, v) =
∑

(u,v)∈E
I(u,v)⊆R

wuv · Tb(R \ I(u, v), l − 1, u) (1)

4.2 Runtime and space

The finite field additions and multiplications in (1) take constant time, see Ap-
pendix B.2. Similarly, the set operation R \ I(u, v) on subsets of {1, . . . , k} and
the test I(u, v) ⊆ R can be carried out in constant time, using bit vectors. Thus,
for a fixed starting vertex b ∈ V (S1) and fixed R, going from l−1 to l by the re-
cursion (1) takes O(m) time in total, because each edge (u, v) appears in at most
one of the sums on the right-hand side. The overall runtime is O(|V (S1)|2kmn).

As mentioned after Lemma 1, the probability that the algorithm misses the
shortest simple path is at most 1/n. To amplify the probability of correctness,
we repeat the computation W times, reducing the failure probability to 1/nW .

We consider each starting vertex b separately, and do not need to store en-
tries for lengths l− 1 or shorter when proceeding from l to l+ 1; thus the space
requirement is O(2kn).

For recovering the solution, the runtime must be multiplied by O(n log 2m
n),

see Appendix B.4.
Figure 12 shows initial results of an implementation of our algorithm on two

small test instances; see also [10].

5 Conclusion

In light of our NP-hardness and randomized FPT-algorithm, a natural next step
is a deterministic parameterized algorithm. There are O(n) local possibilities of
resolving a single popular face, however, this does not immediately lead to an
O(nk) algorithm (which would place N1R in XP), since we might need to branch

Removing Popular Faces in Curve Arrangements 15

G370

G371

G372

G373

G374

G375

G376

G377

G378

G379

G380

G381

G382

G383

G384

G385

G386

G387

G388

G389

G390

G391

G392

G393

G394

G395

G396

G397

G398

G399

G400

G401

G402

G403

G404

G405

G406

G407

G408

G409

G410

G411

G412

G413

additionally over all possible connections between these solutions through the
dual of A, which can have an unbounded size.

Acknowledgements. This work was initiated at the 16th European Research
Week on Geometric Graphs in Strobl in 2019. A.W. is supported by the Austrian
Science Fund (FWF): W1230. S.T. has been funded by the Vienna Science and
Technology Fund (WWTF) [10.47379/ICT19035]. A preliminary version of this
work has been presented at the 38th European Workshop on Computational
Geometry (EuroCG 2022) in Perugia [11].

References

1. Batenburg, K.J., Kosters, W.A.: On the difficulty of nonograms. ICGA Journal
35(4), 195–205 (2012). https://doi.org/10.3233/ICG-2012-35402

2. Bent, S.W., Manber, U.: On non-intersecting Eulerian circuits. Discrete Applied
Mathematics 18(1), 87–94 (1987). https://doi.org/10.1016/0166-218X(87)90045-X

3. Berend, D., Pomeranz, D., Rabani, R., Raziel, B.: Nonograms: Combinatorial
questions and algorithms. Discrete Applied Mathematics 169, 30–42 (2014).
https://doi.org/10.1016/j.dam.2014.01.004

4. Björklund, A., Husfeld, T., Taslaman, N.: Shortest cycle through specified ele-
ments. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms. pp. 1747–1753. SODA ’12, Society for Industrial and Applied
Mathematics, USA (2012). https://doi.org/2095116.2095255

5. Brunck, F., Chang, H.C., Löffler, M., Ophelders, T., Schlipf, L.: Reconfig-
uring popular faces. Dagstuhl Reports (Seminar 22062) 12(2), 24–34 (2022).
https://doi.org/10.4230/DagRep.12.2.17

6. Chen, Y., Lin, S.: A fast nonogram solver that won the TAAI 2017 and ICGA 2018
tournaments. ICGA Journal 41(1), 2–14 (2019). https://doi.org/10.3233/ICG-
190097

7. Karp, R.M.: Dynamic programming meets the principle of inclusion and exclusion.
Oper. Res. Lett. 1, 49–51 (1982). https://doi.org/10.1016/0167-6377(82)90044-X

8. van de Kerkhof, M., de Jong, T., Parment, R., Löffler, M., Vaxman, A., van Krev-
eld, M.J.: Design and automated generation of Japanese picture puzzles. Comput.
Graph. Forum 38(2), 343–353 (2019). https://doi.org/10.1111/cgf.13642

9. Luo, J., Bowers, K.D., Oprea, A., Xu, L.: Efficient software implementations of
large finite fields GF(2n) for secure storage applications. ACM Trans. Storage
8(Article 2), 2:1–2:27 (2012). https://doi.org/10.1145/2093139.2093141

10. de Nooijer, P.: Resolving Popular Faces in Curve Arrangements. Master’s thesis,
Utrecht University (2022), https://studenttheses.uu.nl/handle/20.500.12932/494

11. de Nooijer, P., Nickel, S., Weinberger, A., Masárová, Z., Mchedlidze, T., Löffler,
M., Rote, G.: Removing popular faces in curve arrangements by inserting one more
curve. In: Giacomo, E.D., Montecchiani, F. (eds.) Abstracts of the 38th European
Workshop on Computational Geometry (EuroCG 2022). pp. 38:1–38:8 (Mar 2022),
https://eurocg2022.unipg.it/booklet/EuroCG2022-Booklet.pdf

12. Plank, J.S., Greenan, K.M., Miller, E.L.: A complete treatment of software im-
plementations of finite field arithmetic for erasure coding applications. Tech.
Rep. UT-CS-13-717, EECS Department, University of Tennessee (Oct 2013),
http://web.eecs.utk.edu/∼jplank/plank/papers/UT-CS-13-717.html

https://doi.org/10.3233/ICG-2012-35402
https://doi.org/10.1016/0166-218X(87)90045-X
https://doi.org/10.1016/j.dam.2014.01.004
https://doi.org/2095116.2095255
https://doi.org/10.4230/DagRep.12.2.17
https://doi.org/10.3233/ICG-190097
https://doi.org/10.3233/ICG-190097
https://doi.org/10.1016/0167-6377(82)90044-X
https://doi.org/10.1111/cgf.13642
https://doi.org/10.1145/2093139.2093141
https://studenttheses.uu.nl/handle/20.500.12932/494
https://eurocg2022.unipg.it/booklet/EuroCG2022-Booklet.pdf
http://web.eecs.utk.edu/~jplank/plank/papers/UT-CS-13-717.html

16 de Nooijer, Terziadis, Weinberger, Masárová, Mchedlidze, Löffler, Rote

G414

G415

G416

G417

G418

G419

G420

G421

G422

G423

G424

G425

G426

G427

G428

G429

G430

13. Plank, J.S., Miller, E.L., Greenan, K.M., Arnold, B.A., Burnum, J.A., Disney,
A.W., McBride, A.C.: GF-Complete: A comprehensive open source library for
Galois field arithmetic (Jan 2015), https://github.com/ceph/gf-complete, revision
1.03

14. Rote, G.: The Generalized Combinatorial Lasoń–Alon–Zippel–Schwartz Nullstel-
lensatz Lemma (2023), arXiv:2305.10900 [math.CO]

15. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM 27(4), 701–717 (1980). https://doi.org/10.1145/322217.322225

16. Shoup, V.: A Computational Introduction to Number The-
ory and Algebra. Cambridge University Press, 2nd edn. (2008).
https://doi.org/10.1017/CBO9781139165464

17. Wahlström, M.: Abusing the Tutte matrix: An algebraic instance com-
pression for the K-set-cycle problem. In: 30th International Symposium
on Theoretical Aspects of Computer Science (STACS 2013). Leibniz In-
ternational Proceedings in Informatics (LIPIcs), vol. 20, pp. 341–352.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2013).
https://doi.org/10.4230/LIPIcs.STACS.2013.341

https://github.com/ceph/gf-complete
http://arxiv.org/abs/2305.10900
https://doi.org/10.1145/322217.322225
https://doi.org/10.1017/CBO9781139165464
https://doi.org/10.4230/LIPIcs.STACS.2013.341

Removing Popular Faces in Curve Arrangements 17

G431

G432

G433

G434

G435

G436

G437

G438

G439

G440

G441

G442

G443

G444

G445

G446

G447

G448

G449

G450

G451

G452

G453

G454

G455

G456

G457

G458

G459

G460

G461

G462

G463

G464

G465

G466

G467

G468

G469

G470

A Proof of Theorem 1

Theorem 1 N1R is NP-complete.

Proof. Assume we are given a non-intersecting Eulerian cycle E(G) of G as a
permutation of the edges. We now show how to construct the curve ℓ. We choose
a random edge e = (u, v) in the permutation and start drawing ℓ at the endpoint
inside the beaker of L(u, v) originating from N (v) along the thin blue axis cross-
ing all popular faces as described above.This will end at an open endpoint inside
N (u). At this point we either connect to the left or right endpoint according
to the next edge in E(G) (which is possible, since E(G) is non-intersecting). We
make this connection either directly or via the forced inner circular part of ℓ in
N (u) if one of the two involved endpoints is in beaker cd(u)/2 (where d(u) is the
degree of u). These connections are made as described above.Now we are again
at an endpoint in a beaker. We can repeat this procedure until we cycle back to
e, at which point we will have reconnected to our starting point. Since E(G) by
definition visits every edge exactly once, before cycling back to the first edge, we
know that every popular face in the edge gadgets is split. Moreover, since E(G)
visits every vertex v exactly δ(v)/2 times and E(G) is non-intersecting, we know
that one of the two possible ways of connecting all endpoints in N (v) can be
chosen to resolve all popular faces in N (v) (and all other vertex gadgets). Since
by Observation 2 there are no other popular faces in A, A ∪ ℓ does not contain
any popular faces.

Now assume we are given a curve ℓ, s.t. A ∪ ℓ does not contain any popular
faces. The order, in which ℓ traverses all edge gadgets gives us a permutation of
all edges. Since both variants of resolving all popular faces in a vertex gadget
connect any endpoint only to an endpoint in a neighboring beaker, consecutive
edges in this permutation share an endpoint and both belong to the same face
and this permutation is a non-intersecting Eulerian cycle. We have shown that
there exists a curve ℓ, s.t., A ∪ ℓ contains no popular faces, if and only if G
contains a non-intersecting Eulerian cycle and therefore N1R is NP-hard.

It is easy to see that N1R is in NP. The input arrangement can be rep-
resented as a plane graph in which the edges are marked as belonging to the
different curves or to the frame boundary. The certificate is an extension of this
arrangement by a resolving curve ℓ. Since ℓ cannot visit a face more than once,
the certificate is of polynomial size. It can be easily verified in polynomial time
whether it is valid, in particular, whether it contains no popular faces. ⊓⊔

B Additional details of the randomized FPT-algorithm

B.1 Assumption on the word length

Our algorithm needs to store a table with Θ(2kn) entries, namely the entries
Tb(R, l, v) with fixed b and l. We assume that these fit in memory and can be
addressed in constant time. Thus, it is reasonable to assume a word length of at
least k + log n bits.

18 de Nooijer, Terziadis, Weinberger, Masárová, Mchedlidze, Löffler, Rote

G471

G472

G473

G474

G475

G476

G477

G478

G479

G480

G481

G482

G483

G484

G485

G486

G487

G488

G489

G490

G491

G492

G493

G494

G495

G496

G497

G498

G499

G500

G501

G502

G503

G504

G505

G506

G507

G508

G509

G510

G511

G512

G513

B.2 Finite field calculations

Each evaluation of the recursion (1) involves additions and multiplications in
the finite field Fq, where q = 2s > n is a power of 2.

We will argue that it is justified to regard the time for these arithmetic
operations as constant, both in theory and in practice. The error probability can
be controlled by choosing the finite field sufficiently large, or by repeating the
algorithm with new random weights.

For implementing the algorithm in practice, arithmetic in F2s is supported by
a variety of powerful libraries. see for example [13]. The size that these libraries
conveniently offer (e.g., q = 232) will be mostly sufficient for a satisfactory success
probability.

For the theoretical analysis, we propose to choose a finite field of size q ≥ n2,
leading to a failure property less than 1/n, and to achieve further reductions of
the failure property by repeating the algorithm W times.

We will describe some elementary approach for setting up the finite field Fq

of size q ≥ n2, considering that we can tolerate a runtime and space requirement
that is linear or a small polynomial in n. Various methods for arithmetic in finite
fields F2s are surveyed in Luo, Bowers, Oprea, and Xu [9] or Plank, Greenan,
and Miller [12]. The natural way to represent elements of F2s is as a polynomial
modulo some fixed irreducible polynomial p(x) of degree s over F2. The coeffi-
cients of the polynomial form a bit string of s bits. Addition is simply an XOR
of these bit strings.

We propose to use the split table method, which is simple and implements
multiplication by a few look-ups in small precomputed tables, see [9, Section 3.3.1]
or [12, Section 6.5].

Let C = ⌈(log2 n)/2⌉, and let q = 24C . Thus, q ≥ n2, as required.
According to [16, Theorem 20.2], an irreducible polynomial p(x) of degree

d = 4C over F2 can be found in O(d4) = O(log4 n) expected time, by testing
random polynomials of degree d for irreducibility. (Shoup [16] points out that
this bound is not tight; there are also faster methods.)

Multiplication of two polynomials modulo p(x) can be carried out in the
straightforward “high-school” way in O(d2) = O(log2 n) steps, by elementwise
multiplication of the two polynomials, and reducing the product by successive
elimination of terms of degree larger than d.

We now consider the bitstring of length d as composed of r = 4 chunks of
size C. In other words, we write the polynomial q(x) as

q(x) = q3(x)x
3C + q2(x)x

2C + q1(x)x
C + q0(x),

where q3, q2, q1, q0 are polynomials of degree less than C. Addition takes O(r)
time, assuming an XOR on words of length C = O(log n) can be carried out in
constant time. Multiplication is carried out chunk-wise, using 2r − 1 = 7 multi-
plication tables. The j-th table contains the products r(x)r′(x)xjC , for all pairs
r(x), r′(x) of polynomials of degree less than C, for j = 0, 1, . . . , 2r − 2. Multi-
plication in the straightforward way takes then O(r3) time. Each multiplication

Removing Popular Faces in Curve Arrangements 19

G514

G515

G516

G517

G518

G519

G520

G521

G522

G523

G524

G525

G526

G527

G528

G529

G530

G531

G532

G533

G534

G535

G536

G537

G538

G539

G540

G541

G542

G543

G544

G545

G546

G547

G548

G549

G550

G551

G552

G553

G554

table has 2C × 2C = O(n) entries of r = 4 words, and it can be precomputed in
O(nd2) = O(n log2 n) time by multiplying in the straightforward way.

Thus, after some initial overhead of O(n log2 n) time, which is negligible in
the context of the overall algorithm, with O(n) space, arithmetic in Fq can be
carried out in O(1) time in the Word-RAM model, where arithmetic, logic, and
addressing operations on words with Θ(log n) bits are considered as constant-
time operations.

We mention that, with another representation, the initial setup can even
be made deterministic, and its time reduced to O(n) (keeping the O(n) space
bound), see Appendix C.

B.3 Reduction to polynomial space

As described, the algorithm has an exponential factor 2k in the space require-
ment. This exponential space requirement can be eliminated at the expense of
a moderate increase in the runtime, by using an inclusion-exclusion trick that
was first used by Karp [7] for the Traveling Salesman Problem. The possibility
of applying this trick in the context of our problem was already mentioned in
Björklund et al. [4].

For a “forbidden set” F ⊆ {2, 3, . . . , k}, v ∈ V , 1 ≤ l ≤ n, and 1 ≤ j ≤ k let
Ub(F, l, j, v) be the sum of the weights of all walks that
– start at b,
– have their first edge in S1,
– end at v,
– consist of l edges,
– contain no edge from the sets Si with i ∈ F ,
– use in total j edges from the sets Si, counted with multiplicity: If an edge

belonging to p different sets Si is traversed r times, it contributes pr towards
the count j.

The clue is that we can compute these quantities for each F separately in poly-
nomial time and space, by simply removing the edges of Si for all i ∈ F from
the graph. The dynamic-programming recursion is straightforward. In contrast
to (1), we have to keep track of the number j of edges from S1 ∪ · · · ∪ Sk.

We regard each index i ∈ {2, . . . , k} as a “feature” that a walk might have (or
an “event”), namely that it avoids the edges of Si. By the inclusion-exclusion
formula, we can compute the sum of weights of paths that have none of the
features, i.e., that visit all sets Si. In this way, we get the following formula:

Lemma 2.

T̂b(l) =
∑

F⊆{2,3,...,k}

(−1)|F |Ub(F, l, k, b) (2)

Proof. The parameters l and b match on both sides. By the inclusion-exclusion
theorem, the right-hand side is the sum of all walks in which every set Si is
visited at least once. Since the parameter j is equal to k, we know that there
were only k visits to sets Si; thus, every set Si is visited exactly once. ⊓⊔

20 de Nooijer, Terziadis, Weinberger, Masárová, Mchedlidze, Löffler, Rote

G555

G556

G557

G558

G559

G560

G561

G562

G563

G564

G565

G566

G567

G568

G569

G570

G571

G572

G573

G574

G575

G576

G577

G578

G579

G580

G581

G582

G583

G584

G585

G586

G587

G588

G589

G590

G591

G592

G593

G594

G595

G596

G597

G598

The sign (−1)|F | is of course irrelevant over a field of characteristic 2.
To reduce the space requirement as much as possible, we organize the com-

putation as follows. First, each starting point b is considered separately. We
initialize n variables for accumulating the contributions to the quantities T̂b(l)
according to (2). Then, for each forbidden set F separately, we compute the
quantities Ub(F, l, j, v) for all j and v, incrementally increasing l = 1, 2, . . . , n.
Since we need to remember only the entries for two consecutive values l at a
time, this requires only O(nk) space. Along the way, we add the contributions
Ub(F, l, k, b) to (2).

In summary, we can calculate T̂b(1), T̂b(2), . . . in space O(nk). Compared to
the exponential-space algorithm, we need an additional factor k in the runtime,
for the k choices of the parameter j.

B.4 Recovering the solution

The algorithm, as described so far, works as an oracle that only gives a yes-no
answer (and a length l), but it does not produce the solution. To recover the
solution, we will call the oracle repeatedly with different inputs.

Suppose the algorithm was successful in the sense that some number T̂b(l)
turned out to be nonzero, after finding only zero values for all smaller values of l.
By Lemma 1, we conclude that there exists a simple cycle through b satisfying
the edge set constraints, possibly (with small probability) shorter than l.

We will find this cycle by selectively deleting parts of the edges and recom-
puting T̂b(1), T̂b(2), . . . , T̂b(l) for the reduced graph to see whether this graph
still contains a solution. In this way, we will determine the successive edges of
the cycle, and, as we shall see, we will know the cycle after at most 4n log2

4m
n

iterations.
The first edge out of b is an edge of S1, and thus we start by looking for

the first edge among these edges. (The other edge incident to b, by which we
eventually return to b, is not in S1, and thus there is no confusion between the
two edges incident to b.) In the general step, we have determined an initial part
of the cycle up to some vertex u, and we locate the outgoing edge among the
edges (u, v) incident to u, excluding the edge leading to u that we have already
used.

In general, for a vertex u of degree du, we have a set of du−1 potential edges.
We locate the correct edge by binary search: We split the potential edges into
two equal parts, and query whether a cycle still exists when one or the other
part is removed. It may turn out (with small probability) that none of the two
subproblems yields a positive answer. In this case, we repeat the oracle with
new random weights. Since the success probability is greater than 1/2, we are
guaranteed to have a positive answer after at most two trials, in expectation. (We
mention that such repeated trials may be necessary only when the length l for
which we are looking is not the shortest length of a feasible cycle. Otherwise one
can show, using arguments from the proof in Section B.5, that the polynomial
for the original problem is the sum of the polynomials for the two subproblems.
Thus, at least one of the two subproblems must give a positive answer.) After at

Removing Popular Faces in Curve Arrangements 21

G599

G600

G601

G602

G603

G604

G605

G606

G607

G608

G609

G610

G611

G612

G613

G614

G615

G616

G617

G618

G619

G620

G621

G622

G623

G624

G625

G626

G627

G628

G629

G630

G631

G632

G633

G634

G635

G636

G637

G638

G639

G640

most 2⌈log2(du − 1)⌉ successful queries, we have narrowed down the search to a
single outgoing edge uv, and we continue at the next vertex v.

For a walk W of length l, we use, in expectation, less than Q :=
∑

u∈W 4(1+
log2 du) queries, where

∑
u∈W du ≤ 2m. Q can be bounded by

Q ≤ 4l
(
1 + log2

2m
l

)
≤ 4n

(
1 + log2

2m
n

)
= 4n log2

4m
n ,

as claimed.
During this procedure, it may also turn out that a solution with fewer than

l edges exists. In this case, we know that we must have been in the unlikely case
that the original algorithm failed to produce a nonzero value for the shortest
solution l. We simply adjust l to the smaller value and continue.

Note that this procedure is guaranteed to produce a simple cycle, although
not necessarily the shortest one. The algorithm selects a branch only when the
corresponding polynomial is nonzero, which implies that a simple cycle exists in
that branch.

Some simplifications are possible. For edges that are known to belong to
every solution (for example if some set Si contains only one edge), we can assign
unit weight, thus saving random bits, reducing the degree of the polynomial,
and increasing the success probability. Edges that would close a loop can be
discarded. When the graph is sparse and m = O(n), we can simply try the
du − 1 edges one at a time instead of performing binary search, at no cost in
terms of the asymptotic runtime.

B.5 Proof of Lemma 1

(a) By assumption, there is a simple cycle among the walks whose weights are
collected in T̂b(l), and we easily see that the monomial corresponding to such a
walk occurs with coefficient 1. Hence T̂b(l) is not identically zero. By definition,
T̂b(l) is a sum of weights of walks of length l, and hence it is clear that it is
homogeneous of degree l.

(b) For the second statement of the lemma, we have to show that T̂b(l) is zero
if there is no simple walk of length l or shorter. Since the field has characteristic 2,
it suffices to establish a matching among those closed walks that satisfy the edge
set constraints but don’t represent simple cycles. Let W be such a walk. We will
map W to another walk ϕ(W) that uses the same multiset of edges, by reversing
(flipping) the order of the edges of a subpath between two visits to the same
vertex v. Our procedure closely follows Björklund et al. [4], but we correct an
error in their description.

An example of the procedure is shown in Figure 13. We look for the first
vertex v that occurs several times on the walk. (During this whole procedure,
the occurrence of b at the start of the walk is never considered.) We look at the
piece [v . . . v] between the first and last occurrence of v and flip it. If the sequence
of vertices in this piece is not a palindrome, we are done. Otherwise, we cut out
this piece from the walk. The resulting walk will still visit an edge from each
Si because such an edge cannot be part of a palindrome, since it is visited only

22 de Nooijer, Terziadis, Weinberger, Masárová, Mchedlidze, Löffler, Rote

G641

G642

G643

G644

G645

G646

G647

G648

G649

G650

G651

G652

G653

G654

G655

G656

G657

G658

G659

G660

G661

G662

G663

G664

G665

G666

G667

G668

G669

G670

G671

W = W0 = 123415651432345461786571 = 1[23415651432]345461786571

W ′
0 = W1 = 12345461786571 = 123[454]61786571

W ′
1 = W2 = 123461786571 = 1234[61786]571

W = 1234156514323454[61786]571

ϕ(W) = 1234156514323454[68716]571

Fig. 13. Mapping a nonsimple cycle W to another cycle ϕ(W). The start vertex is
b = 1.

once. Since the resulting walk W ′ is shorter than l, and thus shorter than L, by
assumption, it cannot be a simple cycle, and it must contain repeated vertices.

We proceed with W ′ instead of W . Eventually we must find a piece [v . . . v]
that is not a palindrome. We flip it in the original walk W , and the result is
the walk ϕ(W) to which W is matched. (The flipped piece [v . . . v] does not
necessarily start at the first occurrence of v in the original sequence W , because
such an occurrence might have been eliminated as part of a palindrome.6)

It is important to note that after cutting out a palindrome [v . . . v], all re-
peated vertices must come after the vertex v. Hence, when the procedure is
applied to ϕ(W), it will perform exactly the same sequence of operations until
the last step, where it will flip ϕ(W) back to W .

Since the first edge of the walk is unchanged, the condition that this edge
must belong to S1 is left intact.

This concludes the proof of Lemma 1. ⊓⊔

B.6 Other approaches

The original algorithm of Björklund et al. [4] considers simple paths through
k specified vertices or (single) edges. The treatment of vertex visits leads to
some complications: To make the argument for Lemma 1 valid, Björklund et
al.’s definition of allowed walks had to explicitly forbid “palindromic visits” to
the specified vertices, visiting the same edge twice in succession (condition P4).
Consequently, the algorithm for accumulating weight of walks has to take care
of this technicality.

Another Monte Carlo FPT algorithm for the problem of finding a simple
cycle through k specified vertices was given by Wahlström [17]. It runs in time
O(2kpoly(n)) in a graph with n vertices. This algorithm uses interesting algebraic
techniques, and it is also based on inclusion-exclusion, but it does not seem to
extend to the case where one out of a set of vertices (or edges) has to be visited.

6 Here our procedure differs from the method described in [4], where the flipped sub-
sequence extends between the first and last occurrence of v in W . In this form, the
mapping ϕ is not an involution. The proof in [4], however, applies to the method as
described here. This inconsistency was confirmed by the authors (Nina Taslaman,
private communication, February 2021).

Removing Popular Faces in Curve Arrangements 23

G672

G673

G674

G675

G676

G677

G678

G679

G680

G681

G682

G683

G684

G685

G686

G687

G688

G689

G690

G691

G692

G693

G694

G695

G696

G697

G698

G699

G700

G701

G702

G703

G704

G705

G706

G707

C Variation: Deterministic setup of finite field
computations in characteristic 2

C.1 Getting a primitive polynomial in quadratic time

There is a completely naive algorithm for constructing Fq in O(q2) time and
O(q) space, for q = 2s, assuming q fits in a word (s bits). Simply try out all
polynomials p(x) over F2 of degree less than s. There are q possibilities.

For each p(x), try to construct the logarithm table (“index table”) in O(q)
steps by trying whether the polynomial x generates the nonzero elements of
F2[x]: Start with the string 00 . . . 01 representing the polynomial 1, and multiply
by x by shifting to the left, and adding p(x) (XOR with the corresponding bit
string) to clear the highest bit if necessary. Repeat q−2 times and check whether
00 . . . 01 reappears. If not, then we are done.

(This will be successful iff p(x) is a primitive polynomial modulo 2. Actually,
it is sufficient to check the powers xk of x where k is a maximal proper divisor
of q − 1. The primes dividing q − 1 can be trivially found in O(

√
q) time, and

there are less than log q of them. Computing xk takes O(s2 log q) = O(log3 q)
time if the O(s2) schoolbook method of multiplication modulo p(x) is applied,
together with repeated squaring to get the power. Thus, O(q log3 q) time instead
of O(q2). Probably a gross overestimate because primitive polynomials modulo 2
are frequent; there are ϕ(q − 1)/s of them.)

C.2 From Fq to Fq2 in O(q) deterministic time and space

This is achieved by a degree-2 field extension. We look for an irreducible poly-
nomial of the form p(x) = x2+x+p0 over Fq. If this polynomial were reducible,
we could write

p(x) = (x+ a)(x+ b) = x2 + (a+ b)x+ ab

with a+ b = 1, hence b = 1 + a, and

p(x) = (x+ a)(x+ (a+ 1)) = x2 + x+ a(a+ 1)

The expression a(a+1) can take at most q/2 different values, because a = c and
a = c + 1 lead to the same product, since (c + 1) + 1 = c. Thus, we can group
the q potential values a into q/2 pairs with the same product, and at least q/2
must be unused. We can find the range of a(a + 1) by marking its values in an
array of size q. Any unmarked value can be used as the constant term p0. This
takes O(q) time and space.

Multiplication of two polynomials a1x+ a0 and b1x+ b0 gives the product

c1x+ c0 = (a1x+ a0)(b1x+ b0)

= a1b1x
2 + (a1b0 + a0b1)x+ a0b0

= a1b1x
2 + (a1b0 + a0b1)x+ a0b0 − a1b1(x

2 + x+ p0)

= (a1b0 + a0b1 + a1b1)x+ (a0b0 + a1b1p0)

24 de Nooijer, Terziadis, Weinberger, Masárová, Mchedlidze, Löffler, Rote

G708

G709

G710

G711

G712

G713

G714

G715

G716

G717

G718

G719

G720

G721

G722

G723

G724

G725

G726

G727

G728

G729

G730

G731

G732

G733

G734

G735

G736

G737

G738

G739

G740

G741

G742

G743

G744

G745

Multiplication can therefore be carried out as follows:

c1 = a1b0 + a0b1 + a1b1

= (a1 + a0)(b1 + b0)− a0b0

c0 = a0b0 + a1b1p0

with four multiplications in Fq (and four additions), using the common term
a0b0 for both coefficients.7

C.3 Setup of a finite field Fq with q > n2 in deterministic O(n)
time and space

Let C = ⌈(log2 n)/2⌉. First we construct Fq for q = 2C = O(
√
n) in O(q2) =

O(n) time, as described in Section C.1. To carry out multiplications in Fq in
constant time, we can store a logarithm and antilogarithm table, in O(q) space,
or we can even compute a complete multiplication table, in O(q2) = O(n) time
and space.

Then, by the method of Section C.2, we go from q = 2C to q = 22C , and
finally from q = 22C to q = 24C , in O(22C) = O(n) time and space.

Then addition and multiplication in F24C can be carried out in constant
time. Multiplication goes down two recursive levels, from q = 24C via q = 22C

to q = 2C , before the 16 resulting multiplications are resolved by table look-up.
If we prefer, we can eliminate the lower level of recursion by building a

log/antilog table for q = 22C = O(n) of size O(n), to do the multiplication by
table look-up already at this level. To prepare the tables, we need a generating
element of F22C . Such a generating element can be constructed in O(22C) = O(n)
time, as shown in the next section C.4.

C.4 Constructing an index table without knowing a generator

We assume that multiplication in Fq takes constant time, but no generating
element for the multiplicative group of Fq is given. Our goal is to construct
logarithm and antilogarithm tables (index tables), of size q− 1, in time O(q). In
order to generate these tables, we need a generating element.

Essentially, we have to find a generator of a cyclic group, which is given by
a multiplication oracle and the list of its elements.

We start with an arbitrary element a1 ̸= 0 and try to construct the index
table by running through the powers of a1. We mark the elements that we find.
If the process returns to 1 before marking all nonzero elements, we pick an
unmarked element a2 and run the same process with a2.

7 This is the same trick as for multiplying two complex numbers with three multiplica-
tions instead of four. By contrast, [12, Section 6.8] propose irreducible polynomials
of the form x2 + p1x+1, leading to five multiplications. On the other hand, in cases
where multiplications are done by index tables, the mere number of multiplication
operations does not determine the runtime alone; a common factor that appears in
several multiplications saves lookup time in the logarithm tables.

Removing Popular Faces in Curve Arrangements 25

G746

G747

G748

G749

G750

G751

G752

G753

G754

G755

G756

G757

G758

G759

G760

G761

G762

G763

G764

G765

G766

G767

G768

G769

G770

G771

G772

G773

G774

G775

G776

G777

G778

G779

G780

G781

G782

G783

G784

If a1 has order o1 in the multiplicative group (which is cyclic of order q− 1),
and a2 has order o2, we show how to construct an element a of order o =
lcm(o1, o2), which generates the subgroup ⟨a1, a2⟩, as follows:

First we ensure that o1 and o2 are relatively prime, without changing lcm(o1, o2).
For each common prime divisor p of o1 and o2, we determine the largest power
of p dividing o1 and o2, respectively: p

f1 |o1 and pf2 |o2. If f1 ≤ f2 we replace a1
by (a1)

pf1
, dividing the order o1 of a1 by pf1 ; otherwise we proceed analogously

with a2.
After this preparation, o = lcm(o1, o2) = o1o2. Let g be a generator of the

group ⟨a1, a2⟩ = {1, g, g2, . . . , go−1}. Then ⟨a1⟩ is generated by go/o1 = go2 , and
we know that a1 = gj1o2 for some j1. Similarly, ⟨a2⟩ is generated by go/o2 = go1 ,
and a2 = gj2o1 for some j2.

By the extended Eulerian algorithm for calculating the greatest common
divisor of o1 and o2, we find u1, u2 such that

o1u1 + o2u2 = 1.

We claim that a := au2
1 au1

2 generates ⟨a1, a2⟩. To see this, we show that a1 and
a2 are powers of a, in particular, ao2 = a1 and ao1 = a2:

ao2 = (au2
1 au1

2)o2 = g(j1o2u2+j2o1u1)o2

= g(j1(1−o1u1)+j2o1u2)o2

= gj1o2−j1o1u1o2+j2o1u2o2

= gj1o2(go1o2)−j1u1+j2u2 = a1 · 1−j1u1+j2u2 = a1

The proof of the equation ao1 = a2 is analogous.
In summary, the above procedure shows how we get from an element a1

generating a subgroup ⟨a1⟩ of order o1 and an element a2 that is not in that
subgroup to an element a generating a strictly larger subgroup ⟨a⟩ = ⟨a1, a2⟩,
whose order o is a multiple of o1. The procedure can be carried out in O(o) time,
assuming an array of size q − 1 (corresponding to the whole group) is available.
We repeat this procedure until we have found a generating element for the whole
group. Since the size o is at least doubled in each step, the procedure can be
carried out in O(q) time and space in total.

D Adapting the Edge Set Constraints

In Section 4 we have outlined a modified construction of the graph G on which
a nonintersecting Eulerian cycle is sought, which avoids the quadratic blow-up
of the number of edges.

Here we give more details of this construction, see Figure 5c. We cut off
each run of consecutive edges, like fghi, by an additional edge (shown dotted in
Figure 5c) and place a single terminal node there.

One has to take care that the cycle that is found does not use two such
terminal edges in succession, like the edges crossing f and h, because such a

26 de Nooijer, Terziadis, Weinberger, Masárová, Mchedlidze, Löffler, Rote

G785

G786

G787

G788

G789

G790

G791

G792

G793

G794

G795

G796

G797

G798

G799

G800

G801

G802

G803

G804

G805

G806

G807

G808

G809

cycle would not correspond to a valid curve. This constraint must be added to
the problem definition, and the recursion (1) must be modified accordingly.

The sets Si have a special structure. Each set Si consists of a few vertex-
disjoint edges (the thick edges in Figure 14), which we call central edges. We
call the edges connecting the central edges to the remainder of the graph the
peripheral edges. We don’t want to consider cycles that use two such peripheral
edges (of the same Si) in succession, without going through the central edge. We
impose this as an extra condition on the walks whose weights we accumulate.

Si

r

s

t

u

Fig. 14. A set Si and its connecting edges

It is easy to incorporate this condition in the recursion of Section 4.1: Instead
of the quantities Tb(R, l, v), we work with quantities T̃b(R, l, v, p) that depend
on an additional parameter p. This is one bit that tells whether the last edge
of the walk has traversed a peripheral edge in the direction towards the central
edge. If this is the case, we force the walk to use the central edge in the next
step.

In this way, the additional condition incurs a blow-up of at most a factor 2
in the size of the dynamic programming tables and in the runtime.

We now argue that Lemma 1 still holds for these modified quantities. The
proof in Section B.5 goes through for the following reason. The conditions on
allowed walks ensure that an endpoint of a central edge, like the vertex s in
Figure 14), is always part of a subpath consisting of a central edge surrounded
by two peripheral edges, like (r, s, t, u) or (u, t, s, r). Such a subpath cannot be
part of a palindrome, since (s, t) belongs to a special set Si, and for the same
reason, s can never be a repeated vertex of a walk. If the bijection constructed in
the proof reverses a subpath that goes through the vertex s, this is no problem
because the reversed traversal does not violate the extra condition.

	 Removing Popular Faces in Curve Arrangements
	1 Introduction
	Nonograms.
	Nonogram complexity.

	1.1 Results.

	2 Resolving one popular face by adding a single curve
	3 N1R is NP-complete
	3.1 Non-intersecting Eulerian cycles
	3.2 NP-completeness reduction
	Vertex gadgets.
	Edge gadgets.

	4 Randomized FPT-algorithm for N1R
	4.1 Computing sums of path weights by dynamic programming
	4.2 Runtime and space

	5 Conclusion
	References
	A Proof of Theorem 1
	B Additional details of the randomized FPT-algorithm
	B.1 Assumption on the word length
	B.2 Finite field calculations
	B.3 Reduction to polynomial space
	B.4 Recovering the solution
	B.5 Proof of Lemma 1
	B.6 Other approaches

	C Variation: Deterministic setup of finite field computations in characteristic 2
	C.1 Getting a primitive polynomial in quadratic time
	C.2 From Fq to F(q**2) in Q(q) deterministic time and space
	C.3 Setup of a finite field Fq with q>n**2 in deterministic O(n) time and space
	C.4 Constructing an index table without knowing a generator

	D Adapting the Edge Set Constraints

