
Planar Minimally Rigid Graphs and Pseudo-Triangulations

Ruth Haas 1 David Orden 2 Günter Rote 3

Francisco Santos 2 Brigitte Servatius 4 Hermann Servatius 4

Diane Souvaine 5 Ileana Streinu 6 Walter Whiteley 7

ABSTRACT
Pointed pseudo-triangulations are planar minimally rigid
graphs embedded in the plane with pointed vertices (inci-
dent to an angle larger than π). In this paper we prove that
the opposite statement is also true, namely that planar min-
imally rigid graphs always admit pointed embeddings, even
under certain natural topological and combinatorial con-
straints. The proofs yield efficient embedding algorithms.
They also provide—to the best of our knowledge—the first
algorithmically effective result on graph embeddings with
oriented matroid constraints other than convexity of faces.
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1. INTRODUCTION
In this paper we prove that all planar minimally rigid

graphs (planar Laman graphs) admit embeddings as pointed
pseudo-triangulations. In contrast to the traditional planar
graph embeddings, where all the faces are designed to be
convex, ours have interior faces which are as non-convex
as possible (pseudo-triangles). We give two proofs of inde-
pendent interest. They are constructive and yield efficient
embedding algorithms. We extend the result to combina-
torial pseudo-triangulations, which are topological (pseudo-
segment) embeddings with additional partial oriented ma-
troid information, and to rigidity circuits.

Novelty. Planar graph embeddings with non-convex faces
have not been systematically studied before. Our result links
them to rigidity-theoretic and matroidal properties of pla-
nar graphs. We give a simple and elegant combinatorial
characterization of all the graphs which can be embedded
as pointed pseudo-triangulations, answering an open ques-
tion posed in [38]. In addition, to the best of our knowledge,
this is the first result on algorithmically efficient graph em-
beddings with oriented matroid constraints, holding for an
interesting family of graphs. In contrast, the universality
theorem for pseudo-line arrangements of Mnëv [26] implies
that the general problem of embedding graphs with oriented
matroid constraints is as hard as the existential theory of the
reals.

Proof Techniques and Algorithmic Results. We use
two proof techniques. The first one is based on a graph-
theoretic inductive construction for minimally rigid graphs
(Henneberg construction), which we extend to include topo-
logical information. The second uses linear algebra and re-
lies on an extension by [8] of Tutte’s technique for spring
embeddings of planar graphs. Both produce efficient em-
bedding algorithms.

Laman Graphs and Pseudo-Triangulations. Let G =
(V, E) be a graph with n = |V | vertices and m = |E| edges.
G is a Laman graph if m = 2n−3 and every subset of k ≥ 2
vertices spans at most 2k − 3 edges. An embedding G(P ) of
the graph G on a set of points P = {p1, . . . , pn} ⊂ R2 is a
mapping of the vertices V to points in the Euclidian plane
i �→ pi ∈ P . The edges ij ∈ E are mapped to straight line
segments pipj . We say that the vertex i of the embedding
G(P ) is pointed if all its incident edges lie on one side of some
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line through pi. Equivalently, some consecutive pair of edges
adjacent to i (in the circular counter-clockwise order around
the vertex) spans a reflex angle. An embedding G(P ) is
plane if no pair of segments pipj and pkpl corresponding to
non-adjacent edges ij, kl ∈ E, i, j �∈ {k, l} have a point in
common. A graph G is planar if it has a plane embedding.
A pseudo-triangle is a simple planar polygon with exactly
three convex vertices. A pseudo-triangulation of a planar
set of points is a plane graph whose outer face is convex and
all interior faces are pseudo-triangles. In a pointed pseudo-
triangulation all the vertices are pointed. See Fig. 1.
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Figure 1: Two embeddings of a planar Laman graph:
(a) is a pointed pseudo-triangulation, (b) is not: the
faces 2876 and 1548 are not pseudo-triangles and the
vertices 6 and 8 are not pointed.

Equivalent characterizations and other properties of pointed
pseudo-triangulations are given in [37], where they are called
minimum pseudo-triangulation. In particular, the under-
lying graphs of pointed pseudo-triangulations have exactly
2n − 3 edges and are in fact Laman graphs.

Historical Perspective. Techniques from Rigidity Theory
have been recently applied to problems such as collision free
robot arm motion planning [9, 37], molecular conformations
[21, 46, 43] and sensor and network topologies with distance
and angle constraints [11].

Laman graphs are the fundamental objects in 2-dimensional
Rigidity Theory. Also known as isostatic or generically min-
imally rigid graphs, they characterize combinatorially the
property that a graph, embedded on a generic set of points,
is infinitesimally rigid (with respect to the induced edge
lengths). See [23, 16, 47]. The most famous open ques-
tion in Rigidity Theory (the Rigidity Conjecture, see [16]) is
finding their 3-dimensional counterpart.

Pseudo-triangulations are relatively new objects, intro-
duced and applied in Computational Geometry for problems
such as visibility [30, 29, 35], kinetic data structures [3] and
motion planning for robot arms [37]. They have rich combi-
natorial, rigidity-theoretic and polyhedral properties, many
of which have only recently started to be investigated, see
[37, 34, 31, 22, 2, 5, 1, 6]. In particular, the fact that they
are rigid graphs which become expansive mechanisms when
an edge is removed from their convex hull, has proved to
be crucial in designing efficient motion planning algorithms
for planar robot arms, see [37]. Finding their 3-dimensional
counterpart, which is perhaps the main open question about

pseudo-triangulations and expansive motions, may lead to
efficient motion planning algorithms for certain classes of 3-
dimensional linkages, with potential impact on understand-
ing protein folding processes.

Graph Drawing is a field with a distinguished history
[12, 45, 44], and planar graph embeddings have received
substantial attention in the literature [8, 15, 39, 10]. Ex-
tensions of graph embeddings from straight-line to pseudo-
line segments have been recently considered (see e.g. [28]).
It is natural to ask which such embeddings are stretch-
able, i.e. whether they can be realized with straight-line
segments while maintaining some desired combinatorial sub-
structure. Indeed, the primordial planar graph embedding
result, Fáry’s Theorem [12], is just an instance of answering
such a question. Graph embedding stretchability questions
have usually ignored oriented matroidal constraints, allow-
ing for the free reorientation of triplets of points when not
violating other combinatorial conditions. The notable ex-
ception concerns the still widely open visibility graph recog-
nition problem, approached in the context of pseudo-line ar-
rangements (oriented matroids) by [27]. In [36] it is shown
that it is not always possible to realize with straight-lines
a pseudo-visibility graph, while maintaining oriented ma-
troidal constraints.

In contrast, this paper gives the first non-trivial stretcha-
bility result on a natural graph embedding problem with ori-
ented matroid constraints. It adds to the already rich body
of surprisingly simple and elegant combinatorial properties
of pointed pseudo-triangulations by proving a natural con-
nection.

Main Result. We are interested in planar Laman graphs.
Not all Laman graphs fall into this category. For example,
K3,3 is Laman but not planar. But the underlying graphs
of all pointed pseudo-triangulations are planar Laman. See
Figure 1. We prove that the converse is always true:

Theorem 1.1. (Main Theorem) Every planar Laman
graph can be realized as a pointed pseudo-triangulation.

We prove in fact a stronger result, allowing us to fix a
priori the face structure (Theorem 3.1), and even the com-
binatorial information regarding which vertices are convex
in each face (Theorem 4.2). Finally, we answer a natural
question related to the underlying matroidal structure of
planar rigidity and extend the result to planar rigidity cir-
cuits, which are minimal dependent sets in the rigidity ma-
troid where the bases (maximally independent sets) are the
Laman graphs. By adding edges to a pointed (minimum)
pseudo-triangulation while maintaining planarity, the graph
has increased dependency level (in the rigidity matroid) and
can no longer be realized with all vertices pointed, but it
can always be realized with straight edges. Our concern is
to maintain the minimum number of non-pointed vertices,
for the given edge count. For circuits, this number is one,
and we show that it can be attained.

Further Developments. Every planar graph can be em-
bedded on a grid of size O(n) × O(n), see for example [15,
39, 13]. Here is a natural remaining problem.

Open Question 1. Can a planar Laman graph be embedded
as a pseudo-triangulation on a O(nk) × O(nk) size grid?
What is the smallest such k?

We also conjecture that the embedding algorithm can be
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improved to O(n log n) time, and present two additional al-
gorithmic open questions in Section 3.

Organization of the paper. In section 2 we define most of
the technical concepts needed later for the proof. The main
result, proven with an inductive argument, is presented in
section 3. Section 4 contains the more general result on
combinatorial pseudo-triangulations. In section 5 we sketch
the proof for the extension to planar rigidity circuits.

2. PRELIMINARIES
For the standard graph and rigidity-theoretic terminology

used in this paper we refer the reader to [16] and [48]. For
relevant facts about pointed pseudo-triangulations, see [37].
In this section we review a classical result from Rigidity
Theory (Henneberg constructions) on which the approach
in Section 3 is based and give new technical definitions, in-
cluding the concept of purely combinatorial pseudo-triangu-
lations. For lack of space, we do not include the technical
definitions needed for Sections 4 and 5.

Topologically Embedded Planar Graphs. Any plane
embedding of a planar graph induces a topological embed-
ding of the underlying graph G. This is independent of
point coordinates, and captures only the combinatorial in-
formation about the faces of the embedding and their ad-
jacencies. Equivalently, this information is captured by the
rotations at each vertex: the counter-clockwise circular or-
der of the incident edges at each vertex in the embedding.
A topological embedding of a planar graph is such a system
of rotations (or equivalently, the faces and their adjacen-
cies) which can be realized in the plane with non-crossing
curves (pseudo-segments). A topological embedding with a
marked face contains, in addition, information about which
face of the embedding is unbounded (the outer or exterior
face). It is well-known that a 3-connected planar graph has
a unique embedding on the sphere, but 2-connected ones
(including some planar Laman graphs) may have several.
The plane embedding is obtained by choosing one face as
the outer face, and every topological embedding of a simple
planar graph can be realized with straight-line edges in the
plane, for any choice of an outer face. Traditionally, such
results have focused on embeddings with convex faces, even
for non-maximal planar graphs [7, 13]. In this paper we
deal with a different type of embedding which is, in a sense,
as non-convex as possible on the interior faces, while still
non-crossing.

Faces, Angles, Corners, Pseudo-triangles and Pseudo-
k-gons. A (combinatorial) angle at a vertex v incident to
a face F of a topologically embedded planar graph is a pair
of consecutive (adjacent) edges vu, vw on the face. For an
embedded planar graph, an angle is convex if less than π
and reflex otherwise.

The convex vertices of a simple polygon (representing
some embedded face) will be called corners. A polygon with
k corners is called a pseudo-k-gon. A pseudo-triangle is a
polygon with three corners. The interior faces of a pseudo-
triangulation are pseudo-triangles. In a pointed pseudo-
triangulation, each vertex is adjacent to a reflex angle. The
exterior face is bounded by the convex hull of the set of
points. It is the only face lying outside its boundary poly-
gon, and also the only face having no corners (as seen from
inside the face).

For conciseness, in the rest of the paper we will drop
pointed and refer to our objects simply as pseudo-triangu-
lations, except in Section 5 where pseudo-triangulation will
no longer mean pointed.

Figure 2: Left: a pseudo-triangle, with its three side
chains and three corners. Right: a tangent from an
interior point to one of the three side-chains.

Figure 3: The four types of interior bitangents to a
pseudo-4-gon.

Side chains, Tangents and Bitangents. The following
concepts are needed for the proof of Lemma 3.4 of Section
3 and can be skipped at first reading.

A (side) chain of a face is the inner convex boundary
between two consecutive corners. Non-corner vertices lie on
exactly one chain, while corners lie on two chains, except
for the unique corner of an exterior 1-gon, which lies on the
unique side chain of the face (we may think of this unique
chain as having multiplicity 2 with respect to the corner).
For a vertex i ∈ V , denote by pi the corresponding point
of the embedding G(P ) and by Ci the chain (or chains) on
which it lies. A tangent from a point p interior to a face
F is a line segment ppi lying entirely inside F , which joins
p to a point pi on the face and whose supporting line does
not cut through the chain(s) Ci at the tangency point pi. A
bitangent to a face F is a segment pipj lying inside F and
which is tangent at its endpoints pi and pj to the chains Ci

and Cj .
Notice that adding a tangent ppi from a new point p to

a pointed embedded graph maintains the pointedness of the
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vertex pi of tangency. See Figure 2. Adding a bitangent
inside an interior face is possible only if the face is an interior
k-gon with k ≥ 4.

We will need the following simple classification of bitan-
gents to a pseudo-4-gon, of which there are exactly four cases
(see Figure 3): a) Both endpoints are (opposite) corners of
the pseudo-4-gon. b) One endpoint is a corner and the other
is not. c) Both endpoints are non-corners, and the two side
chains to which they belong are consecutive and lie on the
same side of the supporting line of the bitangent. d) Both
endpoints are non-corners, and the two side chains to which
they belong are opposite and lie on opposite sides of the
supporting line of the bitangent.

Laman graphs and Henneberg constructions. Laman
graphs can be characterized in a variety of ways. In particu-
lar, a Laman graph on n vertices has an inductive construc-
tion as follows [18]. Start with a triangle for n = 3. At each
step, add a new vertex in one of the following two ways:

• Henneberg I (vertex addition): the new vertex is
connected via two new edges to two old vertices.

• Henneberg II (edge splitting): a new vertex is added
on some edge (thus splitting the edge into two new
edges) and then connected to a third vertex. Equiv-
alently, this can be seen as removing an edge, then
adding a new vertex connected to its two endpoints
and to some other vertex.

Our approach is inspired by the following result, stated by
Henneberg [18], and by its proof, due to Tay and Whiteley
[42]:

Lemma 2.1. A graph is a Laman graph if and only if it
has a Henneberg construction.

See Figure 4. Part (b) shows a drawing with crossing
edges, to emphasize that the Henneberg constructions hold
for general, not necessarily planar Laman graphs.
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Figure 4: Illustration of the two types of steps in
a Henneberg sequence, with vertices labelled in the
construction order. (a) Henneberg I for vertex 5,
connected to old vertices 3 and 4. (b) Henneberg II
for vertex 6, connected to old vertices 3, 4 and 5.

Combinatorial Pseudo-Triangulations. An assignment
of a label {C, R} (standing for convex and reflex) to each

angle of a topologically embedded planar graph is called a
combinatorial (pointed) pseudo-triangulation if:

• For each vertex, exactly one of its incident angles is
labelled R (pointedness).

• There exists one face (the outer face) whose angles are
all labelled R.

• All other faces have exactly three angles labelled C.

A consequence of the Main Result is that every planar
Laman graph has a combinatorial pseudo-triangulation as-
signment. In Section 4 we will mention a direct proof and
we will present an algorithm for computing one, or all, of
the combinatorial pseudo-triangulations compatible with a
given topologically embedded planar Laman graph. In addi-
tion, in section 4 we prove that every combinatorial pseudo-
triangulation of a Laman graph can be realized as an actual
(straight-line) pseudo-triangulation.

3. MAIN RESULT
In this section we give the first proof of our Main Theorem

1.1 stated in the following slightly more general form.

Theorem 3.1. A planar Laman graph with a given topo-
logical embedding and a designated outer face can be realized
as a pointed pseudo-triangulation with the same face struc-
ture.

The proof is a geometric version of the Henneberg con-
struction, and is contained in the following three lemmas.
Lemma 3.2 reduces the problem to the case of a graph with
a triangular outer face. Lemma 3.3 gives a topological fame-
work for the Henneberg construction. Lemma 3.4 performs
the inductive step in the geometric realization.

Lemma 3.2. (Reduction to a Triangular Outer Face)
If we know how to embed as a pseudo-triangulation a planar
Laman graph with a triangular outer face, then we can solve
the problem for an outer face of any size.

Proof. Suppose that an outer face with more than 3
vertices is prescribed for the graph Gn. Then we consider a
Laman graph Gn+3 of n + 3 vertices by adding 3 vertices to
the outer face, connecting these three vertices into a triangle
that contains the original graph, and then adding an edge
from each of the new vertices to the exterior polygon of
Gn. We now realize Gn+3 as a pseudo-triangulation with
the new triangle as the exterior face. In this realization,
the graph Gn must be realized with its outer face convex
by the following argument. The three new interior edges of
Gn+3 provide two corners each in their outer end-point and
at least one corner in the interior one. Since the three faces
incident to them have nine corners in total, the boundary
of Gn provides no corner to the three new interior faces of
Gn+3. See Figure 5.

Lemma 3.3. (Planar Laman graphs admit planar
Henneberg constructions) Every topological planar em-
bedding of a Laman graph with a triangular outer face has a
Henneberg construction in which:

• All intermediate graphs are planarly embedded.
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Figure 5: Reducing to a triangular outer face em-
bedding.

• We start with the triangle corresponding to the outer
face. This face will never be altered.

• At each step, a new vertex is inserted in some interior
face. Only edges and faces involved in the Henneberg
step are changed: either the new vertex is added inside
a face of the previous graph (Henneberg I), or inside
a face obtained by removing an edge between two faces
of the previous graph (Henneberg II).

Proof. We work by reverse induction, along similar lines
as the proof of Lemma 2.1 (see [42]). Since a Laman graph
has 2n−3 edges, there exists a vertex v of degree 2 or 3. If it
is of degree 2, removing it and its incident edges merges two
faces into one, and the graph obtained is clearly Laman. If
it is of degree 3, let its neighbors be v1, v2 and v3. Tay and
Whiteley [42] prove that the removal of v and the insertion
of one of the three edges v1v2, v1v3 or v2v3, say v1v2, gives
a Laman graph. Topologically, we just delete the edge vv3

and merge its two incident faces into one. The other face
incident to v has two boundary edges merged into one. In
either case, continue the inductive reduction until n = 3.

This topological Henneberg construction can be performed
having a given triangle as the starting graph in the Hen-
neberg construction, and maintaining it all throughout as
the outer face. Indeed, the three boundary vertices have sum
of degrees at least 7 if G has n > 3 vertices. Since the total
sum of degrees in the Laman graph is 4n−6, the n−3 inte-
rior vertices have degree sum at most 4n−13 = 4(n−3)−1.
Hence, there is at least one interior vertex of degree at most
three, at which we can perform the Henneberg deletion.
This way, none of the topological steps will affect the ex-
terior face.

Lemma 3.4. (Inductive Extension) Let Gn be a topo-
logically embedded planar Laman graph obtained from Gn−1

via a Henneberg step on an interior face, and assume in-
ductively that Gn−1 has a pseudo-triangulation embedding
Gn−1(Pn−1). Then there is a pseudo-triangulation embed-
ding Gn(Pn) of Gn, where Pn = Pn−1 ∪ {pn} is obtained by
adding a new vertex pn inside a face of the old embedding.

In the proof we will need the technical definitions from
section 2, plus some additional ones given below.

Let i, j, k be vertices belonging to the chains Ci, Cj , Ck on
the same face F of a plane graph G(P ). The feasible region
of the vertex i is the set of points p from which tangents
at pi to the chain(s) Ci can be drawn inside the face. The
feasible region of a set of vertices S = {i, j} or S = {i, j, k} is
the set of points p for which all the line segments pps, s ∈ S
are tangents to the chains Cs lying inside the face F . The
pointed-feasible region of the triplet {i, j, k} is the set of
points p such that the three line segments ppi, ppj and ppk

are tangents to the chains Ci, Cj and Ck (respectively), and
meet at p in a pointed fashion.

To obtain the feasible region of a vertex i, extend the two
edges incident to the vertex to obtain a double wedge of lines
emanating from pi and intersect them with the face. Fig-
ure 6 illustrates the feasibility region of a non-corner vertex
inside a face of a pseudo-triangulation.

Figure 6: The feasible region for a non-corner vertex
of a pseudo-triangle.

Proof of Lemma 3.4 for a Henneberg I step.
We have to show that it is always possible to find a posi-

tion for the newly added vertex which maintains planarity
and pointedness. If the current step is Henneberg I, the new
vertex must be added inside one of the existing faces, and
the edges must be tangent, at the other end, to the con-
vex chains of the face. Since a vertex of degree 2 is always
pointed, the newly added vertex is automatically so. Figure
7 illustrates the following simple observation: for any pair
of points on the boundary of any interior face of a pseudo-
triangulation, their feasible region is non-empty and interior
to the face. Placing the new vertex in this non-empty region
completes the proof.

Proof of Lemma 3.4 for a Henneberg II step. In this
case, an interior edge ij is first removed, creating a face
F which is the union of the two faces incident to the edge
before removal, and thus a pseudo-quadrilateral (possibly
degenerate, if the removed edge was incident to a vertex of
degree 2 ). The new point pn must be connected to pi, pj

and a third vertex pk lying on the boundary of this face. To
show that this is always possible, we have to prove that the
pointed-feasible region of {i, j, k} is non-empty. To structure
the analysis into a small number of cases, we rely on the
following simple observations about the feasible region of
{i, j}.

• It consists of at most three polygonal regions (depend-
ing on which case from Figure 3 applies), connected in
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Figure 7: Feasible regions always intersect for a Hen-
neberg I step.

a chain at the endpoints of the removed edge.

• The edge pi, pj is interior to the middle polygonal
region, which is a convex quadrilateral (a diamond
shape).

• The extensions of the edge pi, pj inside the face (if any
of its endpoints is not a corner) are on the boundary
of the other two polygonal regions.

Figure 8 illustrates all of the four possible shapes of the
feasible region of a removed edge {i, j}.

Figure 8: The feasible region of an interior removed
edge: possible cases.

To complete the proof we must establish that the feasible
region of the removed edge {i, j} intersects the feasible re-
gion of any vertex k, and that the pointed-feasible region of
{i, j, k} is a non-empty subregion of this intersection.

Indeed, the feasible region of vertex k intersects the sup-
porting line of the edge ij inside the face F and hence cuts
off an interval on it. Thus the intersection of the feasible
region of vertex k with that of the removed edge {i, j} is
a union of at most three polygons. By inspecting the four
possibilities it is easy to see that a subregion of this inter-
section has the property that any point in it will be pointed,
when joined by tangents to pi, pj and pk. The subcases are:

• The feasible region of pk intersects the middle (diamond-
shaped) region of pipj . Then the pointed-feasible part
of this region lies on the opposite side of the edge pipj

than pk.

• The feasible region of pk intersects one of the other
(non-middle) regions. Then the pointed-feasible part
of this region is the whole intersection.

Figure 9 illustrates the construction for the Henneberg II
step when the feasible region of the removed edge has only
one component, the diamond shaped region containing the
removed edge.

Figure 9: Henneberg II step on an interior face,
where the feasible region of pk intersects the mid-
dle part of the feasible region of the removed edge:
the two feasible regions, their intersection, the final
pointed-feasible region and a placement of a pointed
vertex and its three tangents.

Algorithmic analysis. The proof of the Main Theorem
can be turned into an efficient time algorithm. Given a
Laman graph, verifying its planarity and producing a topo-
logical embedding (stored as a quad-edge data structure [17]
with face information) can be done in linear time [19]. One
then chooses an outer face and in linear time one can per-
form the construction from Lemma 3.2 to get a triangular
outer face. For producing a topological Henneberg construc-
tion, we keep an additional field in the vertex data structure,
storing the degree of the vertex. We will keep two unordered
lists containing the vertices of degree 2 and 3, respectively,
To work out the Henneberg steps in reverse we need to do
efficiently the following operations: a) select a vertex of min-
imum degree (which will be 2 or 3) and remove it, b) if the
minimum degree is 3, corresponding to a vertex v, we must
find an edge h that will be put back in after the removal
of v, and c) restore the quad-edge data structure. Steps a)
and c) can be done in constant time. Step b) requires decid-
ing which of the three possibilities for h among v1v2, v1v3

and v2v3 (where v1, v2 and v3 are the neighbors of v) pro-
duces a Laman graph. Testing for the Laman condition on
a graph with 2n−3 edges can be done by several algorithms
in O(n2): the algorithms of Imai [20] and Sugihara [40] via
reductions to network flow or bipartite matching, or via ma-
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troid (tree) decompositions (see [48] and the references given
there).

The algorithms of Imai [20] and Sugihara [40] use the fol-
lowing equivalent characterization of the Laman property.

Lemma 3.5. A graph G with n vertices and m = 2n − 3
edges is a Laman graph if and only if, for every edge e,
the multigraph “G + 3e”, which is obtained by taking e four
times, can be oriented in such a way that every vertex has
indegree 2.

The condition on G+3e can be modeled as a flow problem on
a bipartite network with “vertex nodes” and “edge nodes”,
where each vertex node has a supply of 2 and each edge
node has a demand of 1, except for e which has a demand
of 4. (This is similar as in the proof of Lemma 4.1 below.)
Since the total flow has value O(n) and the network has size
O(n) such a flow can be found easily in O(n2) time by the
algorithm of Ford and Fulkerson. A flow for the graph G+3e
can be updated into a flow for graph G + 3e′ for some other
edge e′ in O(n) time, because this amounts to changing the
demands by a total amount of only O(1), and hence a new
flow can be found by O(1) flow augmentations, taking O(n)
time each.

When we apply a reverse Henneberg type II step and try
to insert an edge h into the reduced graph G′, we only have
to check the graph (G′+h)+3h: Any subgraph which might
violate the Laman condition for G′ +h must clearly contain
h, and then a feasible flow in (G′ + h) + 3h would not ex-
ist. The total update of supplies and demands of the net-
work from G to (G′ + h) + 3h still amounts to only O(1),
and hence we can perform a reverse Henneberg step in O(n)
time, which gives a total running time of O(n2) for the com-
plete sequence of Henneberg reductions.

The embedding is done now by performing the Henneberg
steps, starting with the outer triangular face embedded on
an arbitrary initial triple of points. It is straightforward
to see that each step takes constant time to determine a
position for the new vertex, and the whole embedding takes
linear time once the Henneberg sequence is known.

The time complexity would be improved by a positive
answer to the following questions.

Open Question 2. Is it possible to decide the Laman
condition in sub-quadratic (possibly linear) time for a planar
graph?

Open Question 3. Is it possible to decide, faster than in
linear time, which edge to put back in a Henneberg II step
for a planar graph? For a combinatorial pseudo-triangula-
tion?

4. COMBINATORIAL
PSEUDO-TRIANGULATIONS

It follows from the Main Theorem that every planar em-
bedding of a Laman graph has a combinatorial pseudo-tri-
angulation assignment. But observe that in order to ob-
tain this we do not need the full machinery and details of
the proof of Lemma 3.4, only a combinatorial (and much
simpler) version saying how to assign the convex and reflex
angles at each inductive step, in a way consistent with the
expectations of tangency for a real pseudo-triangulation.

In particular, this gives an efficient algorithmic way of
computing a combinatorial pseudo-triangulation, or to enu-

merate all of them, by iterating over all possible ways of
performing a Henneberg step.

A different approach which gives an efficient algorithm
right away is to reduce the problem of computing a combi-
natorial pseudo-triangulation to that of finding a maximum
matching in a certain bipartite graph. This immediately
gives an efficient algorithm.

Lemma 4.1. One can compute a combinatorial pseudo-
triangulation of a planar Laman graph in O(n3/2) time by
solving a bipartite (multi-) matching problem.

Proof. (Sketch) Let G = (V, E) be a planar Laman
graph. We define a bipartite network H with the two sets
of the bipartition corresponding to the vertices and faces
of G, and the edges representing incidences (“angles”). The
pointed angles of a combinatorial pseudo-triangulation cor-
respond to a subgraph of H where each “vertex node” has
degree 1 and each “face node” for di-sided face has degree
di − 3, with the exception of the exterior face which has de-
gree di. A combinatorial pseudo-triangulation can thus be
found in O(n3/2) time using the maximum flow algorithm
of Dinits (see [41]), after finding a combinatorial planar em-
bedding in linear time.

This set of degree-constrained subgraphs of a bipartite
graph can be modelled as a network flow problem. Thus the
set of combinatorial pseudo-triangulations is in one-to-one
correspondence with the vertices of a polytope given by the
equations and inequalities of the network flow.

The lemma allows us to find a combinatorial pseudo - tri-
angulation because the existence of a combinatorial pseudo-
triangulation (even of a true pseudo-triangulation) has been
established by other means in Theorem 1.1. However, the
network flow model in the proof of Lemma 4.1 can also be
adapted to a direct existence proof, using the Max-Flow/Min-
Cut Theorem. The cut condition can be shown with the help
of Euler’s formula for planar graphs and the Laman condi-
tion.

A natural remaining question is whether it is always pos-
sible to embed a planar Laman graph when a combinatorial
pseudo-triangulation assignment has been fixed a priori. The
main result in this section is that this holds (and can be ef-
ficiently computed).

Theorem 4.2. Every combinatorial pseudo-triangulation
of a planar Laman graph can be realized with straight line
segments.

The proof is based on ideas from the Tutte’s theorem on
convex embeddings [44], which was extended to directed
graphs [14, 8]. We draw the desired boundary face as a
convex polygon. From a given combinatorial pseudo-trian-
gulation G we construct a directed graph G∗ having the
same vertices as G but not the same edges. At each interior
vertex v, G∗ has three outgoing edges. Two of them are the
extreme edges of v in G and the third is a new edge going
through the interior of the pseudo-triangle containing the re-
flex angle at v, and joining v to a vertex in a different chain
of that pseudo-triangle (or to the opposite corner). We add
these new edges in such a way that the resulting graph G∗

remains planarly embedded. To achieve this one can, for
example, (topologically) triangulate each pseudo-triangle in
such a way that only its three corners are ears of the tri-
angulation, and use interior edges from this triangulation.
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The boundary edges of G are considered as edges of G∗ too,
but their orientations are not relevant (to be consistent with
the outdegree-3 constraint one can say they are oriented in
both directions, because they are extreme edges of their two
end-points).

Observe that some edges of G∗ may simultaneously get
the two directions. For example, an edge of G can be an
extreme edge for its two end-points. The key result we will
need about this graph G∗ is that it is 3-connected in the
following directed sense:

Lemma 4.3. Let G∗ be a directed graph obtained as above.
Then, for any interior vertex v and for any pair of forbidden
vertices u and w there is a directed path in G∗ from v to the
boundary not passing through u or w.

This means that if G∗ has a cutset consisting of two ver-
tices, these two vertices must be on the boundary and G∗ is
indeed 3-connected, if the boundary is a triangle. The proof
of Theorem 4.2 then follows the same ideas of Tutte’s proof
that every 3-connected planar graph has an embedding with
convex faces, see [32, pp. 122–132].

Time Analysis. In the proof of Theorem 4.2 (as in the orig-
inal proof of Tutte’s theorem for convex drawings of planar
graphs), one writes a linear equation for each interior vertex,
which says that the position of the vertex is the average of
its (out-)neighbors. The position of the boundary vertices is
fixed. It has been observed [7, Section 3.4] that the planar
“structure” of this system of equations allows it to be solved
in O(n3/2) time, using the

√
n-separator theorem for planar

graphs in connection with the method of Generalized Nested
Dissection (see [24, 25] or [33, Section 2.1.3.4]), or even in
time O(M(

√
n)), where M(n) = O(n2.375) is the time to

multiply two n × n matrices.

5. PLANAR RIGIDITY CIRCUITS
In this brief final section we sketch the extension of this

result to rigidity circuits. A full version and applications are
deferred to the full paper. The relevance of this extension is
that it shows the possibility of having guaranteed linear em-
beddings for graphs that go beyond the minimal structure
of Laman graphs. It is an open question how far into the
dependent realm one can go, while guaranteeing straight-
line pseudo-triangular embeddings. The rigidity circuits are
minimally dependent, in the rigidity matroid where the max-
imal independent sets are the Laman graphs. See [16] for
the matroid-theoretic roots of this terminology.

A generic rigidity circuit is a simple graph with 2n − 2
edges with the property that the removal of any edge pro-
duces a Laman graph. It has been shown recently [4] that
3-connected rigidity circuits admit a simple type of Hen-
neberg construction using only Henneberg II.

A pseudo-triangulation circuit is a planar rigidity circuit
embedded as a pseudo-triangulation. It is necessarily non-
pointed, because pointed pseudo-triangulations are maximal
pointed sets of non-crossing edges on any given planar point
set [37]. See Figure 10 for an example of a rigidity circuit
(a Hamiltonian polygon triangulation with an added edge
between its two vertices of degree 2) and its embedding as a
pseudo-triangulation with exactly one non-pointed vertex.

Theorem 5.1. The analogue of the Main Result is true
for embeddings of planar rigidity circuits: any planar generic

Figure 10: A rigidity circuit and one of its em-
beddings as a pseudo-triangulation with exactly one
non-pointed vertex.

rigidity circuit can be embedded as a pseudo-triangulation
with one non-pointed vertex.

Proof. (Sketch) We use the Berg-Jordán [4] inductive
construction for 3-connected circuits and an inductive ex-
tension lemma similar to the one for Laman graphs. We
then rely on Tutte’s decomposition of 2-connected graphs
into 3-connected components.

We may give an alternate proof by starting out with a
combinatorial pseudo-triangulation for the rigidity circuit C
having one unmarked vertex v. Deleting an edge e incident
to v and labeling, at v, the angle between the edges to the
left and right of the deleted edge as R, induces a combinato-
rial pseudo-triangulation on G = C−e. The edge e is added
in the construction of G∗ and the resulting embedding of C
has the property that only vertex v is nonpointed.
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