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Partitioning a Polygon into Two Mirror Congruent Pieces

Dania El-Khechen∗ Thomas Fevens∗ John Iacono† Günter Rote‡

1 Introduction

Polygon decomposition problems are well studied in the
literature [6], yet many variants of these problems remain
open. In this paper, we are interested in partitioning
a polygon into mirror congruent pieces. Symmetry de-
tection algorithms solve problems of the same flavor by
detecting all kinds of isometries in a polygon, a set of
points, a set of line segments and some classes of polyhe-
dra [2]. Two open problems with unknown complexity
were posed in [2]: the minimum symmetric decomposi-
tion (MSD) problem and the minimal symmetric par-
tition (MSP) problem. Given a set D in Rd (d ∈ 2, 3),
the goal is to find a set of symmetric (nondisjoint for
MSD and disjoint for MSP) subsets {D1, D2, . . . , Dk}
of D such that the union of the Di is D and k is min-
imum. The following problem is a decision version of
MSP where k = 2:
Problem 1 Given a polygon P with n vertices, compute
a partition of P into two (properly or mirror) congruent
polygons P1 and P2, or indicate such a partition does
not exist.

Erikson claims to solve the aforementioned problem in
O(n3) [4]. Rote observes that a careful analysis of Erik-
son’s algorithm yields a O(n3 log n) running time for
proper congruence and he shows that the combinatorial
complexity of an explicit representation of the solution
in the case of mirror congruence cannot be bounded as
a function of n [7]. Rote also gives a counterexample
where the algorithm fails for a polygon with holes. An
O(n2 log n) algorithm to solve the problem for properly
congruent and possibly nonsimple P1 and P2 was pre-
sented recently [3]. It was also conjectured that the
output can be restricted to simple polygons without an
increase in the runtime [3]. In this paper, we present
an O(n3) algorithm to solve the problem for mirror con-
gruent and possibly nonsimple polygons P1 and P2. In
other words, our algorithm is able to produce solutions
unbounded by n in a time polynomial in n using an
implicit representation of the output. Note that we can
restrict the output to simple polygons if we allow an
additional linear factor for intersection checking.
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2 Preliminaries

Two polygons are mirror congruent (properly congruent)
if they are equivalent up to reflection or glide reflection
(rotations and translations). Note that a glide reflection
is a reflection followed by a translation parallel to the
reflection axis. A reflection along an axis g followed by a
rotation or a translation is a reflection around an axis g′.
In this paper, we focus on mirror congruent polygons.
Congruence transforms involving glide reflection are de-
noted by T = (g,v) where g is the axis of reflection and
v is the vector of translation if any. Let T−1 = (g,−v).
We refer to the boundary of a polygon P by δ(P ) and
we normalize P to have unit perimeter. A polyline that
is a subset of δ(P ) is specified by a start point and an
endpoint on δ(P ) (not necessarily vertices) and is always
considered to be directed clockwise around P . A poly-
line can be viewed as an alternating sequence of lengths
and angles, which always begins and ends with a length.
Two polylines are congruent if they are represented by
the same sequence, two polylines are flip congruent if
they are represented by the same sequence after replac-
ing all of the angles αi in one by 2π − αi and reversing
the order of the sequence, and two polylines are mirror
congruent if they are represented by the same sequence
after reversing the order of the sequence. Let ∠

P
a be the

interior angle of a point a on a polygon P . Let ab be the
line segment with endpoints a and b and P [a . . b] be the
polyline connecting a to b on P in clockwise order. We

use
FLIP∼= to denote flip congruence,

MIRROR∼= to denote mir-

ror congruence. Observe that P [a . . b]
FLIP∼= P [b . . a]. Let

vd(a, b) be the vertical distance between the two points
a and b. A partitioning of P , if it exists, is a solution to
Problem 1 and is denoted by S = (P1, P2). It consists
of polygons P1 and P2 such that there exists a transfor-
mation where TS(P1) = P2. The split polyline, denoted
by Split(S), partitions the polygon P into P1 and P2.
We are interested in a split polyline that has minimum
complexity. When P is symmetric, we call the partition
trivial and the problem reduces to symmetry detection
which has been solved in linear time in [2]. Note if TS is
a reflection it can be determined by one pair of points
(pi, TS(pi)) such that pi ∈ δ(P1) and TS(pi) ∈ δ(P2).
If TS is glide reflection, it can be determined by two
pairs of points (pi, TS(pi)) and (pj , TS(pj)) such that pi

and pj belong to δ(P1) and TS(pi) and TS(pj) belong
to δ(P2). We say that two subsets s1 ⊆ P1 and s2 ⊆ P2
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of congruent polygons P1 and P2 are transformationally
congruent with respect to congruence transformation TS

if TS(s1) = s2.

3 Results

3.1 Preprocessing

Congruence of polylines is detected by string match-
ing. Our string representation of polygons and polylines
yields Lemma 2.

Lemma 2 ([5]) Given a polygon P , with O(n2) prepro-

cessing and space, queries of the form P [a . . b]
?

MIRROR∼=

P [c . . d] and P [a . . b]
?

FLIP∼= P [c . . d] can be answered in
constant time.

Let the length of a polyline P [a . . b] (denoted dP (a, b))
be the sum of the lengths of all the segments that form
this polyline. Let d−1

P (a, x) be the point b such that
dP (a, b) = x. That is, it is the point on δ(P ) obtained
by walking x units clockwise around δ(P ) from a. Note
that d−1

P (a, 0.5) = b is equivalent to d−1
P (b, 0.5) = a.

Lemma 3 ([1]) Given a polygon P , with O(n) prepro-
cessing and space, the functions dP and d−1

P can be
computed in constant time if the endpoints are vertices
of the given polygon, and in O(log n) if they are not,
using standard point location techniques.

3.2 Algorithms

Lemma 4 Assume that P can be nontrivially parti-
tioned into two mirror congruent polygons where S =
(P1, P2) and let b and e denote the endpoints of the split
polyline Split(S) then either P1[b . . e] is disjoint from
the polyline TS (P1[b . . e]), TS (P1[b . . e]) partially over-
laps with P1[b . . e], or P1[b . . e] and P2[e . . b] are line
segments.

Proof. Suppose that TS (P1[b . . e]) = P2[e . . b]. We

know that by definition P1[b . . e]
FLIP∼= P2[e . . b]. There-

fore, the polyline P1[b . . e] and its flip congruent
P2[e . . b] are mirror congruent which obviously can-
not happen unless P1[b . . e] and P2[e . . b] are line
segments. �

In section 3.3, we present an algorithm for the case
where Split(S) is disjoint from TS (Split(S)) (see Fig-
ure 1) and in section 3.4, we present an algorithm for
the case where they partially overlap (see Figure 2). All
the proofs in the following sections are omitted due to
space constraints.

3.3 Disjoint split polyline

In this section, we assume that if a solution exists then
the split polyline Split(S) is disjoint from its mirror image
by the transformation TS . We first show the necessary
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Figure 1: Polygons partitioned into two simple mirror
congruent pieces with a nonoverlapping split polyline

conditions for the existence of a solution in Lemma 5,
namely that a solution S = (P1, P2) can be specified by
a six-tuple of points on δ(P ) satisfying some properties.
In Lemma 6, we show how to verify if a given six-tuple
specifies a valid solution or not. In Lemmas 7 and 8,
we show how, given two points of a solution six-tuple,
we can find the rest of the points in the six-tuple. In
Theorem 1, given that (by Lemma 5) at least four points
of a solution six-tuple are vertices, we present an O(n3)
algorithm that solves Problem 1 for the case discussed
in this section.

For Lemmas 5, 6, 7 and 8, assume that P can be
nontrivially partitioned into two mirror congruent poly-
gons P1 and P2 where S = (P1, P2) and Split(S) is
disjoint from TS (Split(S)). Let d = TS(b), c = TS(e),
f = T−1

S (b), and a = T−1
S (e).

Lemma 5 The following facts hold (see Figure 1):
(a, b, c, d, e, f) appear in clockwise order on δ(P ); P [f . .

a]
MIRROR∼= P2[e . . b]; P [c . . d]

MIRROR∼= P1[b . . e]; P [a . .

b]
MIRROR∼= P [d . . e]; P [b . . c]

MIRROR∼= P [e . . f ]; P [f . .

a]
FLIP∼= P [c . . d]; ∠

P
a + ∠

P
c = ∠

P1

e + ∠
P2

e; ∠
P

f + ∠
P

d =

∠
P1

b+∠
P2

b; at least two of the points in {a, c, e} and two of

the points in {b, d, f} are vertices of P ; d−1
P (a, 0.5) = d;

d−1
P (b, 0.5) = e; and d−1

P (c, 0.5) = f .

Lemma 6 Given the preprocessing in Lemma 2 and
the positions of six points (a, b, c, d, e, f) on δ(P ), it can
be checked that the points specify a valid solution S =
(P1, P2) for the disjoint split polyline case of Problem 1
in constant time.

Lemma 7 The points (a, b, c, d, e, f) are as defined in
Lemma 5. Given the position of two points of {a, c, e} or
{b, d, f} and the preprocessing in Lemma 3, the positions
of all six points (a, b, c, d, e, f) can be computed O(log n)
time except in the case where both b and e are not vertices
of P .

Lemma 8 Given the positions of {a, c, d, f}, the fact
that both b and e are not vertices (equivalent to
{a, c, d, f} being all vertices by Lemma 5) and the pre-
processing in Lemma 2, the positions of b and e can be
computed O(n) time.
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Theorem 1 Given a simple polygon P and given that
Split(S), if it exists, is disjoint from TS (Split(S)), a
solution S = (P1, P2) to Problem 1 can be found in
O(n3) time if and only if P can be partitioned into two
congruent polygons.

3.4 Partially overlapping split polyline

In this section, we assume that if a solution S exists then
the split polyline Split(S) is partially overlapping with
its mirror image by the transformation TS . We first show
the necessary conditions for the existence of a solution
in Lemma 9, namely that a solution S = (P1, P2) can
be specified by a six-tuple of points on δ(P ) that obey
one of two sets of properties (which we call case 1 and
case 2). In Lemma 10, we show how to verify if a given
six-tuple specifies a valid solution or not. In Lemmas 11
and 12, we show how, in each one of the two cases, given
two points of a solution six-tuple, we can find the rest
of the six-tuple points. In Theorem 2, given that (by
Lemma 9) at least four points of a solution six-tuple
are vertices, we present an O(n3) algorithm that solves
Problem 1 for the case discussed in this section.

For Lemmas 9, 10, 11 and 12, assume that P can be
nontrivially partitioned into two mirror congruent poly-
gons P1 and P2 where Split(S) is partially overlapping
with TS (Split(S)). Let TS(e) = c, T−1

S (b) = f . Assume
without loss of generality that the axis of glide reflection
g is vertical.

Lemma 9 The following facts hold (see Figure 2):

P [e . . f ]
MIRROR∼= P [b . . c]; P1[f . . e]

MIRROR∼= P2[c . . b];
there exists two points a and d on δ(P ) such that ei-

ther P [f . . a]
MIRROR∼= P [c . . d], P [a . . b]

FLIP∼= P [d . . e],
∠
P

(2π − ∠
P

d)+∠
P

f = ∠
P1

b+ ∠
P2

b and ∠
P

c+∠
P

(2π − ∠
P

a) =

∠
P1

e + ∠
P2

e (this is case 1, see the left polygon in Fig-

ure 2) or P [f . . a]
FLIP∼= P [c . . d], P [a . . b]

MIRROR∼= P [d . . e],
∠
P

d+∠
P

f = ∠
P1

b+ ∠
P2

b and ∠
P

c+∠
P

a = ∠
P1

e+ ∠
P2

e (this is

case 2 see the right polygon in Figure 2); at least two of
the points in {a, c, e} and two of the points in {b, d, f}
are vertices of P ; if x = (vd(b, e)/vd(f, b)) mod vd(c, d)
then for case 1, x is an odd number and for case 2, x is
even; (a, b, c, d, e, f) appear in clockwise order on δ(P );
d−1

P (a, 0.5) = d; d−1
P (b, 0.5) = e and d−1

P (c, 0.5) = f .

Lemma 10 Given the preprocessing in Lemma 2 and
the positions of six points (a, b, c, d, e, f) on δ(P ), it
can be checked that the points specify a valid solution
S = (P1, P2) for the partially overlapping split polyline
case of Problem 1 in constant time.

Lemma 11 The points (a, b, c, d, e, f) are as defined in
Lemma 9. Given the position of any two of {a, c, e} or
{b, d, f} and the preprocessing in Lemma 3, the posi-
tions of all six points (a, b, c, d, e, f) can be computed in
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Figure 2: Polygons partitioned into two simple mirror
congruent pieces with an overlapping split polyline.
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Figure 3: Case 1a (left) where {a, c, d, f} are vertices
and {b, e} are not. Case 1b (right) where {a, b, e, d} are
vertices and {c, f} are not.

O(log n) time except in the cases where either both b and
e or both c and f are not vertices (Figures 3 and 4).

Lemma 12 Given the positions of {a, c, d, f} and the
preprocessing in Lemma 2, the positions of b and e can
be computed in O(n) time for case 1a and 1b. Similarly,
given the positions of {a, b, d, e} and the preprocessing
in Lemma 2, the positions of c and f can be computed
in O(n) time in cases 2a and 2b.

Theorem 2 Given a simple polygon P and given
that Split(S), if it exists, is partially overlapping with
TS (Split(S)), a solution S = (P1, P2) to Problem 1 can
be found in O(n3) if and only if P can be partitioned
into two congruent polygons.
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Figure 4: Case 2a (left) where {a, b, e, d} are vertices
and {c, f} are not. Case 2b (right) where {a, c, d, f} are
vertices and {b, e} are not.

4 Conclusion

Theorem 3 Given a simple polygon P , we can decide if
it can be partitioned into two mirror congruent polygons
and find a solution S = (P1, P2) to Problem 1, if it exists,
in O(n3) time.
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