
Partitioning a Polygon into Two Mirror Congruent Pieces

Dania El-Khechen
∗

Thomas Fevens
∗

John Iacono
†

1 Introduction

Polygon decomposition problems are well studied in
the literature [6], yet many variants of these problems
remain open. In this paper, we are interested in
partitioning a polygon into mirror congruent pieces.
Symmetry detection algorithms solve problems of the
same flavor by detecting all kinds of isometries in a
polygon, a set of points, a set of line segments and
some classes of polyhedra [2]. Two open problems with
unknown complexity were posed in [2]: the minimum
symmetric decomposition (MSD) problem and the
minimal symmetric partition (MSP) problem. Given
a set D in Rd (d ∈ 2, 3), the goal is to find a set
of symmetric (non-disjoint for MSD and disjoint for
MSP) subsets {D1, D2, . . . , Dk} of D such that the
union of the Di is D and k is minimum. The following
problem is a decision version of MSP where k = 2:

Problem 1 Given a polygon P with n vertices, pro-

duce an algorithm that partitions it into two proper
or mirror congruent polygons P1 and P2, or indicate

a partition is not possible with runtime polynomial in

n.

Erikson claims to solve the aforementioned problem
in O(n3) [4]. Rote observes that a careful analysis
of Erikson’s algorithm yields a O(n3 log n) running
time for proper congruence and he shows that the
combinatorial complexity of an explicit representa-
tion of the solution in the case of mirror congruence

cannot be bounded as a function of n [7]. Rote also
gives a counterexample where the algorithm fails for
a polygon with holes. An O(n2 log n) algorithm to
solve the problem for properly congruent and possibly
non-simple P1 and P2 was presented recently [3]. It
was also conjectured that the output can be restricted
to simple polygons without an increase in the run-
time [3]. In this paper, we present an O(n3) algorithm
to solve the problem for mirror congruent and possibly

∗
Department of Conputer Science and Software Engineering, Concordia

University, Montréal, Québec, Canada.

†
Department of Computer and Information Science, Polytechnic Univer-

sity, 5 Metrotech Center, Brooklyn NY 11201 USA. http://john.poly.edu. Re-

search partially supported by NSF Grants CCF-0430849 and OISE-0334653

and by an Alfred P. Sloan Research Fellowship. Research partially completed

while the author was on sabbatical at the School of Computer Science, Mcgill

University, Montréal, Québec, Canada.

non-simple P1 and P2. In other words, our algorithm
is able to produce solutions unbounded by n in a time
polynomial in n using an implicit representation of
the output. Note that we can restrict the output to
simple polygons if we allow an additional linear factor
for intersection checking.

2 Preliminaries

Two polygons are mirror congruent (properly congru-

ent) if they are equivalent up to reflection or glide
reflection (rotations and translations). Note that a
glide reflection is a reflection followed by a translation
parallel to the reflection axis. A reflection along an
axis g followed by a rotation or a translation is a re-
flection around an axis g′. In this paper, we focus on
mirror congruent polygons. Congruence transforms

involving glide reflection are denoted by T = (g,v)
where g is the axis of reflection and v is the vector
of translation if any. Let T−1 = (g,−v). We refer
to the boundary of a polygon P by δ(P) and we nor-
malize P to have unit perimeter. A polyline that
is a subset of δ(P) is specified by a start point and
an endpoint on δ(P) (not necessarily vertices) and is
always considered to be directed clockwise around P .
A polyline can be viewed as an alternating sequence

of lengths and angles, which always begins and ends

with a length. Two polylines are congruent if they
are represented by the same sequence, two polylines
are flip-congruent if they are represented by the same
sequence after replacing all of the angles αi in one by
2π − αi and reversing the order of the sequence, and
two polylines are mirror congruent if they are repre-

sented by the same sequence after reversing the order
of the sequence. Let 6

P
a be the interior angle of a point

a on a polygon P . Let ab be the line segment with

endpoints a and b and
→

ab
P

be the polyline connecting

a to b on P in clockwise order. We use
FLIP
∼= to denote

flip-congruence,
MIRROR

∼= to denote mirror-congruence.

Observe that
→

ab
P

FLIP
∼=

→

ba
P

. Let vd(a, b) be the vertical

1

http://john.poly.edu

distance between the two points a and b. A partition-
ing of P , if it exists, is a solution to Problem 1 and is
denoted by S = (P1, P2). It consists of polygons P1

and P2 such that there exists a transformation where
TS(P1) = P2. The split-polyline, denoted by Split(S),
partitions the polygon P into P1 and P2. We are inter-
ested in a split polyline that has minimum complexity
but is not a single line segment. In this case, we call
the partition trivial and the problem reduces to sym-
metry detection which has been solved in linear time
in [2]. Note if TS is a reflection it can be determined
by one pair of points (pi, TS(pi)) such that pi ∈ δ(P1)
and TS(pi) ∈ δ(P2). If TS is glide reflection, it can
be determined by two pairs of points (pi, TS(pi)) and
(pj , TS(pj)) such that pi and pj belong to δ(P1) and
TS(pi) and TS(pj) belong to δ(P2). We say that two
subsets s1 ⊆ P1 and s2 ⊆ P2 of congruent polygons P1

and P2 are transformationally congruent with respect
to congruence transformation TS if TS(s1) = s2.

3 Results

3.1 Preprocessing

Congruence of polylines is detected by string matching.
Our string representation of polygons and polylines
yields Lemma 2.

Lemma 2 ([5]) Given a polygon P , with O(n2) pre-

processing and space, queries of the form
→

ab
P

?

MIRROR

∼=
→

cd
P

and
→

ab
P

?

FLIP

∼=
→

cd
P

can be answered in constant time.

Let the length of a polyline
→

ab
P

(denoted dP (a, b))

be the sum of the lengths of all the segments that
forms this polyline.

Lemma 3 ([1]) Let d−1

P (a, x) be the point b such that
dP (a, b) = x. That is, it is the point on δ(P) obtained
by walking x units clockwise around δ(P) from a.
Given a polygon P , with O(n) preprocessing and space,
the functions dP and d−1

P can be computed in constant
time if the endpoints are vertices of the given poly-
gon, and in O(log n) if they are not, using standard
point location techniques. Note that d−1

P (a, 0.5) = b is
equivalent to d−1

P (b, 0.5) = a.

3.2 Algorithms

Lemma 4 Assume that P can be nontrivially par-
titioned into two mirror congruent polygons where
S = (P1, P2) and let b and e denote the endpoints of

the split-polyline Split(S) then either
→

be
P1

is disjoint

from the polyline TS

(

→

be
P1

)

, TS

(

→

be
P1

)

partially overlaps

with
→

be
P1

, or
→

be
P1

and
→

eb
P2

are line segments.

Proof: Suppose that TS

(

→

be
P1

)

=
→

eb
P2

. We know that

by definition
→

be
P1

FLIP
∼=

→

eb
P2

. Therefore, the polyline
→

be
P1

and its flip-congruent
→

eb
P2

are mirror congruent which

obviously cannot happen unless
→

be
P1

and
→

eb
P2

are line

segments. 2

In section 3.3, we present an algorithm for the
case where Split(S) is disjoint from TS (Split(S)) (see
Figure 1) and in section 3.4, we present an algorithm
for the case where they partially overlap (see Figure 2).
All the proofs in the following sections are omitted
due to space constraints. A full version of the paper

is appended.

3.3 Disjoint split-polyline

In this section, we assume that if a solution exists then
the split-polyline Split(S) is disjoint from its mirror
image by the transformation TS . We first show the
necessary conditions for the existence of a solution in
Lemma 5, namely that a solution S = (P1, P2) can be
specified by a six-tuple of points on δ(P) satisfying
some properties. In Lemma 6, we show how to verify
if a given six-tuple specifies a valid solution or not. In
Lemmas 7 and 8, we show how, given two points of a
solution six-tuple, we can find the rest of the points in
the six-tuple. In Theorem 9, given that (by Lemma 5)
at least four points of a solution six-tuple are vertices,
we present an O(n3) algorithm that solves Problem 1
for the case discussed in this section.

For Lemmas 5, 6, 7 and 8, assume that P can be
nontrivially partitioned into two mirror congruent
polygons P1 and P2 where S = (P1, P2) and Split(S)
is disjoint from TS (Split(S)) and let d = TS(b), c =
TS(e), f = T−1

S (b), and a = T−1

S (e).

Lemma 5 The preprocessing described in Lemma 3

assumed, the following facts hold (see figure 1): a, b, c,

d, e, f appear in clockwise order on δ(P);
→

fa
P

MIRROR

∼=
→

eb
P2

;

→

cd
P

MIRROR

∼=
→

be
P1

;
→

ab
P

MIRROR

∼=
→

de
P

;
→

bc
P

MIRROR

∼=
→

ef
P

;
→

fa
P

and
→

eb
P2

are

mutually flip-congurent from
→

cd
P

and
→

be
P1

; 6

P
a + 6

P
c =

6

P1

e + 6

P2

e; 6

P
f + 6

P
d = 6

P1

b + 6

P2

b; at least two of the

2

c

d

b

ef

a

f d

a b

e

c

Figure 1: Polygons partitioned into two simple mirror-
congruent pieces with a non-overlapping split-polyline

points in {a, c, e} and two of the points in {b, d, f} are
vertices of P ; d−1

P (a, 0.5) = d; d−1

P (b, 0.5) = e; and
d−1

P (c, 0.5) = f .

Lemma 6 Given the preprocessing in Lemma 2 and

a solution S = (P1, P2) of the disjoint split-polyline
case of Problem 1, specified by the positions of the
points {a, b, c, d, e, f} as described in Lemma 5, the
validity of this solution can be verified in constant
time.

Lemma 7 The points {a, b, c, d, e, f} are as defined
in Lemma 5. Given the position of two points of
{a, c, e} or {b, d, f} and the preprocessing in Lemma 3,
the positions of all six points {a, b, c, d, e, f} can be
computed O(log n) time except in the case where both

b and e are not vertices of P .

Lemma 8 Given the positions of {a, c, d, f}, the fact
that both b and e are not vertices (equivalent to
{a, c, d, f} being all vertices by Lemma 5) and the
preprocessing in Lemma 2, the positions of b and e
can be computed O(n) time.

Theorem 9 Given a polygon P and given that
Split(S), if it exists, is disjoint from TS (Split(S)), a
solution S = (P1, P2) to Problem 1 can be found in
O(n3) time if and only if P can be partitioned into
two congruent polygons.

3.4 Partially overlapping split-

polyline

In this section, we assume that if a solution S exists

then the split-polyline Split(S) is partially overlap-
ping with its mirror image by the transformation
TS . We first show the necessary conditions for the
existence of a solution in Lemma 10, namely that a
solution S = (P1, P2) can be specified by a six-tuple of
points on δ(P) that obey one of two sets of properties
(which we call case 1 and case 2). In Lemma 11, we
show how to verify if a given six-tuple specifies a valid

e
d

f

c

b

a

d

f

c

b

a

e

Figure 2: Polygons partitioned into two simple mirror-
congruent pieces with an overlapping split-polyline

solution or not. In Lemmas 12 and 13, we show how,
in each one of the two cases, given two points of a
solution six-tuple, we can find the rest of the six-tuple
points. In Theorem 14, given that (by Lemma 10) at
least four points of a solution six-tuple are vertices,
we present an O(n3) algorithm that solves Problem 1
for the case discussed in this section.

For Lemmas 10, 11, 12 and 13, assume that P can
be nontrivially partitioned into two mirror congru-
ent polygons P1 and P2 where Split(S) is partially
overlapping with TS (Split(S)) and let TS(e) = c,
T−1

S (b) = f .

Lemma 10 The preprocessing described in Lemma 3
assumed, we can conclude the following facts:
→

ef
P

MIRROR

∼=
→

bc
P

;
→

fe
P1

MIRROR

∼=
→

cb
P2

; there exist two points a and d

on δ(P) such that either
→

fa
P

MIRROR

∼=
→

cd
P

and
→

ab
P

FLIP

∼=
→

de
P

and

6

P
(2π − 6

P
d)+ 6

P
f = 6

P1

b+ 6

P2

b and 6

P
c+ 6

P
(2π − 6

P
a) =

6

P1

e+ 6

P2

e (this is case 1, see the left polygon in figure 2)

or
→

fa
P

FLIP

∼=
→

cd
P

and
→

ab
P

MIRROR

∼=
→

de
P

and 6

P
d+ 6

P
f = 6

P1

b+ 6

P2

b,

6

P
c+ 6

P
a = 6

P1

e+ 6

P2

e (this is case 2 see the right poly-

gon in figure 2); at least two of the points in {a, c, e}
and two of the points in {b, d, f} are vertices of P ;
Let x = (vd(b, e)/vd(f, b)) mod vd(c, d), then for case
1, x is an odd number and for case 2, x is even;
a, b, c, d, e, f appear in clockwise order on δ(P);
d−1

P (a, 0.5) = d; d−1

P (b, 0.5) = e and d−1

P (c, 0.5) = f .

3

a

d
e

c

bb

c

d

b

f

a

f

e

Figure 3: Left: Case 1a where {a, c, d, f} are vertices
and {b, e} are not. Right: Case 1b where {a, b, e, d}
are vertices and {c, f} are not

Lemma 11 Given the preprocessing in Lemma 2 and
a solution S = (P1, P2) of the partially overlapping
split-polyline case of Problem 1, specified by the po-
sitions of the points {a, b, c, d, e, f} as described in
Lemma 5, the validity of this solution can be verified

in constant time.

Lemma 12 The points {a, b, c, d, e, f} are as defined
in Lemma 10. Given the position of any two of
{a, c, e} or {b, d, f} and the preprocessing in Lemma 3,
the positions of all six points {a, b, c, d, e, f} can be
computed in O(log n) time except in the cases where

either both b and e or both c and f are not vertices
(figures 3 and 4).

Lemma 13 Given the positions of {a, c, d, f} and the
preprocessing in Lemma 2, the positions of b and e
can be computed in O(n) time for case 1a and 1b.
Similarly, given the positions of {a, b, d, e} and the
preprocessing in Lemma 2, the positions of c and f
can be computed in O(n) time in cases 2a and 2b.

Theorem 14 Given a polygon P and given that
Split(S), if it exists, is partially overlapping with
TS (Split(S)), a solution S = (P1, P2) to Problem 1
can be found in O(n3) if and only if P can be parti-
tioned into two congruent polygons.

4 Conclusion

Theorem 15 Given a polygon P , a solution S =
(P1, P2) to Problem 1 can be found in O(n3) if and
only if P can be partitioned into two mirror congruent
polygons.

f

a
b

c

a

f

e

d
c

e

b

d

Figure 4: Left: Case 2a where {a, b, e, d} are vertices
and {c, f} are not. Right: Case 2b where {a, c, d, f}
are vertices and {b, e} are not

References
[1] R. P. Boland and J. Urrutia. Polygon area problems.

In Canadian Conference on Computational Geometry
(CCCG), pages 159–162, 2000.

[2] P. Eades. Symmetry finding algorithms. In G.T. Toussaint,

editor, Computational Morphology, pages 41–51. North
Holland, 1988.

[3] D. El-Khechen, T. Fevens, J. Iacono, and G. Rote. Parti-
tioning a polygon into two congruence pieces. Proceedings
of the Kyoto International Conference on Computational

Geometry and Graph Theory, page ?, 2007.

[4] K. Erikson. Splitting a polygon into two congruent pieces.

The American Mathematical Monthly, 103(5):393–400,
1996.

[5] M. Farach and S. Muthukrishnan. Perfect hashing
for strings: formalization, algorithms and open prob-
lems. In Symposium on Combinatorial Pattern Match-
ing (CPM), 1996. http://www.cs.rutgers.edu/∼farach/

pubs/tmp.html.

[6] M. Keil. Polygon decomposition. In J.R. Sack and J. Urru-

tia, editors, Handbook of Computational Geometry, chap-

ter 11, pages 491–518. Elsevier, 2000.

[7] G. Rote. Some thoughts about decomposing a poly-
gon into two congruent pieces. Unpublished Draft,
page.mi.fu-berlin.de/∼rote/Papers/postscript/

Decomposition+of+a+polytope+into+two+congruent+

pieces.ps, 1997.

4

http://www.cs.rutgers.edu/~farach/pubs/tmp.html
http://www.cs.rutgers.edu/~farach/pubs/tmp.html
page.mi.fu-berlin.de/~rote/Papers/postscript/ Decomposition+of+a+polytope+into+two+congruent+pieces.ps
page.mi.fu-berlin.de/~rote/Papers/postscript/ Decomposition+of+a+polytope+into+two+congruent+pieces.ps
page.mi.fu-berlin.de/~rote/Papers/postscript/ Decomposition+of+a+polytope+into+two+congruent+pieces.ps

Partitioning a Polygon into Two Mirror Congruent Pieces

Dania El-Khechen
∗

Thomas Fevens
∗

John Iacono
†

1 Introduction

Polygon decomposition problems are well studied in the literature [6], yet many variants of these problems
remain open. In this paper, we are interested in partitioning a polygon into mirror congruent pieces. Symmetry
detection algorithms solve problems of the same flavor by detecting all kinds of isometries in a polygon, a
set of points, a set of line segments and some classes of polyhedra [2]. Two open problems with unknown
complexity were posed in [2]: the minimum symmetric decomposition (MSD) problem and the minimal
symmetric partition (MSP) problem. Given a set D in Rd (d ∈ 2, 3), the goal is to find a set of symmetric
(non-disjoint for MSD and disjoint for MSP) subsets {D1, D2, . . . , Dk} of D such that the union of the Di is
D and k is minimum. The following problem is a decision version of MSP where k = 2:

Problem 1 Given a polygon P with n vertices, produce an algorithm that partitions it into two (proper or
mirror) congruent polygons P1 and P2, or indicate a partition is not possible with runtime polynomial in n.

Erikson claims to solve the aforementioned problem in O(n3) [4]. Rote observes that a careful analysis
of Erikson’s algorithm yields a O(n3 log n) running time for proper congruence and he shows that the
combinatorial complexity of an explicit representation of the solution in the case of mirror congruence cannot
be bounded as a function of n [7]. Rote also gives a counterexample where the algorithm fails for a polygon
with holes. An O(n2 log n) algorithm to solve the problem for properly congruent and possibly non-simple
P1 and P2 was presented recently [3]. It was also conjectured that the output can be restricted to simple
polygons without an increase in the runtime [3]. In this paper, we present an O(n3) algorithm to solve the
problem for mirror congruent and possibly non-simple P1 and P2. In other words, our algorithm is able to
produce solutions unbounded by n in a time polynomial in n using an implicit representation of the output.
Note that we can restrict the output to simple polygons if we allow an additional linear factor for intersection
checking.

2 Preliminaries

Our notions of congruence follow those in [4]. Two polygons are mirror congruent (properly congruent) if
they are equivalent up to reflection or glide reflection (rotations and translations). Note that a glide reflection
is a reflection followed by a translation parallel to the reflection axis. A reflection along an axis g followed
by a rotation or a translation is a reflection around an axis g′. In this paper, we focus on mirror congruent
polygons. Congruence transforms involving glide reflection are denoted by T = (g,v) where g is the axis of

reflection and v is the vector of translation if any. Let T−1 = (g,−v). We refer to the boundary of a polygon
P by δ(P) and we normalize P to have unit perimeter. A polyline that is a subset of δ(P) is specified by
a start point and an endpoint on δ(P) (not necessarily vertices) and is always considered to be directed

∗Department of Conputer Science and Software Engineering, Concordia University, Montréal, Québec, Canada.
†Department of Computer and Information Science, Polytechnic University, 5 Metrotech Center, Brooklyn NY 11201 USA.

http://john.poly.edu. Research partially supported by NSF Grants CCF-0430849 and OISE-0334653 and by an Alfred P.

Sloan Research Fellowship. Research partially completed while the author was on sabbatical at the School of Computer Science,

Mcgill University, Montréal, Québec, Canada.

1

http://john.poly.edu

clockwise around P . A polyline can be viewed as an alternating sequence of lengths and angles, which always
begins and ends with a length. Two polylines are congruent if they are represented by the same sequence, two
polylines are flip-congruent if they are represented by the same sequence after replacing all of the angles αi

in one by 2π − αi and reversing the order of the sequence, and two polylines are mirror congruent if they are
represented by the same sequence after reversing the order of the sequence. Let 6

P
a be the interior angle of a

point a on a polygon P . Let ab be the line segment with endpoints a and b and
→

ab
P

be the polyline connecting

a to b on P in clockwise order. We use
FLIP

∼= to denote flip-congruence,
MIRROR

∼= to denote mirror-congruence.

Observe that
→

ab
P

FLIP

∼=
→

ba
P

. Let vd(a, b) be the vertical distance between the two points a and b. Let cw(a) and

ccw(a) denote respectively the segments incident to a clockwise and counterclockwise around δ(P).
A partitioning of P , if it exists, is a solution to Problem 1 and is denoted by S = (P1, P2). It consists of

polygons P1 and P2 such that there exists a transformation where TS(P1) = P2. The split-polyline, denoted
by Split(S), partitions the polygon P into P1 and P2. We are interested in a split polyline that has minimum
complexity but is not a single line segment. In this case, we call the partition trivial and the problem
reduces to symmetry detection which has been solved in linear time in [2]. Note if TS is a reflection it can be
determined by one pair of points (pi, TS(pi)) such that pi ∈ δ(P1) and TS(pi) ∈ δ(P2). If TS is glide reflection,
it can be determined by two pairs of points (pi, TS(pi)) and (pj , TS(pj)) such that pi and pj belong to δ(P1)
and TS(pi) and TS(pj) belong to δ(P2). We say that two subsets s1 ⊆ P1 and s2 ⊆ P2 of congruent polygons
P1 and P2 are transformationally congruent with respect to congruence transformation TS if TS(s1) = s2.

3 Results

3.1 Preprocessing

Congruence of polylines is detected by string matching. Our string representation of polygons and polylines
yields Corollary 3.

Theorem 2 ([5]) Given a string R of length n, an n × n table H of integers in the range 1 . . . n2 can be
computed in time O(n2) such that Hi,j = Hk,l iff Ri,j = Rk,l where Ri,j is the substring of R from the ith to
the jth character.

Corollary 3 Given a polygon P , with O(n2) preprocessing and space queries, of the form
→

ab
P

?
MIRROR

∼=
→

cd
P

and

→

ab
P

?
FLIP

∼=
→

cd
P

can be answered in constant time.

Let the length of a polyline
→

ab
P

(denoted dP (a, b)) be the sum of the lengths of all the segments that forms

this polyline. Given a point a ∈ δ(P), we need to locate another b ∈ δ(P) such that dP (a, b) = x.

Theorem 4 ([1]) Let a pseudo chord denote a line segment whose endpoints are on the boundary of a
polygon P . Given a simple polygon P = v0, . . . , vn−1 and a query pseudo chord α, with O(n) preprocessing

and space, the area of the polygon Pα (determined by α such that either v0 ∈ δ(Pα) or vn−1 ∈ δ(Pα)) can be
computed in constant time.

Corollary 5 Let d−1
P (a, x) be the point b such that dP (a, b) = x. That is, it is the point on δ(P) obtained by

walking x units clockwise around δ(P) from a. Given a polygon P , with O(n) preprocessing and space, the

functions dP and d−1
P can be computed in constant time if the endpoints are vertices of the given polygon, and

in O(log n) if they are not, using standard point location techniques. Note that d−1
P (a, 0.5) = b is equivalent

to d−1
P (b, 0.5) = a.

2

3.2 Algorithms

Lemma 6 Assume that P can be nontrivially partitioned into two mirror congruent polygons where S =

(P1, P2) and let b and e denote the endpoints of the split-polyline Split(S) then either
→

be
P1

is disjoint from the

polyline TS

(

→

be
P1

)

, TS

(

→

be
P1

)

partially overlaps with
→

be
P1

, or
→

be
P1

and
→

eb
P2

are line segments.

Proof: Suppose that TS

(

→

be
P1

)

=
→

eb
P2

. We know that by definition
→

be
P1

FLIP

∼=
→

eb
P2

. Therefore, the polyline
→

be
P1

and its

flip-congruent
→

eb
P2

are mirror congruent which obviously cannot happen unless
→

be
P1

and
→

eb
P2

are line segments. 2

In section 3.3, we present an algorithm for the case where Split(S) is disjoint from TS (Split(S)) (see
Figure 1) and in section 3.4, we present an algorithm for the case where they partially overlap (see Figure 2).

3.3 Disjoint split-polyline

In this section, we assume that if a solution exists then the split-polyline Split(S) is disjoint from its mirror
image by the transformation TS . We first show the necessary conditions for the existence of a solution in
Lemma 7, namely that a solution S = (P1, P2) can be specified by a six-tuple of points on δ(P) satisfying
some properties. In Lemma 8, we show how to verify if a given six-tuple specifies a valid solution or not. In
Lemmas 9 and 10, we show how, given two points of a solution six-tuple, we can find the rest of the points in
the six-tuple. Finally, in Theorem 11, given that (by Lemma 7) at least four points of a solution six-tuple are
vertices, we present an O(n3) algorithm that solves Problem 1 for the case discussed in this section.

For Lemmas 7, 8, 9 and 10, assume that P can be nontrivially partitioned into two mirror congruent
polygons P1 and P2 where S = (P1, P2) and Split(S) is disjoint from TS (Split(S)) and let d = TS(b),
c = TS(e), f = T−1

S (b), and a = T−1
S (e).

Lemma 7 The preprocessing described in Corollary 5 assumed, the following facts hold (see figure 1): a,

b, c, d, e, f appear in clockwise order on δ(P);
→

fa
P

MIRROR

∼=
→

eb
P2

;
→

cd
P

MIRROR

∼=
→

be
P1

;
→

ab
P

MIRROR

∼=
→

de
P

;
→

bc
P

MIRROR

∼=
→

ef
P

;
→

fa
P

and
→

eb
P2

are mutually flip-congurent from
→

cd
P

and
→

be
P1

; 6

P
a + 6

P
c = 6

P1

e + 6

P2

e; 6

P
f + 6

P
d = 6

P1

b + 6

P2

b; at least two of the

points in {a, c, e} and two of the points in {b, d, f} are vertices of P ; d−1
P (a, 0.5) = d; d−1

P (b, 0.5) = e; and
d−1

P (c, 0.5) = f .

Proof: Given that
→

be
P1

is a subset of δ(P1) then its flip-congruent polyline
→

eb
P2

is a subset of δ(P2). We

also know that TS(
→

be
P1

) and TS(
→

eb
P2

) are subsets of δ(P). Therefore, the order of {a, b, c, d, e, f} around δ(P)

is implied by TS . Since a = T−1
S (e) and f = T−1

S (b), then the image of
→

fa
P

by transformation TS is
→

eb
P2

.

Similarly, we show that
→

cd
P

MIRROR

∼=
→

be
P1

,
→

ab
P

MIRROR

∼=
→

de
P

and
→

bc
P

MIRROR

∼=
→

ef
P

. Since polylines
→

fa
P

and
→

cd
P

are, respectively,

mirror congruent to
→

eb
P2

and
→

be
P1

and since the mirror images of two flip-congruent polylines are themselves

flip-congruent, then
→

fa
P

FLIP

∼=
→

cd
P

. Given that a = T−1
S (e) and c = TS(e), then 6

P
a = 6

P2

e and 6

P
c = 6

P1

e. It

follows that 6

P
a + 6

P
c = 6

P1

e + 6

P2

e. Similarly, we show that 6

P
f + 6

P
d = 6

P1

b + 6

P2

b. It follows that at least two

of the points in {a, c, e} and two of the points {b, d, f} are vertices of P . Assume the preprocessing described

in Corollary 5. Observe that
→

ad
P

is composed of
→

ab
P

,
→

bc
P

and
→

cd
P

, and
→

da
P

is composed of
→

de
P

,
→

ef
P

and
→

fa
P

. Hence,

by the respective congruence of these polylines, given the position of a, the position of d can be found in

3

c

d

b

ef

a

f d

a b

e

c

Figure 1: Polygons partitioned into two simple mirror-congruent pieces with a non-overlapping split-polyline

O(log n) time by d−1
P (a, 0.5) = d.

→

be
P

is composed of
→

bc
P

,
→

cd
P

and
→

de
P

, and
→

eb
P

is composed of
→

ef
P

,
→

fa
P

and
→

ab
P

.

Hence, by the respective congruence of these polylines, given the position of e, the position of b can be found

in O(log n) time by d−1
P (e, 0.5) = b.

→

cf
P

is composed of
→

cd
P

,
→

de
P

and
→

ef
P

, and
→

fc
P

is composed of
→

fa
P

,
→

ab
P

and
→

bc
P

.

Hence, by the respective congruence of these polylines, given the position of c, the position of f can be found
in O(log n) time by d−1

P (c, 0.5) = f . 2

Lemma 8 Given the preprocessing in Corollary 3 and a solution S = (P1, P2) of the disjoint split-polyline

case of Problem 1, specified by the positions of the points {a, b, c, d, e, f} as described in Lemma 7, the validity
of this solution can be verified in constant time.

Proof: P1 and P2 are mirror congruent if their respective boundaries are mirror congruent. P1 is composed

(in clockwise order) of the polylines
→

ab
P

,
→

be
P1

,
→

ef
P

and
→

af
P

and P2 is composed (in clockwise order) of the polylines

→

de
P

,
→

eb
P2

,
→

bc
P

and
→

cd
P

. Hence, if
→

ab
P

MIRROR

∼=
→

de
P

,
→

bc
P

MIRROR

∼=
→

ef
P

,
→

fa
P

FLIP

∼=
→

cd
P

and |af | = |be| = |cd|, the solution is valid

since the boundaries of P1 and P2 consist of respectively congruent polylines and copying the reversed string

representation of
→

fa
P

onto be is possible. Otherwise, an invalid solution is reported. This verification can be

done in constant time by Corollary 3. 2

Lemma 9 The points {a, b, c, d, e, f} are as defined in Lemma 7. Given the position of two points of {a, c, e}
or {b, d, f} and the preprocessing in Corollary 5, the positions of all six points {a, b, c, d, e, f} can be computed
O(log n) time except in the case where both b and e are not vertices of P .

Proof: If (a, e) are vertices of P , then the positions of d and b are given in O(log n) time by Lemma 7. (a, e)
and (b, d) form two pair of points and their respective mirror images by TS and hence, they are sufficient to
compute the glide reflection. Since c = TS(e) and f = T−1

S (b), c and f can then be found in constant time.
Similarly, if (c, e) are vertices of P , b and f can be found in O(log n) time by Lemma 7. (b, f) and (c, e) are
also two pairs of points and their mirror images and a and d can be found in constant time. If botha and e
are not vertices and if both c and e are not vertices of P , then (a, c) are vertices and then d and f can be
found in O(log n) time. Symmetrically, if pairs (b, d) or (b, f) are vertices, then we can find all six points.
Else, similarly, (d, f) are vertices and we can then compute a and c in O(log n) time. However, in both cases
((a, c) or (d, f) are vertices) none of the obtained points form a pair of a point and its mirror image by TS .
Therefore, the problematic case occurs when {a, c, d, f} are vertices of P and both b and e are not. 2

Lemma 10 Given the positions of {a, c, d, f}, the fact that both b and e are not vertices (equivalent to
{a, c, d, f} being all vertices by Lemma 7) and the preprocessing in Corollary 3, the positions of b and e can
be computed O(n) time.

4

Proof: Since b, in this case, is not a vertex of P , cw(b) and ccw(b) have the same slope. Since TS(ccw(f)) =
cw(b) and T−1

S (cw(d)) = ccw(b)), then cw(d) and ccw(f) have the same slope. Similarly for cw(a) and ccw(c).
For every segment s in δ(P) such that s has the same slope as cw(a) and ccw(c), compute the potential b
and e (the distances of b from the endpoints of the segment that contains b should be equal respectively to
|cw(a)| and |ccw(c)| and e is half the perimeter away from b) and check, in constant time, the congruence of
polylines as stated in Lemma 8. 2

Theorem 11 Given a polygon P and given that Split(S), if it exists, is disjoint from TS (Split(S)), a
solution S = (P1, P2) to Problem 1 can be found in O(n3) time if and only if P can be partitioned into two
congruent polygons.

Proof: For every pair of vertices of P , verify it is (a, e) or (c, e) or (b, d) or (b, f) by computing the four
remaining points as shown in Lemma 9. Verify the solution as stated in Lemma 8. If none of the previous
pairs form a pair of vertices then by Lemma 9, {a, c, d, f} are vertices and both b and e are not. For every
pair of vertices of P , consider it is either (a, c) or (d, f) and compute b and e as discussed in Lemma 10. If

the verification succeeds in one the cases, then copying
→

fa
P

onto be yields a valid partition. The “if” part is

trivial. The “only if” part stems from the previous Lemmas; if the polygon is partitionable then by Lemma 7,

a, b, c, d, e, f exist and appear in that order on δ(P). The split-polyline is by construction congruent to
→

fa
P

and

→

cd
P

. The string matching checks for congruence of
→

ab
P

and
→

de
P

and for congruence of
→

bc
P

and
→

ef
P

. Therefore, P1

and P2, having the same polylines defining them, are congruent. The split-polyline might however intersect
δ(P). This will result in two congruent sub-polygons P1 and P2 that are non-simple. The algorithm clearly
runs in O(n3) time. 2

3.4 Partially overlapping split-polyline

In this section, we assume that if a solution S exists then the split-polyline Split(S) is partially overlapping
with its mirror image by the transformation TS . We first prove a sufficient condition for the periodicity of
a string needed for the rest of the section. We then show the necessary conditions for the existence of a
solution in Lemma 13, namely that a solution S = (P1, P2) can be specified by a six-tuple of points on δ(P)
that obey one of two sets of properties (which we call case 1 and case 2). In Lemma 14, we show how to
verify if a given six-tuple specifies a valid solution or not. In Lemmas 15 and 16, we show how, in each one of
the two cases, given two points of a solution six-tuple, we can find the rest of the six-tuple points. Finally, in
Theorem 17, given that (by Lemma 13) at least four points of a solution six-tuple are vertices, we present an
O(n3) algorithm that solves Problem 1 for the case discussed in this section.

For Lemmas 13, 14, 15 and 16, assume that P can be nontrivially partitioned into two mirror congruent
polygons P1 and P2 where Split(S) is partially overlapping with TS (Split(S)) and let TS(e) = c, T−1

S (b) = f .

Lemma 12 Let R be a string representing a polyline, let m(R) denote the representation of the mirror image
of this polyline by some transformation and let substr(R, i, j) denote a substring of R from index i to index

j. Given a string R such that R = r1m(r1)r2r3 for some strings r1, r2 and r3 where |r2| ≥ |r1| and such
that the substrings m(r1)r2r3 and r1m(r1)r2 represents a polyline and its mirror image, then R is a periodic

string with period r1.

Proof: Given that the substrings m(r1)r2r3 and r1m(r1)r2 represents a polyline and its mirror image, then:

m(m(r1)r2r3) = r1m(r1)r2

which implies that:
r1m(r2)m(r3) = r1m(r1)r2

5

Removing r1, we obtain:
m(r2)m(r3) = m(r1)r2

Since |r2| ≥ |r1| and by doing the appropriate replacement of strings, we get:

m(r1) substr(m(r2), |m(r1)| − 1, |m(r2)| − 1)m(r3) = m(r1) substr(r2, 0, |r2| − |m(r3)| − 1)m(r3)

Hence,
substr(m(r2), |m(r1)| − 1, |m(r2)| − 1) = substr(r2, 0, |r2| − |m(r3)| − 1)

Therefore r2 (and hence R) is a periodic string with period r1m(r1). Note that if |R| is not divisible by
|r1m(r1)|, R will end with a prefix of r1 or m(r1). 2

Lemma 13 The preprocessing described in Corollary 5 assumed, we can conclude the following facts:
→

ef
P

MIRROR

∼=
→

bc
P

;
→

fe
P1

MIRROR

∼=
→

cb
P2

; there exist two points a and d on δ(P) such that either
→

fa
P

MIRROR

∼=
→

cd
P

and
→

ab
P

FLIP

∼=
→

de
P

and 6

P
(2π − 6

P
d) + 6

P
f = 6

P1

b + 6

P2

b and 6

P
c + 6

P
(2π − 6

P
a) = 6

P1

e + 6

P2

e (this is case 1, see the left polygon in

figure 2) or
→

fa
P

FLIP

∼=
→

cd
P

and
→

ab
P

MIRROR

∼=
→

de
P

and 6

P
d + 6

P
f = 6

P1

b + 6

P2

b, 6

P
c + 6

P
a = 6

P1

e + 6

P2

e (this is case 2 see the

right polygon in figure 2); at least two of the points in {a, c, e} and two of the points in {b, d, f} are vertices
of P ; Let x = (vd(b, e)/vd(f, b)) mod vd(c, d), then for case 1, x is an odd number and for case 2, x is even;

a, b, c, d, e, f appear in clockwise order on δ(P); d−1
P (a, 0.5) = d; d−1

P (b, 0.5) = e and d−1
P (c, 0.5) = f .

Proof: Given that c = TS(e) and b = TS(f), we conclude that
→

fe
P1

MIRROR

∼=
→

cb
P2

,
→

ef
P

MIRROR

∼=
→

bc
P

, 6

P
f = 6

P2

b

and 6

P
c = 6

P1

e. Since
→

fe
P1

MIRROR

∼=
→

cb
P2

and
→

fb
P

is a prefix of
→

fe
P1

, then TS(
→

fb
P

) is a suffix of
→

cb
P2

. By Lemma 12,

→

fe
P1

is a periodic polyline and will be of the form (
→

fb
P

+TS(
→

fb
P

))k + j
→

fb
P

+r where j = 0, 1 and k ≥ 1

(+ is the concatenation operator). Similarly, the reversed string that represents
→

cb
P2

will be of the form

(TS(
→

fb
P

) +
→

fb
P

)k + TS(
→

fb
P

) + r. Note that r is a string representation of a polyline that by Lemma 12 can be

any prefix of
→

fb
P

or TS(
→

fb
P

)). If j = 0 then r is a prefix of
→

fb
P

(see figure 2), else if j = 1 then r is a prefix

of TS(
→

fb
P

) (see figure 2). Let d′ be the start point of r on
→

fe
P1

and let a be the endpoint of the copy of r on

→

fb
P

then there exists a point d on
→

cb
P2

such that d = TS(d′). If j = 0 then
→

cd
P

MIRROR

∼=
→

d′e
P1

which implies that

→

cd
P

MIRROR

∼=
→

fa
P

,
→

de
P

FLIP

∼=
→

ab
P

, 6

P1

b = 6

P
(2π − 6

P
d) and 6

P2

e = 6

P
(2π − 6

P
a). If j = 1 then

→

cd
P

FLIP

∼=
→

d′e
P1

which implies

that
→

cd
P

FLIP

∼=
→

fa
P

,
→

de
P

FLIP

∼=
→

ab
P

, 6

P1

b = 6

P
(2π − 6

P
d) and 6

P2

e = 6

P
a. It follows that at least two of the points in

{a, c, e} and two of the points {b, d, f} are vertices of P . Due to the periodicity of
→

be
P

, we conclude that x

is an odd number in case 1 and x is an even number in case 2. The order of {a, b, c, d, e, f} around δ(P)

is implied. Since
→

ad
P

is composed of
→

ab
P

,
→

bc
P

and
→

cd
P

, and
→

da
P

is composed of
→

de
P

,
→

ef
P

and
→

fa
P

, by the respective

congruence of these polylines (in both cases 1 and 2), given the position of a, d can be found in O(log n) time

by d−1
P (a, 0.5) = d. Also, since

→

be
P

is composed of
→

bc
P

,
→

cd
P

and
→

de
P

, and
→

eb
P

is composed of
→

ef
P

,
→

fa
P

and
→

ab
P

, by the

respective congruence of these polylines (in both cases 1 and 2), given the position of b, e can be found in

O(log n) time by d−1
P (b, 0.5) = e. Finally, since

→

cf
P

is composed of
→

cd
P

,
→

de
P

and
→

ef
P

, and
→

fc
P

is composed of
→

fa
P

,

6

e
d

f

c

b

a

d

f

c

b

a

e

Figure 2: Polygons partitioned into two simple mirror-congruent pieces with an overlapping split-polyline

→

ab
P

and
→

bc
P

, by the respective congruence of these polylines (in both cases 1 and 2), given the position of c, f

can be found in O(log n) time by d−1
P (c, 0.5) = f . 2

Lemma 14 Given the preprocessing in Corollary 3 and a solution S = (P1, P2) of the partially overlapping
split-polyline case of Problem 1, specified by the positions of the points {a, b, c, d, e, f} as described in Lemma 7,
the validity of this solution can be verified in constant time.

Proof: P1 and P2 are mirror congruent if their respective boundaries are mirror congruent. P1 is composed

(in clockwise order) of the polylines
→

ef
P

,
→

fa
P

,
→

ab
P

and
→

be
P1

and P2 is composed (in clockwise order) of the polylines

→

bc
P

,
→

cd
P

,
→

de
P

and
→

eb
P2

. Let m = (vd(b, e)/vd(f, b). We need to consider two cases. First, if
→

ab
P

FLIP

∼=
→

de
P

,
→

bc
P

MIRROR

∼=
→

ef
P

,

→

fa
P

MIRROR

∼=
→

cd
P

and vd(f, b)|(vd(b, e) mod vd(s) where s
MIRROR

∼=
→

cd
P

, we are in case 1. Else, if
→

fa
P

FLIP

∼=
→

cd
P

and

→

ab
P

MIRROR

∼=
→

de
P

,
→

bc
P

MIRROR

∼=
→

ef
P

and vd(f, b)|(vd(b, e) mod vd(s) where s
FLIP

∼=
→

cd
P

, we are in case 2. In both cases, the

solution is valid since copying an alternation of T (
→

fb
P

) and
→

fb
P

, m times followed by a copy of
→

fa
P

(case 1)

or
→

cd
P

(case 2) onto be will imply that
→

fe
P1

MIRROR

∼=
→

cb
P2

and hence that the boundaries of P1 and P2 consist of

respectively congruent polylines. Otherwise, an invalid solution is reported. This verification can be done in
constant time by Corollary 3. 2

Lemma 15 The points {a, b, c, d, e, f} are as defined in Lemma 13. Given the position of any two of {a, c, e}
or {b, d, f} and the preprocessing in Corollary 5, the positions of all six points {a, b, c, d, e, f} can be computed
in O(log n) time except in the cases where either both b and e or both c and f are not vertices (figures 3
and 4).

Proof: By Lemma 13, at least two of {a, c, e} and at least two of {b, d, f} are vertices of P . If (c, e) are
vertices of P , then the position of the four remaining points can be found in the following way. f and b are

7

a b c d e f
i - - V - V -
ii - V - - - V
iii - Not V Not V - V V
iv - V V - Not V Not V
v V V Not V V V Not V
vi V Not V V V Not V V

Table 1: Sub-Cases: V stands for “is a vertex”, Not V for “is not a vertex” and - for “either”

a

d
e

c

bb

c

d

b

f

a

f

e

Figure 3: Left: Case 1a where {a, c, d, f} are vertices and {b, e} are not. Right: Case 1b where {a, b, e, d} are
vertices and {c, f} are not

given in O(log n) time by Lemma 13. The pairs (b, f) and (c, e) form two pairs of points and their respective
mirror images by TS and hence, they are sufficient to compute the glide reflection. It remains to compute the

positions of a and d. Let d′ = T−1
S (d). By definition, d′ is on the polyline

→

be
P1

. In case 1, see left of figure 2, d

can be directly computed by translating b in the direction of the glide and the norm of the translation vector

is given by (⌊ vd(b,e)
vd(f,b)⌋+ 1)vd(f, b). In case 2, see right of figure 2, d′ is the translate of b in the direction of the

glide and the norm of translation vector is given by: ⌊ vd(b,e)
vd(f,b)⌋vd(f, b). We can then compute d since its the

image of d′ by the glide reflection. In both cases, we can find a by d−1
P (f, d(c, d)) = a. If (b, f) are vertices of

P , finding the position of the four remaining points is similar. However, if neither the pair (c, e) nor the pair
(b, f) gives us the four points, then it is easy to see by Lemma 13 and a combinatorial counting that four
sub-cases remains to be considered, see table 1. Sub-cases iii and iv are similar to the sub-cases above (since
if (e, f) ((b, c)) are vertices, we can compute b and c in O(log n) by Lemma 13 (e and f). Sub-cases v (where
both c and f are not vertices of P) and vi (where both b and e are not vertices of P) are more complicated
and are shown in both figure 3 and figure 4 for case 1 and case 2 respectively. 2

Lemma 16 Given the positions of {a, c, d, f} and the preprocessing in Corollary 3, the positions of b and
e can be computed in O(n) time for case 1a and 1b. Similarly, given the positions of {a, b, d, e} and the
preprocessing in Corollary 3, the positions of c and f can be computed in O(n) time in cases 2a and 2b.

Proof: In cases 1a and 1b, (see figure 3), given the positions of {a, c, d, f} and the fact that
→

ab
P

FLIP

∼=
→

de
P

by

8

f

a
b

c

a

f

e

d
c

e

b

d

Figure 4: Left: Case 2a where {a, b, e, d} are vertices and {c, f} are not. Right: Case 2b where {a, c, d, f} are
vertices and {b, e} are not

Lemma 13, we observe that ccw(b) and cw(d) have the same length and slope. In case 1a, since b is not
vertex then cw(b) and ccw(b) have the same slope. For every segment s ∈ δ(P) (clockwise from a) that has
the same slope as cw(d), compute the potential b (distance |cw(d)| from the first encountered endpoint).
The potential e can be computed in O(log n) by Lemma 13. In case 1b, b is a vertex of δ(P). For every
vertex p ∈ δ(P) (clockwise from a) such that ccw(p) has the same slope and length as cw(d), consider as the
potential b, compute e in O(log n) by Lemma 13. In cases 2a and 2b, (see figure 4), given the positions of

{a, b, d, e} and the fact that
→

fa
P

FLIP

∼=
→

cd
P

by Lemma 13, we observe that ccw(a) and cw(c) have the same length

and slope. In case 2a, since c is not vertex then cw(c) and ccw(c) have the same slope. For every segment
s ∈ δ(P) (counterclockwise from a) that has the same slope as ccw(a), compute the potential c (distance
|ccw(a)| from the first encountered endpoint). The potential f can be computed in O(log n) by Lemma 13.
In cases 2b, c is a vertex of δ(P). For every vertex p ∈ δ(P) (counterclockwise from a) such that cw(p) has
the same slope and length as ccw(b), consider as the potential c, compute f using the function dP . In all four
cases, the validity of the solution can be checked in constant time as stated in Lemma 14. 2

Theorem 17 Given a polygon P and given that Split(S), if it exists, is partially overlapping with TS (Split(S)),
a solution S = (P1, P2) to Problem 1 can be found in O(n3) if and only if P can be partitioned into two
congruent polygons.

Proof: For every pair of vertices of P , verify it is (c, e) or (b, f) or (e, f) or (b, c) by computing the remaining
four points as shown in Lemma 15. For every position of a computed six-tuple, verify the validity of the
solution considering both cases 1 and case 2 in constant time as stated in Lemma 14. If none of the previous
pairs form a pair of vertices, then either {a, c, d, f} (case 1) or {a, b, d, e} (case 2) are vertices by Lemma 15.
In case 1a: for every pair of vertices, assume it is (a, c), then d and f can be computed in O(log n). Find b
and e and do the verification as discussed in Lemma 14. In case 1b: for every pair (p, s) where p is a vertex
of δ(P) and s is a segment in δ(P), verify if p is a and s is the segment such that c ∈ s (c is positioned
|ccw(a)| from an endpoint of s) by computing d and f in O(log n), by computing b and e and doing the
verification as discussed in Lemma 14. In case 2a: for every pair of vertices, assume it is (a, e), then d and
b can be computed in O(log n). Find c and f and do the verification as discussed in Lemma 14. In case
2b: for every pair (p, s) where p is a vertex of δ(P) and s is a segment in δ(P), verify if p is a and s is the

9

segment such that e ∈ s (e is positioned |ccw(a)| from an endpoint of s) by computing b and d in O(log n),
by computing c and f and doing the verification as discussed in Lemma 14. Let m = vd(b, e)/vd(f, b). If the

verification succeeds in any of the previous cases, then copying an alternation of TS(
→

fb
P

) and
→

fb
P

, m times and

then appending a copy of
→

fa
P

(case 1) or its mirror image (case 2) onto be yields a valid partition. The “if”

part is trivial. The “only if” part stems from the previous Lemmas; if P is partitionable then by Lemma 13,

{a, b, c, d, e, f} exist and appear in that order on δ(P). The split-polyline allows by construction for
→

fe
P1

to

be congruent to
→

cb
P2

. The string matching checks for congruence of
→

ef
P

and
→

bc
P

. Therefore, P1 and P2 having

the same polylines defining them, are congruent. The split-polyline might however intersect δ(P). This will
result in two congruent sub-polygons P1 and P2 that are non-simple. 2

4 Conclusion

Theorem 18 Given a polygon P , a solution S = (P1, P2) to Problem 1 can be found in O(n3) if and only if
P can be partitioned into two mirror congruent polygons.

Proof: By Lemma 6, the split-polyline Split(S) is either disjoint or partially overlapping with its mirror
image TS (Split(S)). Hence, given a polygon P , we run the algorithm for the disjoint case from Theorem 11.
If it fails, we run the algorithm for the partially overlapping case from Theorem 17. If any of the two cases
succeed report the partition else report that P is not partitionable into two mirror congruent pieces. 2

References

[1] R. P. Boland and J. Urrutia. Polygon area problems. In Canadian Conference on Computational Geometry
(CCCG), pages 159–162, 2000.

[2] P. Eades. Symmetry finding algorithms. In G.T. Toussaint, editor, Computational Morphology, pages
41–51. North Holland, 1988.

[3] D. El-Khechen, T. Fevens, J. Iacono, and G. Rote. Partitioning a polygon into two congruence pieces.
Proceedings of the Kyoto International Conference on Computational Geometry and Graph Theory, page ?,
2007.

[4] K. Erikson. Splitting a polygon into two congruent pieces. The American Mathematical Monthly,
103(5):393–400, 1996.

[5] M. Farach and S. Muthukrishnan. Perfect hashing for strings: formalization, algorithms and open
problems. In Symposium on Combinatorial Pattern Matching (CPM), 1996. http://www.cs.rutgers.
edu/∼farach/pubs/tmp.html.

[6] M. Keil. Polygon decomposition. In J.R. Sack and J. Urrutia, editors, Handbook of Computational
Geometry, chapter 11, pages 491–518. Elsevier, 2000.

[7] G. Rote. Some thoughts about decomposing a polygon into two congruent pieces. Unpub-
lished Draft, page.mi.fu-berlin.de/∼rote/Papers/postscript/Decomposition+of+a+polytope+

into+two+congruent+pieces.ps, 1997.

10

http://www.cs.rutgers.edu/~farach/pubs/tmp.html
http://www.cs.rutgers.edu/~farach/pubs/tmp.html
page.mi.fu-berlin.de/~rote/Papers/postscript/ Decomposition+of+a+polytope+into+two+congruent+pieces.ps
page.mi.fu-berlin.de/~rote/Papers/postscript/ Decomposition+of+a+polytope+into+two+congruent+pieces.ps

	1 Introduction
	2 Preliminaries
	3 Results
	3.1 Preprocessing
	3.2 Algorithms
	3.3 Disjoint split-polyline
	3.4 Partially overlapping split-polyline

	4 Conclusion
	1 Introduction
	2 Preliminaries
	3 Results
	3.1 Preprocessing
	3.2 Algorithms
	3.3 Disjoint split-polyline
	3.4 Partially overlapping split-polyline

	4 Conclusion

