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Ordered Level Planarity and Its Relationship to Geodesic
Planarity, Bi-Monotonicity, and Variations of Level Planarity

BORIS KLEMZ, Freie Universität Berlin, Germany
GÜNTER ROTE, Freie Universität Berlin, Germany

We introduce and study the problem Ordered Level Planarity which asks for a planar drawing of a graph
such that vertices are placed at prescribed positions in the plane and such that every edge is realized as a
y-monotone curve. This can be interpreted as a variant of Level Planarity in which the vertices on each level
appear in a prescribed total order. We establish a complexity dichotomy with respect to both the maximum
degree and the level-width, that is, the maximum number of vertices that share a level. Our study of Ordered
Level Planarity is motivated by connections to several other graph drawing problems.

Geodesic Planarity asks for a planar drawing of a graph such that vertices are placed at prescribed
positions in the plane and such that every edge e is realized as a polygonal path p composed of line segments
with two adjacent directions from a given set S of directions which is symmetric with respect to the origin.
Our results on Ordered Level Planarity imply NP-hardness for any S with |S | ≥ 4 even if the given graph
is a matching. Manhattan Geodesic Planarity is the special case where S contains precisely the horizontal
and vertical directions. Katz, Krug, Rutter and Wolff claimed that Manhattan Geodesic Planarity can be
solved in polynomial time for the special case of matchings [GD’09]. Our results imply that this is incorrect
unless P = NP . Our reduction extends to settle the complexity of the Bi-Monotonicity problem, which was
proposed by Fulek, Pelsmajer, Schaefer, and Štefankovič.

Ordered Level Planarity turns out to be a special case of T-Level Planarity, Clustered Level
Planarity, and Constrained Level Planarity. Thus, our results strengthen previous hardness results.
In particular, our reduction to Clustered Level Planarity generates instances with only two non-trivial
clusters. This answers a question posed by Angelini, Da Lozzo, Di Battista, Frati and Roselli.

CCS Concepts: •Mathematics of computing→ Graph theory; Graph algorithms; •Human-centered com-
puting → Graph drawings; • Theory of computation → Problems, reductions and completeness;
Graph algorithms analysis.

Additional Key Words and Phrases: Graph drawing, Level Planarity, orthogeodesic drawings, point-set embed-
ability, NP-hardness, upward drawings

1 INTRODUCTION
In this paper we introduce Ordered Level Planarity and study its complexity. We establish
connections to several other graph drawing problems (see Figure 1), which we survey in this first
section.
We proceed from general problems to more and more constrained ones: Section 1.1 recalls

the original version of Level Planarity. Section 1.2 discusses several constrained variations of
the problem. Ordered Level Planarity is defined in Section 1.3. The closely related problems
Geodesic Planarity and Bi-Monotonicity are discussed in Section 1.4.
Section 1.5 summarizes the main results of this paper and gives an overview of the remaining

chapters.

A preliminary version of this paper appeared in the proceedings of Graph Drawing and Network Visualization 2017 [22].
Authors’ addresses: Boris Klemz, Freie Universität Berlin, Institut für Informatik, Takustraße 9, Berlin, 14195, Germany,
klemz@inf.fu-berlin.de; Günter Rote, Freie Universität Berlin, Institut für Informatik, Takustraße 9, Berlin, 14195, Germany,
rote@inf.fu-berlin.de.
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Fig. 1. Ordered Level Planarity is a special case of several other graph drawing problems.

1.1 Upward Planarity and Level Planarity
Upward Planarity. An upward planar drawing of a directed graph is a plane drawing (i.e., a

crossing-free drawing in the plane) where every edge e = (u,v) is realized as a y-monotone curve
that goes upward from u to v . Such a drawing provides a natural way of visualizing a partial
order on a set of items. The problem Upward Planarity of testing whether a directed graph has
an upward planar drawing is NP-complete [13]. However, if the y-coordinate of each vertex is
prescribed, the problem can be solved in polynomial time [20]. This is captured by the notion of
level graphs.

Level Planarity. A level graph G = (G,γ ) is a directed graph G = (V ,E) together with a level
assignment, i.e. a surjective map γ : V → {0, . . . ,h} with γ (u) < γ (v) for every edge (u,v) ∈ E.
Value h is the height of G. The vertex setVi = {v | γ (v) = i} is called the i-th level of G and λi = |Vi |
is its width. The level-width λ of G is the maximum width of any level in G. A level planar drawing
of G is an upward planar drawing of G where the y-coordinate of each vertex v is γ (v), see
Figure 2(b). The horizontal line with y-coordinate i is denoted by Li . The problem Level Planarity
asks whether a given level graph has a level planar drawing, see Figures 2(a–b).

The study of the complexity of Level Planarity has a long history [10, 12, 18–20], culminating
in a linear-time algorithm by Jünger, Leipert and Mutzel [20]. Their algorithm is based on work for
the special case of single-source level graphs by Di Battista and Nardelli [10]. There was an earlier
attempt by Heath and Pemmaraju [18] to extend the work by Di Battista and Nardelli [10] to general
level graphs; however, Jünger et al. [19] pointed out gaps in this construction. All these approaches
utilize PQ-trees. Various simpler but asymptotically slower approaches to solve Level Planarity
have been considered, see the work of Fulek, Pelsmajer, Schaefer, and Štefankovič [12] for one of
these approaches (cf. Section 1.4) and a more comprehensive summary. Level Planarity has been
extended to drawings of level graphs on surfaces different from the plane [1, 4, 5]. In particular,
Radial Level Planarity [4], Cyclic Level Planarity [1, 5] and Torus Level Planarity [1]
arrange levels on a standing cylinder, a rolling cylinder, and a torus, respectively.

to appear in ACM Transactions on Algorithms 2019-08-06 13:44. Page 2 of 1–25.
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Proper Instances. An important special case are proper level graphs, that is, level graphs in
which γ (v) = γ (u) + 1 for every edge (u,v) ∈ E. Instances of Level Planarity can be assumed
to be proper without loss of generality by subdividing long edges [10, 20]. However, in variations
of Level Planarity where we impose additional constraints, the assumption that instances are
proper can have a strong impact on the complexity of the respective problems [2]. The definition
of proper instances naturally extends to the following variations of level graphs.

1.2 Level Planarity with Various Constraints
Clustered Level Planarity. Forster and Bachmaier [11] introduced a version of Level Planarity

that allows the visualization of vertex clusterings. A clustered level graph G is a triple (G =
(V ,E),γ ,T ) where (G,γ ) is a level graph and T is a cluster hierarchy, i.e. a rooted tree whose leaves
are the vertices inV . Each internal node ofT is called a cluster. We call the cluster of the root trivial
as it contains all vertices. All other clusters are called non-trivial. The vertices of a cluster c are the
leaves of the subtree of T rooted at c . A cluster hierarchy is flat if all leaves have distance at most
two from the root, i.e. if non-trivial clusters are not nested. A clustered level planar drawing of a
clustered level graph G is a level planar drawing of (G,γ ) together with a closed simple curve for
each cluster that encloses precisely the vertices of the cluster such that the following conditions
hold: (i) no two cluster boundaries intersect, (ii) every edge crosses each cluster boundary at
most once, and (iii) the intersection of any cluster with the horizontal line Li through level Vi is
either a line segment or empty for any level Vi , see Figure 2(f). The problem Clustered Level
Planarity asks whether a given clustered level graph has a clustered level planar drawing. Forster
and Bachmaier [11] presented an O(h |V |)-time algorithm for a special case of proper clustered
level graphs, where h is the height of G. Angelini, Da Lozzo, Di Battista, Frati and Roselli [2]
provided a quartic-time algorithm for all proper instances. The general version of Clustered
Level Planarity is NP-complete even for clustered level graphs with maximum degree ∆ = 2
and level-width λ = 3; and for 2-connected series-parallel clustered level graphs [2]. In the current
paper, we further strengthen these previous results (Theorem 1.7).

T-Level Planarity. This variation of Level Planarity considers consecutivity constraints for
the vertices on each level. A T-level graph G is a triple (G = (V ,E),γ ,T) where (G,γ ) is a level
graph and T = (T0, . . . ,Th) is a set of trees where the leaves of Ti are Vi . A T-level planar drawing
of a T-level graph G is a level planar drawing of (G,γ ) such that, for every level Vi and for each
node u of Ti , the leaves of the subtree of Ti rooted at u appear consecutively along Li . The problem
T-Level Planarity asks whether a given T-level graph has a T-level planar drawing. Wotzlaw,
Speckenmeyer, and Porschen [23] introduced the problem and provided a quadratic-time algorithm
for proper instances with constant level-width. Angelini et al. [2] give a quartic-time algorithm
for proper instances with unbounded level-width. For general T-level graphs the problem is NP-
complete [2] even for T-level graphs with maximum degree ∆ = 2 and level-width λ = 3; and for
2-connected series-parallel T-level graphs.

Constrained Level Planarity. Very recently, Brückner and Rutter [6] explored a variant of Level
Planarity in which the left-to-right order of the vertices on each level has to be a linear extension
of a given partial order. They refer to this problem as Constrained Level Planarity and they
provide an efficient algorithm for single-source level graphs and show NP-completeness for
connected proper level graphs.

1.3 A Common Special Case
Ordered Level Planarity. We introduce a natural variant of Level Planarity that specifies a

total order for the vertices on each level. An ordered level graph G is a triple (G = (V ,E),γ , χ )

2019-08-06 13:44. Page 3 of 1–25. to appear in ACM Transactions on Algorithms
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Fig. 2. In Level Planarity the order of the vertices of a common levelVi is not fixed. Finding a good ordering

is an essential part of finding a solution. The ordering suggested in (a) is not realizable as the edge (d,h)
cannot be drawn without crossing (c,д) or (e,д). (b) A level planar drawing of (a). As shown in this paper,

fixing the ordering (Ordered Level Planarity) renders the problem intractable. (c) An ordered level drawing

of the instance given in (d). (e) An equivalent drawing for the relaxed version of the problem. (f) A clustered

level drawing. (g) A manhattan geodesic drawing. (h) A bi-monotone drawing.

where (G,γ ) is a level graph and χ : V → {0, . . . , λ − 1} is a level ordering for G . We require that χ
maps each level Vi (= γ−1(i)) bijectively to {0, . . . , λi − 1}. An ordered level planar drawing of an
ordered level graph G is a level planar drawing of (G,γ ) where for every v ∈ V the x-coordinate
of v is χ (v). Thus, the position of every vertex is fixed. The problem Ordered Level Planarity
asks whether a given ordered level graph has an ordered level planar drawing, see Figures 2(c–d).
In this paper, we show that Ordered Level Planarity is a common special case of all the Level
Planarity variants defined in Section 1.2 (Theorem 1.5); and we provide a complexity dichotomy
with respect to both the level-width and the maximum degree (Theorem 1.1).

Order and Realizability. In the above definition, the x-coordinates assigned via χ merely act as a
convenient way to encode a total order for the vertices of each levelVi . Similarly, the y-coordinates
assigned via γ encode a total preorder (i.e. a total ordering that allows ties) for the set of all vertices.
In terms of realizability, the problem is equivalent to a generalized version where χ and γ range over
arbitrary real numbers. In other words, the fixed vertex positions can be any points in the plane. All
reductions and algorithms in this paper carry over to these generalized versions, if we pay the cost
for presorting the vertices according to their coordinates. There is another equivalent version that
is even more relaxed: we only require that the vertices appear according to the prescribed orderings
without insisting on specific coordinates, see Figures 2(c–e). For the sake of visual clarity, many
of the figures in this manuscript make use of this last equivalence, i.e. the vertices are arranged
according to the orderings, but do not necessarily appear at the corresponding exact coordinates.

1.4 Geodesic Planarity and Bi-Monotonicity
Geodesic Planarity. Let S ⊂ Q2 be a finite set of directions which is symmetric with respect to

the origin, i.e. for each direction s ∈ S , the reverse direction −s is also contained in S . A plane

to appear in ACM Transactions on Algorithms 2019-08-06 13:44. Page 4 of 1–25.



Ordered Level Planarity 5

A129

A130

A131

A132

A133

A134

A135

A136

A137

A138

A139

A140

A141

A142

A143

A144

A145

A146

A147

A148

A149

A150

A151

A152

A153

A154

A155

A156

A157

A158

A159

A160

A161

A162

A163

A164

A165

A166

A167

A168

A169

A170

A171

A172

A173

drawing of a graph is geodesic with respect to S if every edge is realized as a polygonal path p
composed of line segments with two adjacent directions from S . Two directions of S are adjacent
if they appear consecutively in the projection of S to the unit circle. The name geodesic comes
from the fact that such a path p is a shortest path with respect to some polygonal norm (a norm
whose unit ball is a centrally symmetric polygon), which depends on S . An instance of the decision
problem Geodesic Planarity is a 4-tuple G = (G = (V ,E),x ,y, S) whereG is a graph, x and y map
from V to the reals and S is a set of directions as stated above. The task is to decide whether G has
a geodesic drawing, that is,G has a geodesic drawing with respect to S in which every vertex v ∈ V
is placed at (x(v),y(v)).

Katz, Krug, Rutter, and Wolff [21] study Manhattan Geodesic Planarity, which is the special
case of Geodesic Planarity where the set S consists of the two horizontal and the two vertical
directions, see Figure 2(g). Geodesic drawings with respect to this set of directions are also referred
to as orthogeodesic drawings [14, 15]. Katz et al. [21] show that a variant of Manhattan Geodesic
Planarity in which the drawings are restricted to the integer grid isNP-hard even ifG is a perfect
matching. The proof is by reduction from 3-Partition and makes use of the fact that the number
of edges that can pass between two vertices on a grid line is bounded. In contrast, they claim that
the standard version of Manhattan Geodesic Planarity is polynomial-time solvable for perfect
matchings [21, Theorem 5]. To this end, they sketch a plane sweep algorithm that maintains a
linear order among the edges that cross the sweep line. When a new edge is encountered it is
inserted as low as possible subject to the constraints implied by the prescribed vertex positions.
When we asked the authors for more details, they informed us that they are no longer convinced
of the correctness of their approach. Theorem 1.2 of our paper implies that the approach is indeed
incorrect unless P = NP.

Bi-Monotonicity. Fulek, Pelsmajer, Schaefer, and Štefankovič [12] present a Hanani–Tutte theorem
for y-monotone drawings, that is, upward drawings in which all vertices have distinct y-coordinates.
They accompany their result with a simple and efficient algorithm for Y-Monotonicity, which
can be defined as (Ordered) Level Planarity restricted to instances with level-width λ = 1.
Moreover, they show that, even without the restriction on λ, Level Planarity is equivalent to
Y-Monotonicity by providing an efficient reduction from Level Planarity. Altogether, this
results in a simple quadratic time algorithm for Level Planarity.
Fulek et al. [12] propose the problem Bi-Monotonicity and leave its complexity as an open

problem. Bi-Monotonicity combines Y-Monotonicity and X-Monotonicity, which is defined
analogously to Y-Monotonicity. More precisely, the input of Bi-Monotonicity is a triple G =
(G = (V ,E),x ,y) whereG is a graph, and x and y are injective maps fromV to the reals. The task is
to decide whether G has a planar bi-monotone drawing, that is, a plane drawing in which edges are
realized as curves that are both x-monotone and y-monotone, and in which every vertex v ∈ V is
placed at (x(v),y(v)), see Figure 2(h).
Bi-Monotonicity is very similar to Manhattan Geodesic Planarity. One difference is that

Manhattan Geodesic Planarity imposes an implicit bound on the number of adjacent edges
leading in similar directions, i.e. a vertex can have at most two neighbors in a single quadrant. The
overall degree of each vertex is at most four. On the other hand, Bi-Monotonicity requires the
coordinate mappings x and y to be injective. When both these additional constraints are satisfied,
the problems are equivalent. In this paper, we exploit this relationship between the two problems
in order to settle the question by Fulek et al. [12] regarding the complexity of Bi-Monotonicity
(Theorem 1.3).

2019-08-06 13:44. Page 5 of 1–25. to appear in ACM Transactions on Algorithms
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1.5 Main results
In Section 4 we study the complexity of Ordered Level Planarity. While Upward Planarity
is NP-complete [13] in general but becomes polynomial-time solvable [20] for prescribed y-
coordinates, we show that prescribing both x-coordinates and y-coordinates renders the problem
NP-complete. We complement our result with efficient approaches for some special cases of
ordered level graphs and, thereby, establish a complexity dichotomy with respect to the level-width
and the maximum degree.

Theorem 1.1. Ordered Level Planarity is NP-complete, even for acyclic ordered level graphs

with maximum degree ∆ = 2 and level-width λ = 2. The problem can be solved in linear time if the

given level graph is proper; or if the level-width is λ = 1; or if ∆+ = ∆− = 1, where ∆+ and ∆−
are the

maximum in-degree and out-degree respectively.

Ordered Level Planarity, especially if restricted to instances with λ = 2 and ∆ = 2, is an
elementary problem that readily reduces to several other graph drawing problems. The remainder of
this paper is dedicated to demonstrating the centrality of Ordered Level Planarity by providing
reductions to all the problems listed in Sections 1.2 and 1.4. All these reductions heavily rely on
either a small value of ∆ or λ and they produce very constrained instances of the targeted problems.
Thereby, we are able to solve multiple open questions that were posed by the graph drawing
community. We expect that Theorem 1.1 may serve as a suitable basis for more reductions in the
future.

In Section 2 we study Geodesic Planarity and obtain:

Theorem 1.2. Geodesic Planarity is NP-hard for any set of directions S with |S | ≥ 4 even for

perfect matchings in general position.

Observe the aforementioned discrepancy between Theorem 1.2 and the claim by Katz et al. [21]
that Manhattan Geodesic Planarity for perfect matchings is in P.
Bi-Monotonicity is closely related to a special case of Manhattan Geodesic Planarity.

With a simple corollary we settle the complexity of Bi-Monotonicity and, thus, answer the open
question by Fulek et al. [12].

Theorem 1.3. Bi-Monotonicity is NP-hard even for perfect matchings.

Theorem 1.4. Ordered Level Planarity reduces to Bi-Monotonicity in linear time. The reduction

can be carried out such that the input graph is identical to the output graph, that is, only the coordinates

are modified.

In Section 3 we establish Ordered Level Planarity as a special case of all the variations of
Level Planarity described in Section 1.2.

Theorem 1.5. Ordered Level Planarity reduces in linear time to Constrained Level Planarity

and T-Level Planarity, and in quadratic time to Clustered Level Planarity.

The reduction to Constrained Level Planarity is immediate, which also yields:

Theorem 1.6. Constrained Level Planarity is NP-hard even for acyclic level graphs with

maximum degree ∆ = 2 and level-width λ = 2 and prescribed total orderings.

Angelini, Da Lozzo, Di Battista, Frati, and Roselli [2] propose the complexity of Clustered
Level Planarity for clustered level graphs with a flat cluster hierarchy as an open question. Our
reduction to Clustered Level Planarity provides the following answer.

to appear in ACM Transactions on Algorithms 2019-08-06 13:44. Page 6 of 1–25.
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Theorem 1.7. Clustered Level Planarity is NP-hard even for acyclic clustered level graphs

with maximum degree ∆ = 2, level-width λ = 2 and a flat cluster hierarchy that partitions the vertices
into two non-trivial clusters.

In general, we can consider two different versions of all of the above problems: we may prescribe
a combinatorial embedding or allow an arbitrary embedding. Our results apply to both of these
versions, as in most cases the instances are just systems of paths and, thus, the embedding is unique.
The only exception is the linear time algorithm for proper instances of Ordered Level Planarity.
In this case, however, yes-instances have a unique drawing and we only need to check if it respects
the given embedding.

In order to be able to reduce from Ordered Level Planarity to Geodesic Planarity, our main
reduction (to Ordered Level Planarity) is tailored to achieve a small maximum degree of ∆ = 2.
As a consequence, the resulting graphs are not connected. At the cost of an increased maximum
degree, it is possible to make our instances connected by inserting additional edges. We discuss
these adaptations in Section 5.

Theorem 1.8. The following problems are NP-hard even for connected instances with maximum

degree ∆ = 4:
• Ordered Level Planarity even for level-width λ = 2,
• Constrained Level Planarity even for level-width λ = 2 and prescribed total orderings,
• Clustered Level Planarity even for level-width λ = 2 and flat cluster hierarchies that partition
the vertices into two non-trivial clusters, and

• Bi-Monotonicity.

2 GEODESIC PLANARITY AND BI-MONOTONICITY
In this section we establish that deciding whether an instance G = (G,x ,y, S) of Geodesic Pla-
narity has a geodesic drawing is NP-hard even if G is a perfect matching and even if the
coordinates assigned via x and y are in general position, that is, no two vertices lie on a line with a
direction from S . TheNP-hardness of Bi-Monotonicity for perfect matchings follows as a simple
corollary. Our results are obtained via a reduction from Ordered Level Planarity.

Lemma 2.1. Let S ⊂ Q2
with |S | ≥ 4 be a finite set of directions which is symmetric with respect to

the origin. Ordered Level Planarity with maximum degree ∆ = 2 and level-width λ = 2 reduces to
Geodesic Planarity such that the resulting instances are in general position and consist of a perfect

matching and direction set S . The reduction can be carried out using a linear number of arithmetic

operations.

Proof. We first prove our claim for the classical case that S contains exactly the four horizontal
and vertical directions. Afterwards, we discuss the necessary adaptations for the general case.
Our reduction is carried out in two steps. Let Go = (Go = (V ,E),γ , χ ) be an Ordered Level
Planarity instance with maximum degree ∆ = 2 and level-width λ = 2. In Step (i) we turn Go into
an equivalent Geodesic Planarity instance G′

д = (Go ,x
′,γ , S). In Step (ii) we transform G′

д into
an equivalent Geodesic Planarity instance Gд = (Gд ,x ,y, S) where Gд is a perfect matching and
the vertex positions assigned via x and y are in general position.

Step (i): In order to transform Go into G′
д , we apply a horizontal shearing transformation to the

vertex positions specified by χ andγ . More precisely, for everyv ∈ V we define x ′(v) = χ (v)+2γ (v),
see Figures 3(a) and 3(b). Clearly, every geodesic drawing of G′

д can be turned into an ordered
level planar drawing of Go . On the other hand, consider an ordered level planar drawing Γo of Go .
Without loss of generality, we can assume that in Γo all edges are realized as polygonal paths in

2019-08-06 13:44. Page 7 of 1–25. to appear in ACM Transactions on Algorithms
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Fig. 3. (a), (b) and (c): Illustrations of Step (i). (d): Illustration of Step (ii).

which bend points occur only on the horizontal lines Li through the levels Vi where 0 ≤ i ≤ h.
Further, since χ (V ) ⊆ {0, 1} we may assume that all bend points have x-coordinates in the open
interval (−1/2, 3/2). We shear Γo by translating the bend points and vertices of level Vi by 2i units
to the right for 0 ≤ i ≤ h, see Figure 3(b). In the resulting drawing Γ′o , the vertex positions match
those of G′

д . Furthermore, all edge-segments have a positive slope. Thus, since the maximum degree
is ∆ = 2 we can replace all edge-segments with L1-geodesic rectilinear paths that closely trace the
segments and we obtain a geodesic drawing Γ′д of G′

д , see Figure 3(c).

Step (ii): In order to turn G′
д = (Go = (V ,E),x ′,γ , S) into the equivalent instance Gд =

(Gд ,x ,y, S), we transformGo into a perfect matching. To this end, we split each vertex v ∈ V by re-
placing it with a small gadget that fits inside a square rv centered on the position pv = (x ′(v),γ (v))
of v , see Figure 3(d). We call rv the square of v and use ptrv , ptlv , pbrv and pblv to denote the top-right,
top-left, bottom-right and bottom-left corner of rv , respectively. We use two different sizes to ensure
general position. The size of the gadget square is 1/4× 1/4 if χ (v) = 0 and it is 1/8× 1/8 if χ (v) = 1.
The gadget contains a degree-1 vertex for every edge incident to v . In the following we explain
the gadget construction in detail. For an illustration, see Figure 4(a). Let {v,u} be an edge incident
to v . We create an edge {v1,u} where v1 is a new vertex which is placed at ptrv − (1/48, 1/48) if u is
located to the top-right ofv and it is placed at pblv + (1/48, 1/48) ifu is located to the bottom-left ofv .
Similarly, if v is incident to a second edge {v,u ′}, we create an edge {v2,u ′} where v2 is placed at
ptrv − (1/24, 1/24) or pblv + (1/24, 1/24) depending on the position of u ′. We refer to v1 and v2 as the
gadget vertices of v and its square rv . Finally, we create a blocking edge {vtl,vbr} where vtl is placed

to appear in ACM Transactions on Algorithms 2019-08-06 13:44. Page 8 of 1–25.
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Fig. 4. (a) The two gadget squares of each level. Grid cells have size 1/48 × 1/48. (b) Turning a drawing of Gд
into a drawing of G′

д ; (c) and vice versa.

at ptlv and vbr is placed at pbrv . All the assigned coordinates are distinct in both components, and
hence the points are in general position. The construction can be carried out in linear time.
Assume that Gд has a geodesic drawing Γд . By construction, for each blocking edge, one of its

vertices is located to the top-left of the other. On the other hand, for each non-blocking edge, one
of its vertices is located to the top-right of the other. As a result, a non-blocking edge e = {v,u}
cannot pass through any gadget square rw where w < {v,u}, since otherwise e would have to
cross the blocking edge of rw . Accordingly, it is straightforward to obtain a geodesic drawing of Γ′д :
We remove the blocking edges, reinsert the vertices of V according to the mappings x ′ and γ and
connect them to the gadget vertices of their respective squares in a geodesic fashion. This can
always be done without crossings. Figure 4(b) shows one possibility. If the edge from v2 passes to
the left of v1, we may have to choose a reflected version. Finally, we remove the vertices v1 and v2,
which now act as subdivision vertices.

On the other hand, let Γ′д be a geodesic planar drawing of G′
д . Without loss of generality, we

can assume that each edge {u,v} intersects only the squares of u and v . Furthermore, for each
v ∈ V we can assume that its incident edges intersect the boundary of rv only to the top-right of
ptrv − (1/48, 1/48) or to the bottom-left of pblv + (1/48, 1/48), see Figure 4(c). Thus, we can simply
replace the parts of the edges inside the gadget squares by connections to the gadget vertices v1
and v2 in a geodesic fashion, see Figure 4(c).

The general case. It remains to discuss the adaptations for the case that S is an arbitrary set of
directions which is symmetric with respect to the origin. By applying a linear transformation we
can assume without loss of generality that (1, 0) and (0, 1) are adjacent directions in S . Accordingly,
all the remaining directions point into the top-left or the bottom-right quadrant. Further, by vertical
scaling we can assume that no direction is parallel to (1,−1). Observe that if we do not insist on a
coordinate assignment in general position, the reduction for the restricted case discussed above is
already sufficient.

In order to guarantee general position, we have to avoid conflicting vertices, i.e. distinct vertices
whose positions lie on a common line with a direction from S . This requires some simple but
somewhat technical modifications of our construction.

2019-08-06 13:44. Page 9 of 1–25. to appear in ACM Transactions on Algorithms
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Fig. 5. Modifications (a) and (b) for the general case.

Let s1 be the flattest slope of any direction in S \ {(1, 0), (0, 1)}, i.e. the slope with the smallest
absolute value (note that all the slopes are negative). Further, let s2 be the steepest slope of any
direction in S \ {(1, 0), (0, 1)}, i.e. the slope with the largest absolute value.
Assume that c ′,d ′ are conflicting vertices such that c ′ belongs to the gadget square rc of c ∈ V ,

and d ′ belongs to the gadget square rd of d ∈ V . Consider Figure 5(a). Since no direction of S points
to the top-right or bottom-left quadrant, γ (c) = γ (d). It is possible that c = d .

In order to guarantee general position, we apply the following two modifications.

Modification (a). We first cover the case c , d , that is, we show how to avoid conflicts between
two vertices c ′,d ′ which belong to distinct squares of the same level. To this end, we increase
the horizontal distance between each pair of successive squares in the ordering in which the
squares appear along the x-axis without changing said ordering. More precisely, instead of using
the coordinates (2i, i) and (2i + 1, i) for the centers of the two squares rv and ru of level i , we use
the positions (2ki, i) and (2ki + k, i) where k ≥ 1 is chosen large enough that pblu is above the line ℓ
with slope s1 through ptrv , see Figure 5(a).

Modification (b). It remains to cover the case c = d , i.e. to avoid conflicts between vertices c ′,d ′

which belong to the same gadget square rv . To this end, we modify the placement of the gadget
vertices inside the gadget squares as follows. We change the offset to the gadget square corners
from ±(1/48) and ±(1/24) to ±(z/48) and ±(z/24) where 0 < z < 1 is chosen small enough such
that the gadget vertices are placed above the line ℓ1 with slope s1 through ptlv , and above the line ℓ2
with slope s2 through pbrv ; or below the line ℓ′1 with slope s1 through pbrv , and below the line ℓ′2 with
slope s2 through ptlv ; see the white regions in Figure 5(b). □

The bit size of the numbers involved in the calculations of our reduction is linearly bounded in
the bit size of the directions of S . Together with Theorem 1.1 we obtain the proof of Theorem 1.2.

Theorem 1.2. Geodesic Planarity is NP-hard for any set of directions S with |S | ≥ 4 even for

perfect matchings in general position.

The instances generated by Lemma 2.1 are in general position. In particular, this means that
the mappings x and y are injective. We obtain an immediate reduction to Bi-Monotonicity. The
correctness follows from the fact that every L1-geodesic rectilinear path can be transformed into a
bi-monotone curve and vice versa. Thus, we obtain Theorem 1.3.

to appear in ACM Transactions on Algorithms 2019-08-06 13:44. Page 10 of 1–25.
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Theorem 1.3. Bi-Monotonicity is NP-hard even for perfect matchings.

By combining Lemma 2.1 and the remarks in the previous paragraph, we obtain a reduction
from Ordered Level Planarity to Bi-Monotonicity. However, the intermediate reduction via
Manhattan Geodesic Planarity requires the original Ordered Level Planarity instance to
have a maximum out-degree of ∆+ ≤ 2 and a maximum in-degree of ∆− ≤ 2 (otherwise, our
reduction would produce Manhattan Geodesic Planarity instances with vertices that have more
than two neighbors in the same quadrant; these instances are never realizable, see Section 1.4). In
Section 5, we require a reduction that accepts more general instances of Ordered Level Planarity.
For this reason, we state the following direct (and, in fact, much simpler) reduction from Ordered
Level Planarity to Bi-Monotonicity.

Theorem 1.4. Ordered Level Planarity reduces to Bi-Monotonicity in linear time. The reduction

can be carried out such that the input graph is identical to the output graph, that is, only the coordinates

are modified.

Proof. Let G = (G = (V ,E),γ , χ ) be an ordered level graph with level-width λ and height h.
We create an instance of Bi-Monotonicty as follows. The graph G remains unchanged. The new
vertex-coordinates are obtained by applying the following linear function f to the assignment
given by χ and γ . The function f is a linear deformation of the plane which scales the original
coordinates and rotates them by 45◦, see Figure 6.

f (x ,y) := (f1(x ,y), f2(x ,y)) :=
(
(λ + 1)y + x , (λ + 1)y − x

)
We define a coordinate assignment (x ′,y ′)with (x ′(v),y ′(v)) := f (χ (v),γ (v)) for each vertexv ∈

V . The resulting Bi-Monotonicity instance is G′ = (G,x ′,y ′) with x ′(v) = (λ + 1)γ (v) + χ (v) and
y ′(v) = (λ + 1)γ (v) − χ (v).

Recall that Li denotes the horizontal line with y-coordinate i , which passes through all the
vertices of level Vi . We use Si ⊂ Li to denote the open line segment between the points (−1, i) and
(λ, i). The correctness of our reduction relies on the following property:

Proposition 2.2. Let pi ∈ f (Si ) and pi+1 ∈ f (Si+1) for some 0 ≤ i < λ. Then pi < pi+1,
componentwise.

The correctness of Proposition 2.2 follows from the simple fact that for (j, i) = f −1(pi ) and
(j ′, i + 1) = f −1(pi+1) we have:

pi = f (j, i)

<
(
(λ + 1)i + λ, (λ + 1)i + 1

)
=
(
(λ + 1)(i + 1) − 1, (λ + 1)(i + 1) − λ

)
< f (j ′, i + 1)
= pi+1

Let Γ be an ordered level planar drawing of G. Without loss of generality, we can assume that
in Γ all edges are realized as polygonal paths in which bend-points occur only on the horizontal
segments Si , see Figure 6(a). Applying f to all the bend-points yields a drawing f (Γ) of G′, see
Figure 6(b). Since f is linear, f (Γ) is plane. By Proposition 2.2, every edge in f (Γ) is realized as a
polygonal path whose segments have positive slopes. Therefore f (Γ) is bi-monotone.

2019-08-06 13:44. Page 11 of 1–25. to appear in ACM Transactions on Algorithms
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Fig. 6. (a) An ordered level planar drawing of G; (b) and the corresponding bi-monotone drawing of G′
.

On the other hand, let Γ′ be a planar bi-monotone drawing of G′. The lines f (Li ) ⊃ f (Si )
have a negative slope (of −1); and by Proposition 2.2, every edge is realized as a curve that is
simultaneously increasing in the x- and y-directions. Therefore, every edge may intersect each
line f (Li ) at most once. More precisely, an edge (vj ,vk ) with vj ∈ Vj , vk ∈ Vk and j < k crosses
each of the consecutive lines f (Lj+1), ..., f (Lk−1) exactly once. Further, all vertices of level Vi have
been mapped to f (Si ) ⊂ f (Li ). Thus, we can leave the intersection of each edge with each line f (Li )
fixed and replace the intermediate pieces by line-segments. This does not introduce any crossings
and turns all edges into x- and y-montone polygonal paths in which bend-points occur only on the
lines f (Li ), see Figure 6(b). Applying f −1 yields an ordered level planar drawing f −1(Γ′) of G, see
Figure 6(a). □

3 VARIATIONS OF LEVEL PLANARITY
In this section we explore the connection between Ordered Level Planarity and other variants
of Level Planarity. We prove the following theorem.

Theorem 1.5. Ordered Level Planarity reduces in linear time to Constrained Level Planarity

and T-Level Planarity, and in quadratic time to Clustered Level Planarity.

The reduction to Constrained Level Planarity is immediate, which together with Theorem 1.1
also yields:

Theorem 1.6. Constrained Level Planarity is NP-hard even for acyclic level graphs with maxi-

mum degree ∆ = 2 and level-width λ = 2 and prescribed total orderings.

For the other two reductions, we restrict our attention to ordered level graphs with level-
width λ = 2. As we will see in Section 4, this restriction is no loss of generality (Lemma 4.2).

We first reduce to T-Level Planarity:

Lemma 3.1. Ordered Level Planarity with maximum degree ∆ and level-width λ = 2 reduces in
linear time to T-Level Planarity with maximum degree ∆′ = max(∆, 2) and level-width λ′ = 4.

to appear in ACM Transactions on Algorithms 2019-08-06 13:44. Page 12 of 1–25.
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Proof. Let G = (G = (V ,E),γ , χ ) be an ordered level graph with maximum degree ∆ and
level-width λ = 2. We augment each level Vi with |Vi | = 1 by adding an isolated dummy vertex v
with γ (v) = i and χ (v) = 1 in order to avoid having to treat special cases. Thus, each level Vi has
a vertex v0

i with χ (v0
i ) = 0 and a vertex v1

i with χ (v1
i ) = 1. The following steps are illustrated

in Figure 7a. For each level Vi we create two new vertices vli and vri . We add edges (vli ,vli+1) and
(vri ,vri+1) for i = 0, . . . ,h − 1, where h is the height of G. Hence, we obtain a path pl from vl0 to vlh
and a path pr fromvr0 tovrh . The root ri of each treeTi has two children uli and uri . The two children
of uli are vli and v0

i . The two children of uri are vri and v1
i . Let G′ denote the resulting T-level graph.

The construction of G′ can be carried out in linear time.
Clearly, an ordered level planar drawing Γ of G can be augmented to a T-level planar drawing

of G′ by drawing pl to the left of Γ and by drawing pr to the right of Γ. On the other hand, let Γ′
be a T-level-planar drawing of G′. We can assume without loss of generality that all vertices are
placed on vertical lines with x-coordinates −1, 0, 1 or 2. The paths pl and pr are vertex-disjoint
and drawn without crossing. Thus, pl is drawn either to the left or to the right of pr . By reflecting
horizontally at the line x = 1/2 we can assume without loss of generality that pl is drawn to the
left of pr . Consequently, for each level Vi the vertex v0

i has to be drawn to the left of the vertex v1
i

since vli and v0
i are the children of uli and since vri and v1

i are the children of uri . Therefore, the
subdrawing of G or its mirror image is an ordered level planar drawing of G. □

Together with Theorem 1.1 this shows the NP-hardness of T-Level Planarity for instances
with maximum degree ∆ = 2 and level-width λ = 4. However, a stronger statement was already
given by Angelini et al. [2], who show NP-hardness for instances with ∆ = 2 and λ = 3.
We proceed with a reduction to Clustered Level Planarity.

Lemma 3.2. Ordered Level Planarity with maximum degree ∆ and level-width λ = 2 reduces
in quadratic time to Clustered Level Planarity with maximum degree ∆′ = max(∆, 2), level-
width λ′ = 2, and a clustering hierarchy that partitions the vertices into only two non-trivial clusters.

Proof. Let G = (G = (V ,E),γ , χ ) be an ordered level graph with maximum degree ∆ and level-
width λ = 2. As in the previous proof, we augment each levelVi with |Vi | = 1 by adding an isolated
dummy vertex v with γ (v) = i and χ (v) = 1. Thus, each levelVi has a vertex v0

i with χ (v0
i ) = 0 and

a vertex v1
i with χ (v1

i ) = 1. In addition to the trivial cluster that contains all vertices, we create two
clusters c0 = {v0

0 , . . . ,v
0
h} and c1 = {v1

0 , . . . ,v
1
h}, where h is the height of G. Now we see the close

correspondence between clustered level planar drawings and ordered level planar drawings: The
two clusters pass through every level, their boundaries are not allowed to intersect, and they cannot
be nested. Thus, by reflecting horizontally if necessary, we can assume without loss of generality
that c0 intersects each level to the left of c1 as depicted in Figure 7c. Consequently, on each level Vi
the vertex v0

i ∈ c0 is placed to the left of v1
i ∈ c1, just as in an ordered level planar drawing.

In order to make the reduction work, we have to subdivide each edge several times. Otherwise,
an edge might be forced to cross a cluster boundary more than once: Consider an edge e = (u,v)
with u,v ∈ c0 that has to pass the level of some vertex b ∈ c1 with γ (u) < γ (b) < γ (v) to the right
of b, see Figure 7b. In this situation, e must cross the right boundary r0 of c0 at least twice, as r0
has to be drawn to the right of u,v ∈ c0, and to the left of b ∈ c1. This example can be blown up to
enforce arbitrarily many crossings between e and r0.
In order to avoid this situation, we subdivide the edges of G as follows. Each edge from some

level i to some level j > i is transformed into a path of 2(j−i)+1 edges whose inner vertices alternate
between the clusters c1 and c0. More precisely, for each pair of consecutive levels Vi and Vi+1 we
add two new subdivision vertices on each edge e = (u,v) ∈ E with γ (u) ≤ i and γ (v) ≥ i + 1. The
lower one of the resulting subdivision vertices for e is added to c1, the upper one is added to c0. We
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Fig. 7. (a) Reduction from Ordered Level Planarity to T-level Planarity. The square vertices illustrate

each level’s tree. (b) In an ordered level planar drawing, the edge e = (u,v) has to pass the level of b to the

right of b: Due to the edge (v,д), the edge (a, f ) passes to the left of v . As a consequence, e cannot pass the
level of b to the left of a. Further, due to (a, c) and (b, c), it can also not pass between a and b. (c-d) Reduction
from Ordered Level Planarity to Clustered Level Planarity. Big black vertices are the vertices of the

Ordered Level Planarity instance. The small vertices are subdivision vertices. (c) Schematic view of the

entire clustered level graph. (d) The clustering boundaries can be drawn such that they cross each subdivision

edge at most once.

place each of the subdivision vertices that was added to c1 on a new separate level between the
levels Vi and Vi+1. The relative order of these new levels is arbitrary. Above these new levels but
belowVi+1 we place all the subdivision vertices added to c0, again each on a new separate level, see
Figures 7c–7d.
Let Gs = (Gs ,γ s , χ s ) denote the ordered level graph resulting from applying the subdivision

to G. The output of our reduction is the clustered level graph Gcl = (Gs ,γ s ,T ) where T is the
described hierarchy, with the clusters c0 and c1. Since edges may stretch over a linear number of
levels, the size of Gs can be quadratic in the size of G and, therefore, the construction of Gcl might
require quadratic time.

Correctness. The subdivision does not affect the realizability of G as an ordered level planar
drawing, since every subdivision vertex in Gs is the singleton vertex of some new level. Therefore,
to prove correctness, it suffices to argue that Gcl is realizable as a clustered level planar drawing if
and only if Gs is realizable as an ordered level planar drawing.

For the easy direction, let Γcl be a clustered level planar drawing of Gcl. As discussed above, we
may assume that c0 is drawn to the left of c1. Further, we may assume without loss of generality that
all vertices are placed on vertical lines with x-coordinates 0 and 1, and moreover, all subdivision
vertices, being singleton vertices of their levels, are placed on x = 0. Recall that each vertex v of the
original graph is contained in c0 if χ (v) = 0; and it is contained in c1 if χ (v) = 1. Thus, by the above
assumptions, v ∈ V is placed on x = 0 if χ (v) = 0; and it is placed on x = 1 if χ (v) = 1. Therefore,
the drawing Γcl (without the cluster boundaries) is an ordered level planar drawing of Gs .
For the other direction, let Γ be an ordered level planar drawing of the ordered level graph Gs .

We create a clustered level planar drawing of Gcl by adding the cluster boundaries of c0 and c1 to Γ.
The left boundary ℓ0 of c0 is drawn as a vertical line segment to the left of Γ. Analogously, the right
boundary r1 of c1 is drawn as a vertical line segment to the right of Γ.
It remains to draw the right boundary r0 of c0 and the left boundary ℓ1 of c1. We draw them

from bottom to top. We keep them close together, and they will always cross the same edge in
direct succession, see Figure 7d. Assume inductively that r0 and ℓ1 have already been drawn in the
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closed half-plane Hi below the line Li through the vertices Vi of G, and this subdrawing violates
none of the conditions from the definition of a clustered level planar drawing. In particular, r0
and ℓ1 are realized as non-crossing y-monotone curves with all vertices of c0 to the left of r0, and
with all vertices of c1 to the right of ℓ1. Moreover, no edge is intersected more than once by any
of r0 or ℓ1. Further, let Ei be the set of edges of Gs that are intersected by Li including the edges
having their lower endpoint on Li , but without the edges having their upper endpoint on Li . We
maintain the following two additional inductive assumptions: (a) Li intersects the edges in Ei and
the boundaries r0 and ℓ1 in the following left-to-right order (see Figure 7d): (1) all edges Eℓ ⊆ Ei
that intersect Li to the left of v1

i ; (2) the boundary r0; (3) the boundary ℓ1; and (4) the remaining
edges Er = Ei \ Eℓ , i.e. the edges incident to v1

i , or passing v1
i to its right. (b) No edge of Eℓ has

already been crossed by r0 or ℓ1 below Li . Note that these conditions are easily met for i = 0.
We describe how the partial drawings of r0 and ℓ1 are extended upwards from Li . For an illustra-

tion, see Figure 7d. Each edge in Ei is part of a path that has two subdivision vertices between Li
and Li+1. The lower of these vertices belongs to c1, and the upper one belongs to c0. We draw r0
and ℓ1 in a very schematic and simple way. First we cross all edges in Eℓ from right to left. By
assumption (b), this is permitted. We then pass to the left of all the lower subdivision vertices,
ensuring that they lie within the cluster boundaries of c1. We then cross all edges between their
two subdivision vertices from left to right, and pass to the right of all the subdivision vertices in c0.
Finally, we cross from right to left all edges which pass Li+1 to the right of v1

i+1, and those whose
upper endpoint is v1

i+1. It is easy to check that the inductive assumptions hold again for Li+1. Thus,
we may iterate this procedure to obtain a clustered level planar drawing of Gcl. □

Together with Theorem 1.1 we obtain the following.

Theorem 1.7. Clustered Level Planarity isNP-hard even for acyclic clustered level graphs with

maximum degree ∆ = 2, level-width λ = 2 and a flat cluster hierarchy that partitions the vertices into

two non-trivial clusters.

The previousNP-hardness result by Angelini et al. [2] holds for instances with ∆ = 2 and λ = 3.
Their cluster hierarchies have linear depths. The authors pose the complexity of Clustered Level
Planarity for instances with flat cluster hierarchies as an open problem. Theorem 1.7 gives an
answer to this question and improves the previous result by Angelini et al.

4 ORDERED LEVEL PLANARITY
In this section we study Ordered Level Planarity. For the NP-hardness proof, we reduce from
the 3-Satisfiability variant described in this paragraph. A monotone 3-Satisfiability formula is
a Boolean 3-Satisfiability formula in which each clause is either positive or negative, that is, each
clause contains either exclusively positive or exclusively negative literals, respectively. A planar

3SAT formula φ = (U,C) is a Boolean 3-Satisfiability formula with a setU of variables and a
set C of clauses such that its variable–clause graph Gφ = (U ⊎ C,E) is planar. The graph Gφ is
bipartite, i.e. every edge in E is incident to a clause vertex from C and a variable vertex from U.
Furthermore, edge {c,u} ∈ E if and only if a literal of variable u ∈ U occurs in c ∈ C. Planar
Monotone 3-Satisfiability is a special case of 3-Satisfiability where we are given a planar and
monotone 3-Satisfiability formula φ and a monotone rectilinear representation R of the variable-
clause graph of φ. The representation R is a contact representation on an integer grid in which the
variables are represented by horizontal line segments arranged on a common horizontal line ℓ. The
clauses are represented by E-shapes turned by 90◦ such that all positive clauses are placed above ℓ

2019-08-06 13:44. Page 15 of 1–25. to appear in ACM Transactions on Algorithms



16 B. Klemz and G. Rote

A515

A516

A517

A518

A519

A520

A521

A522

A523

A524

A525

A526

A527

A528

A529

A530

A531

A532

A533

A534

A535

A536

A537

A538

A539

A540

A541

A542

A543

u1u2u3u4u5

(a)

u1u2u3u4u5u1 u2 u3 u4 u5

(b)

n0
1N0

1n0
2N0

2n0
3N0

3n0
4N0

4n0
5N0

5p01P 0
1 p02P 0

2 P 0
3 p04P 0

4 p05P 0
5p03

Tn
1Tn

3Tn
4T p

1 Tn
2Tn

5T p
2 T p

3 T p
4 T p

5
l0

0

T0

T1

(c)

Fig. 8. (a) Representation R of φ with negative clauses (u1 ∨ u4 ∨ u5), (u1 ∨ u3 ∨ u4) and (u1 ∨ u2 ∨ u3) and
positive clauses (u1 ∨ u4 ∨ u5) and (u1 ∨ u2 ∨ u3) and (b) its modified version R ′

in Lemma 4.1. (c) Tier T0.

and all negative clauses are placed below ℓ, see Figure 8a. Planar Monotone 3-Satisfiability
is NP-complete [8]. We are now equipped to prove the core lemma of this section.
Lemma 4.1. Planar Monotone 3-Satisfiability reduces in polynomial time to Ordered Level

Planarity. The resulting instances have maximum degree ∆ = 2 and contain no source or sink with

degree ∆ on a level Vi with width λi > 2.
Proof. We perform a polynomial-time reduction from Planar Monotone 3-Satisfiability.

Letφ = (U,C) be a planar andmonotone 3-Satisfiability formulawith clause setC = {c1, . . . , c |C |}.
LetGφ be the variable-clause graph of φ. Let R be a monotone rectilinear representation ofGφ . We
construct an ordered level graph G = (G,γ , χ ) such that G has an ordered level planar drawing if
and only if φ is satisfiable.

Overview. The ordered level graph G has l3 + 1 levels which are partitioned into four tiers
T0 = {0, . . . , l0}, T1 = {l0+1, . . . , l1}, T2 = {l1+1, . . . , l2} and T3 = {l2+1, . . . , l3}. Each clause ci ∈ C
is associated with a clause edge ei = (csi , cti ) starting with csi in tier T0 and ending with cti in tier T2.
The clause edges have to be drawn in a system of tunnels that encodes the 3-Satisfiability
formula φ. In T0 the layout of the tunnels corresponds directly to the rectilinear representation R,
see Figure 8c. For each E-shape there are three tunnels corresponding to the three literals of the
associated clause. The bottom vertex csi of each clause edge ei is placed such that ei has to be drawn
inside one of the three tunnels of the E-shape corresponding to ci . This corresponds to the fact that
in a satisfying truth assignment every clause has at least one satisfied literal. In tier T1 we merge all
the tunnels corresponding to the same literal. We create variable gadgets that ensure that for each
variable u, the edges of clauses containing u can be drawn in the tunnel associated with either the
negative or the positive literal of u but not in both. This corresponds to the fact that every variable
is set to either true or false. Tiers T2 and T3 have a technical purpose.

We proceed by describing the different tiers in detail. Recall that in terms of realizability, Ordered
Level Planarity is equivalent to the generalized version where γ and χ map to the reals. For
the sake of convenience we will begin by designing G in this generalized setting. It is easy to
transform G such that it satisfies the standard definition in a polynomial-time post processing step.

Tiers 0 and 2, clause gadgets. Each clause edge ei = (csi , cti ) ends in tier T2. It is composed
of l2 − l1 = |C| levels each of which contains precisely one vertex. We assign γ (cti ) = l1 + i . Recall
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that for levels with width 1, the assigned x-coordinates are irrelevant. Hence, we set χ (cti ) = 0.
Observe that the positions of the vertices cti impose no constraints on the order in which the
incident edges enter T2.

Tier T0 consists of a system of tunnels that resembles the monotone rectilinear representation R
ofGφ = (U ⊎ C,E), see Figure 8c. Intuitively it is constructed as follows: We take the top part of R,
rotate it by 180◦ and place it to the left of the bottom part such that the variables’ line segments
align, see Figure 8b. We call the resulting representation R ′. For each E-shape in R ′ we create
a clause gadget, which is a subgraph composed of 11 vertices that are placed on a grid close to
the E-shape, see Figure 9. The enlarged vertex at the bottom is the lower vertex csi of the clause
edge ei of the clause ci corresponding to the E-shape. Without loss of generality we assume the
grid to be fine enough such that the resulting ordered level graph can be drawn as in Figure 8c
without crossings. Further, we assume that the y-coordinates of every pair of horizontal segments
belonging to distinct E-shapes differ by at least 3. This ensures that there are no sources or sinks
with degree ∆ on levels with width larger than 2.

Technical Details. In the following two paragraphs, we describe the construction of the clause
gadgets in detail.
For every i = 1, . . . , |C| where ci is negative, we create its 11-vertex clause gadget as follows,

see Figure 9. Let s1, s2, s3 be the three vertical line segments of the E-shape representing ci in R ′

where s1 is left-most and s3 right-most. Let v1,v2,v3 be the lower endpoints and v ′
1,v

′
2,v

′
3 be the

upper endpoints of s1, s2, s3, respectively. We place the tail csi of the clause edge ei of ci at v2. We
create new vertices at v1, v3, v ′

1, v ′
2, v ′

3, v4 = v1 + (1, 1), v5 = v2 + (1, 2) and at v6,v7,v8 which are
the lattice points one unit to the right of v ′

1,v
′
2,v

′
3, respectively. To simplify notation, we identify

these new vertices with their locations on the grid. We add edges (v1,v ′
1), (v3,v8), (v4,v6), (v4,v ′

2),
(v5,v7) and (v5,v ′

3) to G.
As stated above, we can assume without loss of generality that the grid is fine enough such

that the resulting ordered level graph can be drawn as in Figure 8c without crossing. It suffices to
assume that the horizontal and vertical distance between any two segment endpoints of R ′ is at
least 3 (unless the endpoints lie on a common horizontal or vertical line).

Gates and Tunnels. The clause gadget (without the clause edge) has a unique ordered level
planar drawing in the sense that for every level Vi the left-to-right sequence of vertices and edges
intersected by the horizontal line Li through Vi is identical in every ordered level planar drawing.
This is due to the fact that the order of the top-most vertices v ′

1, v6, v ′
2, v7, v ′

3 and v8 is fixed and
every edge of the gadget is incident to precisely one of these vertices. With the same reasoning, it
follows that the subgraph G0 induced by T0 (without the clause edges) has a unique ordered level
planar drawing.

Consider the clause gadget of some clause ci . We call the line segments v ′
1v6, v ′

2v7 and v ′
3v8 the

gates of ci . Note that the clause edge ei has to intersect one of the gates of ci . This corresponds to
the fact the at least one literal of every clause has to be satisfied. In tier T1 we bundle all gates that
belong to the same literal together by creating two long paths for each literal. These two paths
form the tunnel of the corresponding literal. All clause edges intersecting a gate of some literal
have to be drawn inside the literal’s tunnel, see Figure 8c. More precisely, for j = 1, . . . , |U| we
use N 0

j (n0j ) to refer to the left-most (right-most) vertex of a negative clause gadget placed on a
line segment of R ′ representing uj ∈ U. The vertices N 0

j and n0j are the first vertices of the paths
forming the negative tunnel T n

j of the negative literal of variable uj . Analogously, we use P0
j (p0j )

to refer to the left-most (right-most) vertex of a positive clause gadget placed on a line segment
of R ′ representing uj . The vertices P0

j and p0j are the first vertices of the paths forming the positive
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Fig. 9. (a) The E-shape and (b) the clause gadget of clause ci .

tunnel T p
j of the positive literal of variable uj . If for some j the variable uj is not contained both

in negative and positive clauses, we artificially add two vertices N 0
j and n0j or P0

j and p0j on the
corresponding line segments in order to avoid having to treat special cases in the remainder of the
construction.

Tiers 1 and 3, variable gadgets. Recall that every clause edge has to pass through a gate that is
associated with some literal of the clause, and, thus, every edge is drawn in the tunnel of some
literal. We need to ensure that for no variable it is possible to use both the tunnel associated with its
positive literal, as well as the tunnel associated with its negative literal simultaneously. To this end,
we create a variable gadget with vertices in tiers T1 and T3 for each variable. The variable gadget of
variable uj is illustrated in Figure 10a. The variable gadgets are nested in the sense that they start
in T1 in the order u1,u2, ...,u |U | , from bottom to top and they end in the reverse order in T3, see
Figure 11. We force each tunnel with index at least j to be drawn between the vertices uaj and ubj .
This is done by subdividing the tunnel edges on this level, see Figure 10b. The long edge (usj ,utj )
has to be drawn to the left or right of ucj in T3. Accordingly, it is drawn to the left of uaj or to the
right of ubj in T1. Thus, it is drawn either to the right (Figure 10b) of all the tunnels or to the left
(Figure 10c) of all the tunnels. As a consequence, the blocking edge (usj ,u

p
j ) is also drawn either

to the right or the left of all the tunnels. Together with the edge (uqj ,u
p
j ) it prevents clause edges

from being drawn either in the positive tunnel T p
j or negative tunnel T n

j of variable uj which end
at level γ (uqj ) because they cannot reach their endpoints in T2 without crossings. We say T p

j or T n
j

are blocked respectively.

Technical Details. In the following two paragraphs, we describe the construction of the variable
gadgets in detail.
Tier T3 has l3 − l2 = 2 · |U| layers each of which contains precisely one vertex. We refer to

the vertex in layer (l3 − 2j + 1) as utj and to the vertex in layer (l3 − 2j) as ucj for j = 1, . . . , |U|.
Tier T1 has l1 − l0 = 4 · |U| levels. In each of the levels (l0 + 4j − 3), (l0 + 4j − 1) and (l0 + 4j)
where j = 1, . . . , |U| we create one vertex. These vertices are called usj , u

q
j and upj respectively. In

level (l0 + 4j − 2) we create two vertices uaj and ubj in this order. We add the edges (usj ,utj ), (usj ,u
p
j ),

(uaj ,ucj ), (ubj ,ucj ) and (uqj ,u
p
j ).

Finally, for j = 1, . . . , |U| we do the following, see Figure 10b or Figure 10c. In level (l0 + 4j − 2)
we create vertices P jj ,p

j
j , . . . , P

j
|U |,p

j
|U | , N

j
|U |,n

j
|U |, . . . ,N

j
j ,n

j
j and add them in this order between

uaj and ubj . In level (l0 + 4j − 1) we create vertices P j+1j and p j+1j in this order before uqj and we create
vertices N j+1

j and nj+1j in this order after uqj . We create edges realizing the paths tPj = (P0
j , . . . , P

j+1
j ),
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Fig. 10. (a) The variable gadget of uj in (b) positive and (c) negative state. For the sake of visual clarity, these
figures make use of the relaxed but equivalent version of Ordered Level Planarity which only requires

that the vertices of each level appear according to the total ordering corresponding to χ , cf. Section 1.3. In

particular, a vertex v of a level Vi with width λi = 1 may appear anywhere on the horizontal line Li . The
dash-dotted edges are clause edges.

t
p
j = (p0j , . . . ,p

j+1
j ), tNj = (N 0

j , . . . ,N
j+1
j ) and tnj = (n0j , . . . ,n

j+1
j ). The pair of paths T p

j = (tPj , t
p
j )

is the positive tunnel of variable uj . The pair of paths T n
j = (tNj , tnj ) is the negative tunnel of

variable uj . If an edge e is drawn in the region between the two paths of a tunnel T , we say it is
drawn in T .

Runtime and Properties. The construction of the ordered level graph G can be carried out in
polynomial time. Note that its maximum degree is ∆ = 2 and that no source or sink with degree ∆
is located on a level Vi with width λi > 2.

Correctness. It remains to show that G has an ordered level planar drawing if and only if φ is
satisfiable. Assume that G has an ordered level planar drawing Γ. We create a satisfying truth
assignment for φ. If T n

j is blocked we set uj to true, otherwise we set uj to false for j ∈ 1, . . . , |U|.
Recall that the subgraph G0 induced by the vertices in tier T0 has a unique ordered level planar
drawing. Consider a clause ci and let f ,д, j be the indices of the variables whose literals are
contained in ci . Clause edge ei = (esi , eti ) has to pass level l0 through one of the gates of ci . More
precisely, ei has to be drawn between either N 0

f and n0f , N
0
д and n0д , or N 0

j and n0j if ci is negative,
or between either P0

f and p
0
f , P

0
д and p0д , or P0

j and p0j if ci is positive, see Figure 8c. First, assume
that ci is negative and assume without loss of generality that ei traverses l0 between N 0

j and n0j . In
this case ei has to be drawn in T n

j . Recall that this is only possible if T n
j is not blocked, which is the

case if uj is false, see Figure 10c. Analogously, if ci is positive and ei traverses w.l.o.g. between pPj
and ppj , then uj is true, Figure 10b. Thus, we have established that one literal of each clause in C
evaluates to true for our truth assignment and, hence, formula φ is satisfiable.

Now assume that φ is satisfiable and consider a satisfying truth assignment. We create an ordered
level planar drawing Γ of G. It is clear how to create the unique subdrawing of G0. The variable
gadgets are drawn in a nested fashion, see Figure 11. For j = 1, . . . , |U| − 1 we draw edge (uaj ,ucj )
to the left of uaj+1 and usj+1 and edge (ubj ,ucj ) to the right of ubj+1 and usj+1. In other words, the
pair ((uaj ,ucj ), (ubj ,ucj )) is drawn between all such pairs with index smaller than j. Recall that the
vertices uaj , ubj , usj , u

p
j and u

q
j are located on higher levels than the according vertices of variables

with index smaller than j and that utj and ucj are located on lower levels than the according vertices
of variables with index smaller than j.
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Fig. 11. The nesting structure of the variable gadgets. Only the gadgets of the variables with the four largest

indices are shown. They are nested within the remaining variable gadgets. Tier T0 is located below all
these gadgets. As in Figure 10, this figure uses the version of Ordered Level Planarity which uses relative

x-coordinates on each level. The dash-dotted edges are clause edges.

For j = 1, . . . , |U| if uj is positive, we draw the long edge (usj ,utj ) to the right of ubj and ucj and,
accordingly, we have to draw all tunnels left of usj and u

q
j (except for T n

j , which has to be drawn to
the left of usj and must end to the right of uqj ), see Figure 10b. If uj is negative we draw the long
edge (usj ,utj ) to the left of ubj and ucj and, accordingly, we have to draw all tunnels right of usj and u

q
j

(except forT p
j , which has to be drawn to the right of usj and end to the left of u

q
j ), see Figure 10c. We

have to draw the blocking edge (usj ,u
p
j ) to the right of nj+1j if uj is positive and to the left of P j+1j

if uj is negative.
It remains to describe how to draw the clause edges. Let ci be a clause. There is at least one

true literal in ci . Let k be the index of the corresponding variable. We describe the drawing of
clause edge ei = (csi , cti ) from bottom to top. We start by drawing ei in the tunnel T p

k (T n
k ) if ci is
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Fig. 12. (a) A level Vi with width λi > 2. (b) In order to reduce the level-width, we replace Vi with λi − 1
levels. Thick edges are the stretch edges.

positive (negative). Immediately after level γ (pk+1k ) we end up to the left (right) of all tunnels with
index larger than k , see Figure 10b (Figure 10c). Note that since T p

k (T n
k ) is not blocked, we can

continue without having to cross blocking edge (usk ,u
p
k ) or (u

q
k ,u

p
k ). We draw ei to the left (right) of

all vertices belonging to variable gadgets with index larger than k , see Figure 11. This introduces
no crossings since above level γ (pk+1k ) all tunnels with index larger than k are drawn to the right
of uak+1, . . . ,u

a
|U | and the left of ubk+1, . . . ,u

b
|U | . Connecting to c

t
i in tier T2 is straight-forward since

every level contains only one vertex. □

We obtain NP-hardness for instances with maximum degree ∆ = 2. In fact, we can restrict
our attention to instances with level-width λ = 2. To this end, we split levels with width λi > 2
into λi − 1 levels containing exactly two vertices each.

Lemma 4.2. An instance G = (G = (V ,E),γ , χ ) of Ordered Level Planarity with maximum

degree ∆ and level-width λ > 2 can be transformed in linear time into an equivalent instance G′ =
(G ′ = (V ′,E ′),γ ′, χ ′) of Ordered Level Planarity with maximum degree ∆′ ≤ ∆ + 1 and level-

width λ′ = 2. Further, if G contains no source or sink with degree ∆ on a level Vi with width λi > 2,
then ∆′ ≤ ∆.

Proof. We replace each level Vi with width |Vi | = λi > 2 by λi − 1 levels with 2 vertices each,
as illustrated in Figure 12. Accordingly, vertices on levels above Vi are shifted upwards by λi − 2
levels. Formally, letVi = {v1, . . . ,vλi } with χ (v1) < · · · < χ (vλi ). We increase the level of vertex vj
by j−2 for j = 3, . . . , λi . For j = 2, . . . , λi −1 we create a vertexv ′

j one level abovevj with χ (v ′
j ) = 0

and we create a new stretch edge (vj ,v ′
j ). For j = 2, . . . , λi we set χ (vj ) = 1.

For all the vertices v that have been split in this way into v and v ′, the bottom vertex v inherits
all the incoming edges and the top vertex v ′ inherits all the outgoing edges. Let G′ denote the
resulting instance, which can be constructed in linear time. It is easy to verify that the vertex
degrees behave as desired.
An ordered level planar drawing of G can easily be converted to a drawing of G′. For the

conversion in the other direction, we successively contract each stretch edge (vi ,v ′
i ) back into

a single vertex, thereby merging two consecutive levels of G′. Apart from the edge (vi ,v ′
i ), the

vertex vi has incident edges from below and the vertex v ′
i has incident edges from above only.

Therefore, such a contraction cannot cause any problems. The stretch edges ensure that the vertices
of each level of G end up in the correct order. □
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Corollary 4.3. Ordered Level Planarity isNP-hard, even for acyclic ordered level graphs with

maximum degree ∆ = 2 and level-width λ = 2.

The reduction in Lemma 4.1 requires degree-2 vertices. With ∆ = 1, the problem becomes
polynomial-time solvable. In fact, one can easily solve it as long as the maximum in-degree and the
maximum out-degree are both bounded by 1.

Lemma 4.4. Ordered Level Planarity restricted to instances with maximum in-degree ∆− = 1
and maximum out-degree ∆+ = 1 can be solved in linear time.

Proof. Let G = (G = (V ,E),γ , χ ) be an ordered level graph with maximum indegree ∆− = 1
and maximum outdegree ∆+ = 1. Such a graph G consists of a set P of y-monotone paths. Each
path p ∈ P has vertices on some sequence of levels, possibly skipping intermediate levels.

We define the following relation on P : We write p ≺ q, meaning that p must be drawn to the left
of q, if p and q have vertices vp and vq that lie adjacent on a common level, i.e. γ (vp ) = γ (vq) and
χ (vq) = χ (vp ) + 1. This relation has at most |V | pairs, and by topological sorting, we can find in
O(|V |) time a linear ordering that is consistent with the relation ≺, unless this relation has a cycle.
The former case implies the existence of an ordered level drawing while the latter case implies that
the problem has no solution.

This follows from considerations about horizontal separability ofy-monotone sets by translations,
cf. [3, 9]. An easy proof can be given following Guibas and Yao [16, 17]: Consider an ordered level
planar drawing of G. We say that a vertex is visible from the left if the infinite horizontal ray
emanating from that vertex to the left does not intersect the drawing. Among the paths whose
lower endpoint is visible from the left, the one with the topmost lower endpoint must precede
all other paths to which it is related in the ≺-relation. Removing this path and iterating the
procedure leads to a linear order that extends ≺. On the other hand, if we have such a linear order
x : P → {1, . . . , |P |}, we can simply draw each path p straight at x-coordinate x(p), subdivide all
edges properly and, finally, shift the vertices on each level such that the vertices of V are placed
according to χ while maintaining the order x . □

For λ = 1, Ordered Level Planarity is solvable in linear time since Level Planarity can
be solved in linear time [20]. Proper instances have a unique drawing (if it exists). The existence
can be checked with a simple linear-time sweep through every level. The problem is obviously
contained in NP. The results of this section establish Theorem 1.1.

Theorem 1.1. Ordered Level Planarity is NP-complete, even for acyclic ordered level graphs

with maximum degree ∆ = 2 and level-width λ = 2. The problem can be solved in linear time if the

given level graph is proper; or if the level-width is λ = 1; or if ∆+ = ∆− = 1, where ∆+ and ∆−
are the

maximum in-degree and out-degree respectively.

5 CONNECTED INSTANCES
In order to be able to reduce from Ordered Level Planarity to Geodesic Planarity, our main
reduction (to Ordered Level Planarity) is tailored to achieve a small maximum degree of ∆ = 2.
As a consequence, the resulting graphs are not connected. At the cost of an increased maximum
degree, it is possible to make our instances connected by inserting additional edges. In this section,
we discuss the necessary adaptations in order to obtain the following theorem.

Theorem 1.8. The following problems are NP-hard even for connected instances with maximum

degree ∆ = 4:
• Ordered Level Planarity even for level-width λ = 2,

to appear in ACM Transactions on Algorithms 2019-08-06 13:44. Page 22 of 1–25.
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Fig. 13. (a) The original clause gadget and (b) the augmented version for the connected case. The clause

edge starting at csi is not shown.

• Constrained Level Planarity even for level-width λ = 2 and prescribed total orderings,
• Clustered Level Planarity even for level-width λ = 2 and flat cluster hierarchies that partition
the vertices into two non-trivial clusters, and

• Bi-Monotonicity.

We begin by showing the NP-hardness of Ordered Level Planarity for connected instances.

Lemma 5.1. Planar Monotone 3-Satisfiability reduces in polynomial time to Ordered Level

Planarity. The resulting instances are connected and have maximum degree ∆ = 4. The maximum

in-degree ∆−
and maximum out-degree ∆+ are both 3.

Proof. We proceed exactly as in Lemma 4.1. We augment the resulting instances such that
they become connected. During this augmentation step, we need to make sure that the degree
constraints remain satisfied.
Recall that U is the set of variables and that tier T3 contains precisely 2|U| vertices each of

which is the only vertex of its level, see Figure 10a and Figure 11. We connect all these vertices
with a directed path, that is, we insert the edges (ucj ,utj ) for j = 1, . . . , |U| and the edges (utj ,ucj+1)
for j = 2, . . . , |U|. One can easily check that the degree constraints are satisfied: The degree of the
vertices utj is now 3 (except for ut1 , which has degree 2). The degree of the vertices ucj is now 4 = ∆

(except for uc|U | , which has degree 3). The largest out-degree of all these vertices is 1 < ∆+, while
the largest in-degree is 3 = ∆−.
Recall that for each clause ci we have created a clause gadget as depicted in Figure 13a. We

replace this graph with the graph shown in Figure 13b. Precisely, we do the following: We add a
new vertex v9 one unit below csi and we add the edges (v9, csi ), (csi ,v4), (csi ,v5). Again, the degree
bounds are easily verified: Vertex csi now has degree 4 = ∆ (including the clause edge); vertices v4,
v5 and v9 have degree 3 and vertices v1 and v3 have degree 2. The overall maximum out-degree
is 3 = ∆+, while the maximum in-degree is 1.

Recall that the segments v ′
1v6, v ′

2v7 and v ′
3v8 of each clause gadget are called the gates of ci . All

gates (of all clauses) are located on the same levelVд , see Figure 8c. We now ensure that all vertices
ofVд become connected to each other. The two vertices that bound each gate are already connected
through the augmented clause gadgets. We connect two consecutive vertices u,v from different
gates by adding for each such pair u,v a new vertexw one level below Vд with two edges (w,u)
and (w,v).
The resulting instance has two connected components: one containing all the clause gadgets,

clause edges and tunnels; the other containing all the variable gadgets. We can connect these
components by adding a path P between the top-most vertex vt and bottom-most vertex vb

2019-08-06 13:44. Page 23 of 1–25. to appear in ACM Transactions on Algorithms
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of the instance. Note that vt = ut|U | . The bottom-most vertex is vertex v9 of the clause gadget
corresponding to the (unique) E-shape with the lowest horizontal line segment. Simply choosing P =
(vb ,vt ) would result in an increased maximum out-degree of 4. Instead, we choose the (undirected)
path P = (vb ,v ′

b ,v
′
t ,vt ), wherev ′

b andv
′
t are new vertices placed belowvb and abovevt respectively.

This way, the out-degree of vb remains 3.
The new connected instance is equivalent to the original one as the clause edge (csi , cti ) can still

reach each of the three gates of ci by choosing the corresponding embedding. Aside from the edges
incident to the vertices csi , no new edge impairs the realizability of the instance in any way. □

We remark that it is possible to decrease the maximum in-degree guaranteed in Lemma 5.1
to ∆− = 2 by splitting the vertices ucj before the augmentation step.

Since the maximum out-degree and in-degree of the instances produced by Lemma 5.1 are strictly
smaller than the maximum degree ∆ = 4, it follows that no source or sink has degree ∆. Thus,
Lemma 4.2 implies the statement about Ordered Level Planarity and Constrained Level
Planarity in Theorem 1.8. The statement about Bi-Monotonicity follows from Theorem 1.4.
Finally, the statement about Clustered Level Planarity follows from the fact that the reduction
given in Lemma 3.2 does not change the graph except for the subdivisions of the edges and the
addition of isolated vertices. This concludes the proof of Theorem 1.8.

6 CONCLUSION
We introduced and studied the problem Ordered Level Planarity. Our main result is an NP-
hardness statement that cannot be strengthened. We demonstrated the relevance of our result by
stating reductions to several other graph drawing problems. These reductions answer multiple
questions posed by the graph drawing community and establish connections between problems
that (to the best of our knowledge) have not been considered in the same context before. Recently,
Da Lozzo, Di Battista, and Frati [7] used Theorem 1.1 to show the NP-hardness of another gener-
alization of Ordered Level Planarity. We expect that Theorem 1.1 will serve as a useful tool for
further reductions.

In Section 5, we extended most of our reductions in order to produce problem instances which are
connected. We did not provide such a modification for our reduction to Geodesic Planarity. Due
to the increased vertex degrees in Ordered Level Planarity instances generated by Theorem 1.8,
our reduction to Geodesic Planarity in Step (i) of Lemma 2.1 breaks down, as there is not enough
space anymore to attach all the edges around each vertex. It does not seem straight-forward to
modify our construction in order to obtain a reduction to Geodesic Planarity that produces
connected instances. Thus, we leave it as an open question whether NP-hardness still holds for
connected instances of (Manhattan) Geodesic Planarity.
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