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Ordered Level Planarity and Its Relationship to Geodesic
Planarity, Bi-Monotonicity, and Variations of Level Planarity

BORIS KLEM Z, Freie Universitat Berlin, Germany
GUNTER ROTE, Freie Universitit Berlin, Germany

We introduce and study the problem ORDERED LEVEL PLANARITY which asks for a planar drawing of a graph
such that vertices are placed at prescribed positions in the plane and such that every edge is realized as a
y-monotone curve. This can be interpreted as a variant of LEVEL PLANARITY in which the vertices on each level
appear in a prescribed total order. We establish a complexity dichotomy with respect to both the maximum
degree and the level-width, that is, the maximum number of vertices that share a level. Our study of ORDERED
LEVEL PLANARITY is motivated by connections to several other graph drawing problems.

GEODESIC PLANARITY asks for a planar drawing of a graph such that vertices are placed at prescribed
positions in the plane and such that every edge e is realized as a polygonal path p composed of line segments
with two adjacent directions from a given set S of directions which is symmetric with respect to the origin.
Our results on ORDERED LEVEL PLANARITY imply N'P-hardness for any S with |S| > 4 even if the given graph
is a matching. MANHATTAN GEODESIC PLANARITY is the special case where S contains precisely the horizontal
and vertical directions. Katz, Krug, Rutter and Wolff claimed that MANHATTAN GEODESIC PLANARITY can be
solved in polynomial time for the special case of matchings [GD’09]. Our results imply that this is incorrect
unless = NP. Our reduction extends to settle the complexity of the Bl-MoNoTONICITY problem, which was
proposed by Fulek, Pelsmajer, Schaefer, and Stefankovi¢.

ORDERED LEVEL PLANARITY turns out to be a special case of T-LEVEL PLANARITY, CLUSTERED LEVEL
PLANARITY, and CONSTRAINED LEVEL PLANARITY. Thus, our results strengthen previous hardness results.
In particular, our reduction to CLUSTERED LEVEL PLANARITY generates instances with only two non-trivial
clusters. This answers a question posed by Angelini, Da Lozzo, Di Battista, Frati and Roselli.

CCS Concepts: « Mathematics of computing — Graph theory; Graph algorithms;  Human-centered com-
puting — Graph drawings; » Theory of computation — Problems, reductions and completeness;
Graph algorithms analysis.

Additional Key Words and Phrases: Graph drawing, Level Planarity, orthogeodesic drawings, point-set embed-
ability, NP-hardness, upward drawings

1 INTRODUCTION

In this paper we introduce ORDERED LEVEL PLANARITY and study its complexity. We establish
connections to several other graph drawing problems (see Figure 1), which we survey in this first
section.

We proceed from general problems to more and more constrained ones: Section 1.1 recalls
the original version of LEVEL PLANARITY. Section 1.2 discusses several constrained variations of
the problem. ORDERED LEVEL PLANARITY is defined in Section 1.3. The closely related problems
GEODESIC PLANARITY and Bl-MoNoOTONICITY are discussed in Section 1.4.

Section 1.5 summarizes the main results of this paper and gives an overview of the remaining
chapters.

A preliminary version of this paper appeared in the proceedings of Graph Drawing and Network Visualization 2017 [22].
Authors’ addresses: Boris Klemz, Freie Universitit Berlin, Institut fiir Informatik, Takustrafie 9, Berlin, 14195, Germany,
klemz@inf.fu-berlin.de; Giinter Rote, Freie Universitat Berlin, Institut fiir Informatik, Takustraie 9, Berlin, 14195, Germany,
rote@inf.fu-berlin.de.
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Fig. 1. ORDERED LEVEL PLANARITY is a special case of several other graph drawing problems.

1.1 Upward Planarity and Level Planarity

Upward Planarity. An upward planar drawing of a directed graph is a plane drawing (i.e., a
crossing-free drawing in the plane) where every edge e = (u, v) is realized as a y-monotone curve
that goes upward from u to v. Such a drawing provides a natural way of visualizing a partial
order on a set of items. The problem UpwARD PLANARITY of testing whether a directed graph has
an upward planar drawing is NP-complete [13]. However, if the y-coordinate of each vertex is
prescribed, the problem can be solved in polynomial time [20]. This is captured by the notion of
level graphs.

Level Planarity. A level graph G = (G,y) is a directed graph G = (V, E) together with a level
assignment, i.e. a surjective map y: V. — {0, ..., h} with y(u) < y(v) for every edge (u,v) € E.
Value h is the height of G. The vertex set V; = {v | y(v) = i} is called the i-th level of G and A; = |V;]
is its width. The level-width A of G is the maximum width of any level in G. A level planar drawing
of G is an upward planar drawing of G where the y-coordinate of each vertex v is y(v), see
Figure 2(b). The horizontal line with y-coordinate i is denoted by L;. The problem LEVEL PLANARITY
asks whether a given level graph has a level planar drawing, see Figures 2(a-b).

The study of the complexity of LEVEL PLANARITY has a long history [10, 12, 18-20], culminating
in a linear-time algorithm by Jiinger, Leipert and Mutzel [20]. Their algorithm is based on work for
the special case of single-source level graphs by Di Battista and Nardelli [10]. There was an earlier
attempt by Heath and Pemmaraju [18] to extend the work by Di Battista and Nardelli [10] to general
level graphs; however, Jinger et al. [19] pointed out gaps in this construction. All these approaches
utilize PQ-trees. Various simpler but asymptotically slower approaches to solve LEVEL PLANARITY
have been considered, see the work of Fulek, Pelsmajer, Schaefer, and Stefankovi¢ [12] for one of
these approaches (cf. Section 1.4) and a more comprehensive summary. LEVEL PLANARITY has been
extended to drawings of level graphs on surfaces different from the plane [1, 4, 5]. In particular,
RaDIAL LEVEL PLANARITY [4], CYcLIC LEVEL PLANARITY [1, 5] and TorUs LEVEL PLANARITY [1]
arrange levels on a standing cylinder, a rolling cylinder, and a torus, respectively.

to appear in ACM Transactions on Algorithms 2019-08-06 13:44. Page 2 of 1-25.
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Ordered Level Planarity 3

Proper Instances. An important special case are proper level graphs, that is, level graphs in
which y(v) = y(u) + 1 for every edge (u,v) € E. Instances of LEVEL PLANARITY can be assumed
to be proper without loss of generality by subdividing long edges [10, 20]. However, in variations
of LEVEL PLANARITY where we impose additional constraints, the assumption that instances are
proper can have a strong impact on the complexity of the respective problems [2]. The definition
of proper instances naturally extends to the following variations of level graphs.

1.2 Level Planarity with Various Constraints

Clustered Level Planarity. Forster and Bachmaier [11] introduced a version of LEVEL PLANARITY
that allows the visualization of vertex clusterings. A clustered level graph G is a triple (G =
(V,E),y,T) where (G, y) is a level graph and T is a cluster hierarchy, i.e. a rooted tree whose leaves
are the vertices in V. Each internal node of T is called a cluster. We call the cluster of the root trivial
as it contains all vertices. All other clusters are called non-trivial. The vertices of a cluster c are the
leaves of the subtree of T rooted at c. A cluster hierarchy is flat if all leaves have distance at most
two from the root, i.e. if non-trivial clusters are not nested. A clustered level planar drawing of a
clustered level graph G is a level planar drawing of (G, y) together with a closed simple curve for
each cluster that encloses precisely the vertices of the cluster such that the following conditions
hold: (i) no two cluster boundaries intersect, (ii) every edge crosses each cluster boundary at
most once, and (iii) the intersection of any cluster with the horizontal line L; through level V; is
either a line segment or empty for any level V;, see Figure 2(f). The problem CLUSTERED LEVEL
PLANARITY asks whether a given clustered level graph has a clustered level planar drawing. Forster
and Bachmaier [11] presented an O(h|V|)-time algorithm for a special case of proper clustered
level graphs, where h is the height of G. Angelini, Da Lozzo, Di Battista, Frati and Roselli [2]
provided a quartic-time algorithm for all proper instances. The general version of CLUSTERED
LEVEL PLANARITY is NP-complete even for clustered level graphs with maximum degree A = 2
and level-width A = 3; and for 2-connected series-parallel clustered level graphs [2]. In the current
paper, we further strengthen these previous results (Theorem 1.7).

T-Level Planarity. This variation of LEVEL PLANARITY considers consecutivity constraints for
the vertices on each level. A T-level graph G is a triple (G = (V,E),y,7 ) where (G, y) is a level
graph and 7 = (Tp, . . ., Tp) is a set of trees where the leaves of T; are V;. A T-level planar drawing
of a T-level graph G is a level planar drawing of (G, y) such that, for every level V; and for each
node u of T;, the leaves of the subtree of T; rooted at u appear consecutively along L;. The problem
T-LEVEL PLANARITY asks whether a given T-level graph has a T-level planar drawing. Wotzlaw,
Speckenmeyer, and Porschen [23] introduced the problem and provided a quadratic-time algorithm
for proper instances with constant level-width. Angelini et al. [2] give a quartic-time algorithm
for proper instances with unbounded level-width. For general T-level graphs the problem is NP-
complete [2] even for T-level graphs with maximum degree A = 2 and level-width A = 3; and for
2-connected series-parallel T-level graphs.

Constrained Level Planarity. Very recently, Brickner and Rutter [6] explored a variant of LEVEL
PLANARITY in which the left-to-right order of the vertices on each level has to be a linear extension
of a given partial order. They refer to this problem as CONSTRAINED LEVEL PLANARITY and they
provide an efficient algorithm for single-source level graphs and show N#-completeness for
connected proper level graphs.

1.3 A Common Special Case

Ordered Level Planarity. We introduce a natural variant of LEVEL PLANARITY that specifies a
total order for the vertices on each level. An ordered level graph G is a triple (G = (V,E),y, x)

2019-08-06 13:44. Page 3 of 1-25. to appear in ACM Transactions on Algorithms
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(d)

(h)

(e

Fig. 2. In LEVEL PLANARITY the order of the vertices of a common level V; is not fixed. Finding a good ordering
is an essential part of finding a solution. The ordering suggested in (a) is not realizable as the edge (d, h)
cannot be drawn without crossing (c, g) or (e, g). (b) A level planar drawing of (a). As shown in this paper,
fixing the ordering (ORDERED LEVEL PLANARITY) renders the problem intractable. (c) An ordered level drawing
of the instance given in (d). (e) An equivalent drawing for the relaxed version of the problem. (f) A clustered
level drawing. (g) A manhattan geodesic drawing. (h) A bi-monotone drawing.

where (G, y) is a level graph and y: V — {0,...,4 — 1} is a level ordering for G. We require that y
maps each level V; (= y~1(i)) bijectively to {0, ...,1; — 1}. An ordered level planar drawing of an
ordered level graph G is a level planar drawing of (G, y) where for every v € V the x-coordinate
of v is y(v). Thus, the position of every vertex is fixed. The problem ORDERED LEVEL PLANARITY
asks whether a given ordered level graph has an ordered level planar drawing, see Figures 2(c-d).
In this paper, we show that ORDERED LEVEL PLANARITY is a common special case of all the LEVEL
PLANARITY variants defined in Section 1.2 (Theorem 1.5); and we provide a complexity dichotomy
with respect to both the level-width and the maximum degree (Theorem 1.1).

Order and Realizability. In the above definition, the x-coordinates assigned via y merely act as a
convenient way to encode a total order for the vertices of each level V;. Similarly, the y-coordinates
assigned via y encode a total preorder (i.e. a total ordering that allows ties) for the set of all vertices.
In terms of realizability, the problem is equivalent to a generalized version where y and y range over
arbitrary real numbers. In other words, the fixed vertex positions can be any points in the plane. All
reductions and algorithms in this paper carry over to these generalized versions, if we pay the cost
for presorting the vertices according to their coordinates. There is another equivalent version that
is even more relaxed: we only require that the vertices appear according to the prescribed orderings
without insisting on specific coordinates, see Figures 2(c—e). For the sake of visual clarity, many
of the figures in this manuscript make use of this last equivalence, i.e. the vertices are arranged
according to the orderings, but do not necessarily appear at the corresponding exact coordinates.

1.4 Geodesic Planarity and Bi-Monotonicity

Geodesic Planarity. Let S C Q? be a finite set of directions which is symmetric with respect to
the origin, i.e. for each direction s € S, the reverse direction —s is also contained in S. A plane

to appear in ACM Transactions on Algorithms 2019-08-06 13:44. Page 4 of 1-25.
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Ordered Level Planarity 5

drawing of a graph is geodesic with respect to S if every edge is realized as a polygonal path p
composed of line segments with two adjacent directions from S. Two directions of S are adjacent
if they appear consecutively in the projection of S to the unit circle. The name geodesic comes
from the fact that such a path p is a shortest path with respect to some polygonal norm (a norm
whose unit ball is a centrally symmetric polygon), which depends on S. An instance of the decision
problem GEODESIC PLANARITY is a 4-tuple G = (G = (V, E), x,y, S) where G is a graph, x and y map
from V to the reals and S is a set of directions as stated above. The task is to decide whether G has
a geodesic drawing, that is, G has a geodesic drawing with respect to S in which every vertex v € V
is placed at (x(v), y(v)).

Katz, Krug, Rutter, and Wolff [21] study MANHATTAN GEODESIC PLANARITY, which is the special
case of GEODEsIC PLANARITY where the set S consists of the two horizontal and the two vertical
directions, see Figure 2(g). Geodesic drawings with respect to this set of directions are also referred
to as orthogeodesic drawings [14, 15]. Katz et al. [21] show that a variant of MANHATTAN GEODESIC
PLANARITY in which the drawings are restricted to the integer grid is NP-hard even if G is a perfect
matching. The proof is by reduction from 3-PArTITION and makes use of the fact that the number
of edges that can pass between two vertices on a grid line is bounded. In contrast, they claim that
the standard version of MANHATTAN GEODESIC PLANARITY is polynomial-time solvable for perfect
matchings [21, Theorem 5]. To this end, they sketch a plane sweep algorithm that maintains a
linear order among the edges that cross the sweep line. When a new edge is encountered it is
inserted as low as possible subject to the constraints implied by the prescribed vertex positions.
When we asked the authors for more details, they informed us that they are no longer convinced
of the correctness of their approach. Theorem 1.2 of our paper implies that the approach is indeed
incorrect unless £ = NP.

Bi-Monotonicity. Fulek, Pelsmajer, Schaefer, and Stefankovi¢ [12] present a Hanani-Tutte theorem
for y-monotone drawings, that is, upward drawings in which all vertices have distinct y-coordinates.
They accompany their result with a simple and efficient algorithm for Y-MonoToNIcITY, Which
can be defined as (ORDERED) LEVEL PLANARITY restricted to instances with level-width A = 1.
Moreover, they show that, even without the restriction on A, LEVEL PLANARITY is equivalent to
Y-MONOTONICITY by providing an efficient reduction from LEVEL PLANARITY. Altogether, this
results in a simple quadratic time algorithm for LEVEL PLANARITY.

Fulek et al. [12] propose the problem Bi-MonNoToNICITY and leave its complexity as an open
problem. Bi-MoNOTONICITY combines Y-MoNoTONICITY and X-MoNOTONICITY, which is defined
analogously to Y-MoNoOTONICITY. More precisely, the input of Bi-MoNOTONICITY is a triple G =
(G = (V,E), x,y) where G is a graph, and x and y are injective maps from V to the reals. The task is
to decide whether G has a planar bi-monotone drawing, that is, a plane drawing in which edges are
realized as curves that are both x-monotone and y-monotone, and in which every vertex v € V is
placed at (x(v), y(v)), see Figure 2(h).

B1-MONOTONICITY is very similar to MANHATTAN GEODEsIC PLANARITY. One difference is that
MANHATTAN GEODESIC PLANARITY imposes an implicit bound on the number of adjacent edges
leading in similar directions, i.e. a vertex can have at most two neighbors in a single quadrant. The
overall degree of each vertex is at most four. On the other hand, BI-MoNOTONICITY requires the
coordinate mappings x and y to be injective. When both these additional constraints are satisfied,
the problems are equivalent. In this paper, we exploit this relationship between the two problems
in order to settle the question by Fulek et al. [12] regarding the complexity of Bi-MoNoTONICITY
(Theorem 1.3).

2019-08-06 13:44. Page 5 of 1-25. to appear in ACM Transactions on Algorithms
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6 B. Klemz and G. Rote

1.5 Main results

In Section 4 we study the complexity of ORDERED LEVEL PLANARITY. While UPWARD PLANARITY
is NP-complete [13] in general but becomes polynomial-time solvable [20] for prescribed y-
coordinates, we show that prescribing both x-coordinates and y-coordinates renders the problem
NP-complete. We complement our result with efficient approaches for some special cases of
ordered level graphs and, thereby, establish a complexity dichotomy with respect to the level-width
and the maximum degree.

THEOREM 1.1. ORDERED LEVEL PLANARITY is NP -complete, even for acyclic ordered level graphs
with maximum degree A = 2 and level-width A = 2. The problem can be solved in linear time if the
given level graph is proper; or if the level-width is A = 1; or if A* = A~ = 1, where A* and A~ are the
maximum in-degree and out-degree respectively.

ORDERED LEVEL PLANARITY, especially if restricted to instances with A = 2 and A = 2, is an
elementary problem that readily reduces to several other graph drawing problems. The remainder of
this paper is dedicated to demonstrating the centrality of ORDERED LEVEL PLANARITY by providing
reductions to all the problems listed in Sections 1.2 and 1.4. All these reductions heavily rely on
either a small value of A or A and they produce very constrained instances of the targeted problems.
Thereby, we are able to solve multiple open questions that were posed by the graph drawing
community. We expect that Theorem 1.1 may serve as a suitable basis for more reductions in the
future.

In Section 2 we study GEODESIC PLANARITY and obtain:

THEOREM 1.2. GEODESIC PLANARITY is NP-hard for any set of directions S with |S| > 4 even for
perfect matchings in general position.

Observe the aforementioned discrepancy between Theorem 1.2 and the claim by Katz et al. [21]
that MANHATTAN GEODESIC PLANARITY for perfect matchings is in P.

B1-MONOTONICITY is closely related to a special case of MANHATTAN GEODESIC PLANARITY.
With a simple corollary we settle the complexity of Bi-MonoToNICITY and, thus, answer the open
question by Fulek et al. [12].

THEOREM 1.3. BI-MoNoOTONICITY is NP -hard even for perfect matchings.

THEOREM 1.4. ORDERED LEVEL PLANARITY reduces to BI-MONOTONICITY in linear time. The reduction
can be carried out such that the input graph is identical to the output graph, that is, only the coordinates
are modified.

In Section 3 we establish ORDERED LEVEL PLANARITY as a special case of all the variations of
LEVEL PLANARITY described in Section 1.2.

THEOREM 1.5. ORDERED LEVEL PLANARITY reduces in linear time to CONSTRAINED LEVEL PLANARITY
and T-LEVEL PLANARITY, and in quadratic time to CLUSTERED LEVEL PLANARITY.

The reduction to CONSTRAINED LEVEL PLANARITY is immediate, which also yields:

THEOREM 1.6. CONSTRAINED LEVEL PLANARITY is NP -hard even for acyclic level graphs with
maximum degree A = 2 and level-width A = 2 and prescribed total orderings.

Angelini, Da Lozzo, Di Battista, Frati, and Roselli [2] propose the complexity of CLUSTERED
LEVEL PLANARITY for clustered level graphs with a flat cluster hierarchy as an open question. Our
reduction to CLUSTERED LEVEL PLANARITY provides the following answer.

to appear in ACM Transactions on Algorithms 2019-08-06 13:44. Page 6 of 1-25.
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Ordered Level Planarity 7

THEOREM 1.7. CLUSTERED LEVEL PLANARITY is NP -hard even for acyclic clustered level graphs
with maximum degree A = 2, level-width A = 2 and a flat cluster hierarchy that partitions the vertices
into two non-trivial clusters.

In general, we can consider two different versions of all of the above problems: we may prescribe
a combinatorial embedding or allow an arbitrary embedding. Our results apply to both of these
versions, as in most cases the instances are just systems of paths and, thus, the embedding is unique.
The only exception is the linear time algorithm for proper instances of ORDERED LEVEL PLANARITY.
In this case, however, yes-instances have a unique drawing and we only need to check if it respects
the given embedding.

In order to be able to reduce from ORDERED LEVEL PLANARITY to GEODESIC PLANARITY, our main
reduction (to ORDERED LEVEL PLANARITY) is tailored to achieve a small maximum degree of A = 2.
As a consequence, the resulting graphs are not connected. At the cost of an increased maximum
degree, it is possible to make our instances connected by inserting additional edges. We discuss
these adaptations in Section 5.

THEOREM 1.8. The following problems are NP -hard even for connected instances with maximum
degree A = 4:

ORDERED LEVEL PLANARITY even for level-width A = 2,

CONSTRAINED LEVEL PLANARITY even for level-width A = 2 and prescribed total orderings,
CLUSTERED LEVEL PLANARITY even for level-width A = 2 and flat cluster hierarchies that partition
the vertices into two non-trivial clusters, and

e BI-MONOTONICITY.

2 GEODESIC PLANARITY AND BI-MONOTONICITY

In this section we establish that deciding whether an instance G = (G, x, y, S) of GEODESIC Pra-
NARITY has a geodesic drawing is N'P-hard even if G is a perfect matching and even if the
coordinates assigned via x and y are in general position, that is, no two vertices lie on a line with a
direction from S. The NP-hardness of Bi-MoNoToNICITY for perfect matchings follows as a simple
corollary. Our results are obtained via a reduction from ORDERED LEVEL PLANARITY.

LemMA 2.1. Let S € Q® with |S| > 4 be a finite set of directions which is symmetric with respect to
the origin. ORDERED LEVEL PLANARITY with maximum degree A = 2 and level-width A = 2 reduces to
GEODESIC PLANARITY such that the resulting instances are in general position and consist of a perfect
matching and direction set S. The reduction can be carried out using a linear number of arithmetic
operations.

Proor. We first prove our claim for the classical case that S contains exactly the four horizontal
and vertical directions. Afterwards, we discuss the necessary adaptations for the general case.
Our reduction is carried out in two steps. Let G, = (G, = (V,E),y, x) be an ORDERED LEVEL
PLANARITY instance with maximum degree A = 2 and level-width A = 2. In Step (i) we turn G, into
an equivalent GEODESIC PLANARITY instance G = (Go,x",¥,S). In Step (i) we transform G, into
an equivalent GEODESIC PLANARITY instance Gy = (Gy, x, y, S) where G, is a perfect matching and
the vertex positions assigned via x and y are in general position.

Step (i): In order to transform G, into G/, we apply a horizontal shearing transformation to the
vertex positions specified by y and y. More precisely, for every v € V we define x’(v) = y(v)+2y(v),
see Figures 3(a) and 3(b). Clearly, every geodesic drawing of G/ can be turned into an ordered
level planar drawing of G,. On the other hand, consider an ordered level planar drawing I, of G,.
Without loss of generality, we can assume that in I, all edges are realized as polygonal paths in

2019-08-06 13:44. Page 7 of 1-25. to appear in ACM Transactions on Algorithms
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4 =~

(a) (b) (c)

(d)

Fig. 3. (a), (b) and (c): lllustrations of Step (i). (d): lllustration of Step (ii).

which bend points occur only on the horizontal lines L; through the levels V; where 0 < i < h.
Further, since y(V) C {0, 1} we may assume that all bend points have x-coordinates in the open
interval (—1/2,3/2). We shear I, by translating the bend points and vertices of level V; by 2i units
to the right for 0 < i < h, see Figure 3(b). In the resulting drawing I';, the vertex positions match
those of G,. Furthermore, all edge-segments have a positive slope. Thus, since the maximum degree
is A = 2 we can replace all edge-segments with L,-geodesic rectilinear paths that closely trace the
segments and we obtain a geodesic drawing I') of G, see Figure 3(c).

Step (ii): In order to turn Q; = (G, = (V,E),x’,y,S) into the equivalent instance G, =
(Gg, x,y,S), we transform G,, into a perfect matching. To this end, we split each vertex v € V by re-
placing it with a small gadget that fits inside a square r,, centered on the position p,, = (x’(v), y(v))
of v, see Figure 3(d). We call r,, the square of v and use ptf, ptl, pP" and pP! to denote the top-right,
top-left, bottom-right and bottom-left corner of r,,, respectively. We use two different sizes to ensure
general position. The size of the gadget square is 1/4x1/4if y(v) = 0O and itis 1/8 X 1/8if y(v) = 1.
The gadget contains a degree-1 vertex for every edge incident to v. In the following we explain
the gadget construction in detail. For an illustration, see Figure 4(a). Let {v, u} be an edge incident
to v. We create an edge {v;, u} where v; is a new vertex which is placed at pif — (1/48,1/48) if u is
located to the top-right of v and it is placed at p2! +(1/48, 1/48) if u is located to the bottom-left of .
Similarly, if v is incident to a second edge {v,u’}, we create an edge {vs, u’} where v, is placed at
P —(1/24,1/24) or pb! + (1/24, 1/24) depending on the position of u’. We refer to v; and v, as the
gadget vertices of v and its square r,,. Finally, we create a blocking edge {vy, vp } where vy is placed

to appear in ACM Transactions on Algorithms 2019-08-06 13:44. Page 8 of 1-25.
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Fig. 4. (a) The two gadget squares of each level. Grid cells have size 1/48 X 1/48. (b) Turning a drawing of G,
into a drawing of Q‘;; (c) and vice versa.

at p!l and oy, is placed at pP'. All the assigned coordinates are distinct in both components, and
hence the points are in general position. The construction can be carried out in linear time.

Assume that G, has a geodesic drawing I;. By construction, for each blocking edge, one of its
vertices is located to the top-left of the other. On the other hand, for each non-blocking edge, one
of its vertices is located to the top-right of the other. As a result, a non-blocking edge e = {v, u}
cannot pass through any gadget square r,, where w ¢ {v, u}, since otherwise e would have to
cross the blocking edge of r,,. Accordingly, it is straightforward to obtain a geodesic drawing of T:
We remove the blocking edges, reinsert the vertices of V according to the mappings x” and y and
connect them to the gadget vertices of their respective squares in a geodesic fashion. This can
always be done without crossings. Figure 4(b) shows one possibility. If the edge from v, passes to
the left of v;, we may have to choose a reflected version. Finally, we remove the vertices v; and vs,
which now act as subdivision vertices.

On the other hand, let I'} be a geodesic planar drawing of G;. Without loss of generality, we
can assume that each edge {u, v} intersects only the squares of u and v. Furthermore, for each
v € V we can assume that its incident edges intersect the boundary of r,, only to the top-right of
P —(1/48,1/48) or to the bottom-left of pP' + (1/48,1/48), see Figure 4(c). Thus, we can simply
replace the parts of the edges inside the gadget squares by connections to the gadget vertices v;
and v, in a geodesic fashion, see Figure 4(c).

The general case. It remains to discuss the adaptations for the case that S is an arbitrary set of
directions which is symmetric with respect to the origin. By applying a linear transformation we
can assume without loss of generality that (1, 0) and (0, 1) are adjacent directions in S. Accordingly,
all the remaining directions point into the top-left or the bottom-right quadrant. Further, by vertical
scaling we can assume that no direction is parallel to (1, —1). Observe that if we do not insist on a
coordinate assignment in general position, the reduction for the restricted case discussed above is
already sufficient.

In order to guarantee general position, we have to avoid conflicting vertices, i.e. distinct vertices
whose positions lie on a common line with a direction from S. This requires some simple but
somewhat technical modifications of our construction.

2019-08-06 13:44. Page 9 of 1-25. to appear in ACM Transactions on Algorithms
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Fig. 5. Modifications (a) and (b) for the general case.

Let s; be the flattest slope of any direction in S \ {(1, 0), (0, 1)}, i.e. the slope with the smallest
absolute value (note that all the slopes are negative). Further, let s, be the steepest slope of any
direction in S \ {(1,0), (0, 1)}, i.e. the slope with the largest absolute value.

Assume that ¢’, d” are conflicting vertices such that ¢’ belongs to the gadget square r, of ¢ € V,
and d’ belongs to the gadget square r4 of d € V. Consider Figure 5(a). Since no direction of S points
to the top-right or bottom-left quadrant, y(c) = y(d). It is possible that ¢ = d.

In order to guarantee general position, we apply the following two modifications.

Modification (a). We first cover the case ¢ # d, that is, we show how to avoid conflicts between
two vertices ¢’,d’ which belong to distinct squares of the same level. To this end, we increase
the horizontal distance between each pair of successive squares in the ordering in which the
squares appear along the x-axis without changing said ordering. More precisely, instead of using
the coordinates (2i,i) and (2i + 1, i) for the centers of the two squares r,, and r,, of level i, we use
the positions (2ki, i) and (2ki + k, i) where k > 1 is chosen large enough that p®! is above the line ¢
with slope s; through pY, see Figure 5(a).

Modification (b). It remains to cover the case ¢ = d, i.e. to avoid conflicts between vertices ¢’, d’
which belong to the same gadget square r,,. To this end, we modify the placement of the gadget
vertices inside the gadget squares as follows. We change the offset to the gadget square corners
from +(1/48) and +(1/24) to +(z/48) and +(z/24) where 0 < z < 1 is chosen small enough such
that the gadget vertices are placed above the line ¢; with slope s; through p!!, and above the line ¢,
with slope s, through pP’; or below the line £ 1 with slope s; through P2, and below the line t, with

slope s, through p!l; see the white regions in Figure 5(b). O

The bit size of the numbers involved in the calculations of our reduction is linearly bounded in
the bit size of the directions of S. Together with Theorem 1.1 we obtain the proof of Theorem 1.2.

THEOREM 1.2. GEODESIC PLANARITY is NP -hard for any set of directions S with |S| > 4 even for
perfect matchings in general position.

The instances generated by Lemma 2.1 are in general position. In particular, this means that
the mappings x and y are injective. We obtain an immediate reduction to BlI-MonoToNIcITY. The
correctness follows from the fact that every L;-geodesic rectilinear path can be transformed into a
bi-monotone curve and vice versa. Thus, we obtain Theorem 1.3.

to appear in ACM Transactions on Algorithms 2019-08-06 13:44. Page 10 of 1-25.
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THEOREM 1.3. B-MoNoToNicITY is NP -hard even for perfect matchings.

By combining Lemma 2.1 and the remarks in the previous paragraph, we obtain a reduction
from ORDERED LEVEL PLANARITY to BI-MoNoTONICITY. However, the intermediate reduction via
MANHATTAN GEODESIC PLANARITY requires the original ORDERED LEVEL PLANARITY instance to
have a maximum out-degree of A" < 2 and a maximum in-degree of A~ < 2 (otherwise, our
reduction would produce MANHATTAN GEODESIC PLANARITY instances with vertices that have more
than two neighbors in the same quadrant; these instances are never realizable, see Section 1.4). In
Section 5, we require a reduction that accepts more general instances of ORDERED LEVEL PLANARITY.
For this reason, we state the following direct (and, in fact, much simpler) reduction from ORDERED
LEVEL PLANARITY to BI-MONOTONICITY.

THEOREM 1.4. ORDERED LEVEL PLANARITY reduces to BI-MONOTONICITY in linear time. The reduction
can be carried out such that the input graph is identical to the output graph, that is, only the coordinates
are modified.

Proor. Let G = (G = (V,E),y, x) be an ordered level graph with level-width A and height h.
We create an instance of Bi-MoNoToONICTY as follows. The graph G remains unchanged. The new
vertex-coordinates are obtained by applying the following linear function f to the assignment
given by y and y. The function f is a linear deformation of the plane which scales the original
coordinates and rotates them by 45°, see Figure 6.

fey) = (il y), folx ) = (A Dy +x, A+ Dy - )

We define a coordinate assignment (x’, y") with (x’(v), y’(v)) := f(x(v), y(v)) for each vertex v €
V. The resulting Bi-MoNoTONICITY instance is G’ = (G, x’, y") with x"(v) = (A + 1)y(v) + y(v) and
y'(0) = (A + Dy (o) - x(©).

Recall that L; denotes the horizontal line with y-coordinate i, which passes through all the
vertices of level V;. We use S; C L; to denote the open line segment between the points (-1, i) and
(A, ). The correctness of our reduction relies on the following property:

ProPOSITION 2.2. Let p; € f(S;) and piy1 € f(Si+1) for some 0 < i < A Then p; < pis1,
componentwise.

The correctness of Proposition 2.2 follows from the simple fact that for (j,i) = f~!(p;) and
(', i+ 1) = f~Y(pis1) we have:
pi = fG.1)
< ((/1+1)i+/1, A+ 1)i+1)
- ((/1+1)(i+ D=1, A+ 1)(i+1)—/1)
< f(’,i+1)
= Pi+1
Let T be an ordered level planar drawing of G. Without loss of generality, we can assume that
in T all edges are realized as polygonal paths in which bend-points occur only on the horizontal
segments S;, see Figure 6(a). Applying f to all the bend-points yields a drawing f(I') of G’, see

Figure 6(b). Since f is linear, f(T') is plane. By Proposition 2.2, every edge in f(T') is realized as a
polygonal path whose segments have positive slopes. Therefore f(I') is bi-monotone.

2019-08-06 13:44. Page 11 of 1-25. to appear in ACM Transactions on Algorithms
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Fig. 6. (a) An ordered level planar drawing of G; (b) and the corresponding bi-monotone drawing of G’.

On the other hand, let I’ be a planar bi-monotone drawing of G’. The lines f(L;) > f(S;)
have a negative slope (of —1); and by Proposition 2.2, every edge is realized as a curve that is
simultaneously increasing in the x- and y-directions. Therefore, every edge may intersect each
line f(L;) at most once. More precisely, an edge (v;, vx) with v; € Vj, vx € Vi and j < k crosses
each of the consecutive lines f(Lj+1), ..., f(Lx—1) exactly once. Further, all vertices of level V; have
been mapped to f(S;) € f(L;). Thus, we can leave the intersection of each edge with each line f(L;)
fixed and replace the intermediate pieces by line-segments. This does not introduce any crossings
and turns all edges into x- and y-montone polygonal paths in which bend-points occur only on the
lines f(L;), see Figure 6(b). Applying f~! yields an ordered level planar drawing f~(I") of G, see
Figure 6(a). O

3  VARIATIONS OF LEVEL PLANARITY

In this section we explore the connection between ORDERED LEVEL PLANARITY and other variants
of LEVEL PLANARITY. We prove the following theorem.

THEOREM 1.5. ORDERED LEVEL PLANARITY reduces in linear time to CONSTRAINED LEVEL PLANARITY
and T-LEVEL PLANARITY, and in quadratic time to CLUSTERED LEVEL PLANARITY.

The reduction to CONSTRAINED LEVEL PLANARITY is immediate, which together with Theorem 1.1
also yields:

THEOREM 1.6. CONSTRAINED LEVEL PLANARITY is NP -hard even for acyclic level graphs with maxi-
mum degree A = 2 and level-width A = 2 and prescribed total orderings.

For the other two reductions, we restrict our attention to ordered level graphs with level-
width A = 2. As we will see in Section 4, this restriction is no loss of generality (Lemma 4.2).
We first reduce to T-LEVEL PLANARITY:

LEMMA 3.1. ORDERED LEVEL PLANARITY with maximum degree A and level-width A = 2 reduces in
linear time to T-LEVEL PLANARITY with maximum degree A" = max(A, 2) and level-width A’ = 4.

to appear in ACM Transactions on Algorithms 2019-08-06 13:44. Page 12 of 1-25.
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Proor. Let G = (G = (V,E),y, x) be an ordered level graph with maximum degree A and
level-width A = 2. We augment each level V; with |V;| = 1 by adding an isolated dummy vertex v
with y(v) = i and y(v) = 1 in order to avoid having to treat special cases. Thus, each level V; has
a vertex v) with x(v?) = 0 and a vertex v} with y(v]) = 1. The following steps are illustrated
in Figure 7a. For each level V; we create two new vertices vf and v]. We add edges (Uf, vfﬂ) and
(vir, vl.rﬂ) fori =0,...,h— 1, where h is the height of G. Hence, we obtain a path p; from v(l) to v;l
and a path p, from v to vz. The root r; of each tree T; has two children uf and u!. The two children
of uf are Uf and v. The two children of u] are v} and v}. Let G’ denote the resulting T-level graph.
The construction of G’ can be carried out in linear time.

Clearly, an ordered level planar drawing I' of G can be augmented to a T-level planar drawing
of G’ by drawing p; to the left of T and by drawing p, to the right of I'. On the other hand, let T”
be a T-level-planar drawing of G’. We can assume without loss of generality that all vertices are
placed on vertical lines with x-coordinates —1, 0, 1 or 2. The paths p; and p, are vertex-disjoint
and drawn without crossing. Thus, p; is drawn either to the left or to the right of p,. By reflecting
horizontally at the line x = 1/2 we can assume without loss of generality that p; is drawn to the
left of p,. Consequently, for each level V; the vertex v has to be drawn to the left of the vertex v}
since vf and v? are the children of uf and since v] and v} are the children of u]. Therefore, the
subdrawing of G or its mirror image is an ordered level planar drawing of G. O

Together with Theorem 1.1 this shows the NP-hardness of T-LEVEL PLANARITY for instances
with maximum degree A = 2 and level-width A = 4. However, a stronger statement was already
given by Angelini et al. [2], who show N'P-hardness for instances with A = 2 and A = 3.

We proceed with a reduction to CLUSTERED LEVEL PLANARITY.

LEMMA 3.2. ORDERED LEVEL PLANARITY with maximum degree A and level-width A = 2 reduces
in quadratic time to CLUSTERED LEVEL PLANARITY with maximum degree A’ = max(A, 2), level-
width A" = 2, and a clustering hierarchy that partitions the vertices into only two non-trivial clusters.

Proor. Let G = (G = (V,E),y, y) be an ordered level graph with maximum degree A and level-
width A = 2. As in the previous proof, we augment each level V; with |V;| = 1 by adding an isolated
dummy vertex v with y(v) = i and y(v) = 1. Thus, each level V; has a vertex v? with X(v?) =0 and
a vertex v} with )((vil) = 1. In addition to the trivial cluster that contains all vertices, we create two
clusters ¢y = {0), ..., vg} and ¢; = {v},..., v}l}, where h is the height of G. Now we see the close
correspondence between clustered level planar drawings and ordered level planar drawings: The
two clusters pass through every level, their boundaries are not allowed to intersect, and they cannot
be nested. Thus, by reflecting horizontally if necessary, we can assume without loss of generality
that ¢, intersects each level to the left of ¢; as depicted in Figure 7c. Consequently, on each level V;
the vertex v) € ¢ is placed to the left of v} € ¢y, just as in an ordered level planar drawing.

In order to make the reduction work, we have to subdivide each edge several times. Otherwise,
an edge might be forced to cross a cluster boundary more than once: Consider an edge e = (u,v)
with u, v € ¢y that has to pass the level of some vertex b € ¢; with y(u) < y(b) < y(v) to the right
of b, see Figure 7b. In this situation, e must cross the right boundary rj of ¢, at least twice, as ry
has to be drawn to the right of u, v € ¢y, and to the left of b € c;. This example can be blown up to
enforce arbitrarily many crossings between e and ry.

In order to avoid this situation, we subdivide the edges of G as follows. Each edge from some
level i to some level j > i is transformed into a path of 2(j—i)+1 edges whose inner vertices alternate
between the clusters ¢; and cy. More precisely, for each pair of consecutive levels V; and Vi1, we
add two new subdivision vertices on each edge e = (u,v) € E with y(u) < i and y(v) > i + 1. The
lower one of the resulting subdivision vertices for e is added to c;, the upper one is added to cy. We
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Fig. 7. (a) Reduction from ORDERED LEVEL PLANARITY to T-LEVEL PLANARITY. The square vertices illustrate
each level’s tree. (b) In an ordered level planar drawing, the edge e = (u, v) has to pass the level of b to the
right of b: Due to the edge (v, g), the edge (a, f) passes to the left of v. As a consequence, e cannot pass the
level of b to the left of a. Further, due to (a, c) and (b, ¢), it can also not pass between a and b. (c-d) Reduction
from ORDERED LEVEL PLANARITY to CLUSTERED LEVEL PLANARITY. Big black vertices are the vertices of the
ORDERED LEVEL PLANARITY instance. The small vertices are subdivision vertices. (c) Schematic view of the
entire clustered level graph. (d) The clustering boundaries can be drawn such that they cross each subdivision
edge at most once.

place each of the subdivision vertices that was added to ¢; on a new separate level between the
levels V; and V1. The relative order of these new levels is arbitrary. Above these new levels but
below V;;; we place all the subdivision vertices added to ¢y, again each on a new separate level, see
Figures 7c-7d.

Let G° = (G®,y°, x°) denote the ordered level graph resulting from applying the subdivision
to G. The output of our reduction is the clustered level graph G = (G*,y*,T) where T is the
described hierarchy, with the clusters ¢y and c;. Since edges may stretch over a linear number of
levels, the size of G° can be quadratic in the size of G and, therefore, the construction of el might
require quadratic time.

Correctness. The subdivision does not affect the realizability of G as an ordered level planar
drawing, since every subdivision vertex in G° is the singleton vertex of some new level. Therefore,
to prove correctness, it suffices to argue that G is realizable as a clustered level planar drawing if
and only if G° is realizable as an ordered level planar drawing.

For the easy direction, let I”! be a clustered level planar drawing of G As discussed above, we
may assume that ¢, is drawn to the left of ¢;. Further, we may assume without loss of generality that
all vertices are placed on vertical lines with x-coordinates 0 and 1, and moreover, all subdivision
vertices, being singleton vertices of their levels, are placed on x = 0. Recall that each vertex v of the
original graph is contained in ¢y if y(v) = 0; and it is contained in ¢; if y(v) = 1. Thus, by the above
assumptions, v € V is placed on x = 0 if y(v) = 0; and it is placed on x = 1 if y(v) = 1. Therefore,
the drawing I'! (without the cluster boundaries) is an ordered level planar drawing of G°.

For the other direction, let I be an ordered level planar drawing of the ordered level graph G*.
We create a clustered level planar drawing of G! by adding the cluster boundaries of ¢y and ¢; to T.
The left boundary ¢, of ¢( is drawn as a vertical line segment to the left of I'. Analogously, the right
boundary r; of ¢; is drawn as a vertical line segment to the right of T.

It remains to draw the right boundary ry of ¢y and the left boundary ¢; of ¢;. We draw them
from bottom to top. We keep them close together, and they will always cross the same edge in
direct succession, see Figure 7d. Assume inductively that ry and ¢; have already been drawn in the
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closed half-plane H; below the line L; through the vertices V; of G, and this subdrawing violates
none of the conditions from the definition of a clustered level planar drawing. In particular, ry
and {; are realized as non-crossing y-monotone curves with all vertices of ¢, to the left of ry, and
with all vertices of ¢; to the right of £;. Moreover, no edge is intersected more than once by any
of ry or ;. Further, let E; be the set of edges of G* that are intersected by L; including the edges
having their lower endpoint on L;, but without the edges having their upper endpoint on L;. We
maintain the following two additional inductive assumptions: (a) L; intersects the edges in E; and
the boundaries ry and ¢; in the following left-to-right order (see Figure 7d): (1) all edges E, C E;
that intersect L; to the left of v}; (2) the boundary ry; (3) the boundary ¢;; and (4) the remaining
edges E, = E; \ E¢, i.e. the edges incident to v}, or passing v} to its right. (b) No edge of E; has
already been crossed by ry or {1 below L;. Note that these conditions are easily met for i = 0.

We describe how the partial drawings of ry and ¢; are extended upwards from L;. For an illustra-
tion, see Figure 7d. Each edge in E; is part of a path that has two subdivision vertices between L;
and L;;;. The lower of these vertices belongs to c;, and the upper one belongs to ¢y. We draw ry
and ¢; in a very schematic and simple way. First we cross all edges in E, from right to left. By
assumption (b), this is permitted. We then pass to the left of all the lower subdivision vertices,
ensuring that they lie within the cluster boundaries of ¢;. We then cross all edges between their
two subdivision vertices from left to right, and pass to the right of all the subdivision vertices in co.
Finally, we cross from right to left all edges which pass L;;; to the right of vl.l 1> and those whose
upper endpoint is v;, . It is easy to check that the inductive assumptions hold again for L;,;. Thus,
we may iterate this procedure to obtain a clustered level planar drawing of G¢.. O

Together with Theorem 1.1 we obtain the following.

THEOREM 1.7. CLUSTERED LEVEL PLANARITY is NP -hard even for acyclic clustered level graphs with
maximum degree A = 2, level-width A = 2 and a flat cluster hierarchy that partitions the vertices into
two non-trivial clusters.

The previous NP-hardness result by Angelini et al. [2] holds for instances with A = 2 and A = 3.
Their cluster hierarchies have linear depths. The authors pose the complexity of CLUSTERED LEVEL
PraNARITY for instances with flat cluster hierarchies as an open problem. Theorem 1.7 gives an
answer to this question and improves the previous result by Angelini et al.

4 ORDERED LEVEL PLANARITY

In this section we study ORDERED LEVEL PLANARITY. For the NP-hardness proof, we reduce from
the 3-SATISFIABILITY variant described in this paragraph. A monotone 3-SATISFIABILITY formula is
a Boolean 3-SATISFIABILITY formula in which each clause is either positive or negative, that is, each
clause contains either exclusively positive or exclusively negative literals, respectively. A planar
3SAT formula ¢ = (U, C) is a Boolean 3-SATISFIABILITY formula with a set U of variables and a
set C of clauses such that its variable-clause graph G, = (U @ C, E) is planar. The graph G, is
bipartite, i.e. every edge in E is incident to a clause vertex from C and a variable vertex from U.
Furthermore, edge {c,u} € E if and only if a literal of variable u € U occurs in ¢ € C. PLANAR
MONOTONE 3-SATISFIABILITY is a special case of 3-SATISFIABILITY where we are given a planar and
monotone 3-SATISFIABILITY formula ¢ and a monotone rectilinear representation R of the variable-
clause graph of ¢. The representation R is a contact representation on an integer grid in which the
variables are represented by horizontal line segments arranged on a common horizontal line €. The
clauses are represented by E-shapes turned by 90° such that all positive clauses are placed above ¢
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Fig. 8. (a) Representation R of ¢ with negative clauses (u1 V ug V us), (u3 V u3 V ug) and (u1 V uy V u3) and
positive clauses (u1 V uq V us) and (u; V uz V us) and (b) its modified version R” in Lemma 4.1. (c) Tier 7.

and all negative clauses are placed below ¢, see Figure 8a. PLANAR MONOTONE 3-SATISFIABILITY
is NP-complete [8]. We are now equipped to prove the core lemma of this section.

LEMMA 4.1. PLANAR MONOTONE 3-SATISFIABILITY reduces in polynomial time to ORDERED LEVEL
PLANARITY. The resulting instances have maximum degree A = 2 and contain no source or sink with
degree A on a level V; with width A; > 2.

Proor. We perform a polynomial-time reduction from PLANAR MONOTONE 3-SATISFIABILITY.
Let ¢ = (U, C) be a planar and monotone 3-SATISFIABILITY formula with clause set C = {c1,...,¢|c|}-
Let G, be the variable-clause graph of ¢. Let R be a monotone rectilinear representation of G,,. We
construct an ordered level graph G = (G, y, y) such that G has an ordered level planar drawing if
and only if ¢ is satisfiable.

Overview. The ordered level graph G has I3 + 1 levels which are partitioned into four tiers
To=A{0,.... 0o}, 7T ={l+1,...., 4L}, T, ={li+1,..., b} and 73 = {[,+1,...,I3}. Each clausec; € C
is associated with a clause edge e; = (¢}, c}) starting with ¢} in tier 7; and ending with ¢! in tier 7;.
The clause edges have to be drawn in a system of tunnels that encodes the 3-SATISFIABILITY
formula ¢. In 75 the layout of the tunnels corresponds directly to the rectilinear representation R,
see Figure 8c. For each E-shape there are three tunnels corresponding to the three literals of the
associated clause. The bottom vertex ¢} of each clause edge e; is placed such that e; has to be drawn
inside one of the three tunnels of the E-shape corresponding to c;. This corresponds to the fact that
in a satisfying truth assignment every clause has at least one satisfied literal. In tier 77 we merge all
the tunnels corresponding to the same literal. We create variable gadgets that ensure that for each
variable u, the edges of clauses containing u can be drawn in the tunnel associated with either the
negative or the positive literal of u but not in both. This corresponds to the fact that every variable
is set to either true or false. Tiers 7, and 75 have a technical purpose.

We proceed by describing the different tiers in detail. Recall that in terms of realizability, ORDERED
LEVEL PLANARITY is equivalent to the generalized version where y and y map to the reals. For
the sake of convenience we will begin by designing G in this generalized setting. It is easy to
transform G such that it satisfies the standard definition in a polynomial-time post processing step.

Tiers 0 and 2, clause gadgets. Each clause edge e; = (c},c!) ends in tier 7. It is composed
of I, — I; = |C| levels each of which contains precisely one vertex. We assign y(c!) = I; + i. Recall
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that for levels with width 1, the assigned x-coordinates are irrelevant. Hence, we set y(c}) = 0.
Observe that the positions of the vertices ¢; impose no constraints on the order in which the
incident edges enter 75.

Tier 7y consists of a system of tunnels that resembles the monotone rectilinear representation R
of G, = (U W C, E), see Figure 8c. Intuitively it is constructed as follows: We take the top part of R,
rotate it by 180° and place it to the left of the bottom part such that the variables’ line segments
align, see Figure 8b. We call the resulting representation R’. For each E-shape in R’ we create
a clause gadget, which is a subgraph composed of 11 vertices that are placed on a grid close to
the E-shape, see Figure 9. The enlarged vertex at the bottom is the lower vertex c; of the clause
edge e; of the clause c; corresponding to the E-shape. Without loss of generality we assume the
grid to be fine enough such that the resulting ordered level graph can be drawn as in Figure 8c
without crossings. Further, we assume that the y-coordinates of every pair of horizontal segments
belonging to distinct E-shapes differ by at least 3. This ensures that there are no sources or sinks
with degree A on levels with width larger than 2.

Technical Details. In the following two paragraphs, we describe the construction of the clause
gadgets in detail.

For every i = 1,...,|C| where c; is negative, we create its 11-vertex clause gadget as follows,
see Figure 9. Let sy, s, 53 be the three vertical line segments of the E-shape representing c¢; in R’
where s; is left-most and s3 right-most. Let vy, v5, v3 be the lower endpoints and v], v;, v; be the
upper endpoints of sy, sz, 53, respectively. We place the tail ¢; of the clause edge e; of ¢; at v,. We
create new vertices at vy, v3, V], vy, U3, V4 = v1 + (1, 1), v5 = v; + (1, 2) and at vg, v7, v Which are
the lattice points one unit to the right of v{, v], v3, respectively. To simplify notation, we identify
these new vertices with their locations on the grid. We add edges (v1,v]), (v3, v3), (4, U5), (Vs, V3),
(v5,v7) and (vs, v3) to G.

As stated above, we can assume without loss of generality that the grid is fine enough such
that the resulting ordered level graph can be drawn as in Figure 8c without crossing. It suffices to
assume that the horizontal and vertical distance between any two segment endpoints of R’ is at
least 3 (unless the endpoints lie on a common horizontal or vertical line).

Gates and Tunnels. The clause gadget (without the clause edge) has a unique ordered level
planar drawing in the sense that for every level V; the left-to-right sequence of vertices and edges
intersected by the horizontal line L; through V; is identical in every ordered level planar drawing.
This is due to the fact that the order of the top-most vertices v], vg, v5, v7, v; and vg is fixed and
every edge of the gadget is incident to precisely one of these vertices. With the same reasoning, it
follows that the subgraph G, induced by 75 (without the clause edges) has a unique ordered level
planar drawing.

Consider the clause gadget of some clause c;. We call the line segments v;vs, v,v7 and v;vg the
gates of c;. Note that the clause edge e; has to intersect one of the gates of ¢;. This corresponds to
the fact the at least one literal of every clause has to be satisfied. In tier 77 we bundle all gates that
belong to the same literal together by creating two long paths for each literal. These two paths
form the tunnel of the corresponding literal. All clause edges intersecting a gate of some literal
have to be drawn inside the literal’s tunnel, see Figure 8c. More precisely, for j = 1,...,|U| we
use N ]‘.) (n?) to refer to the left-most (right-most) vertex of a negative clause gadget placed on a
line segment of R’ representing u; € U. The vertices N ](.) and n? are the first vertices of the paths
forming the negative tunnel T;" of the negative literal of variable u;. Analogously, we use PJQ (p;.))
to refer to the left-most (right-most) vertex of a positive clause gadget placed on a line segment
of R’ representing u;. The vertices Pj(.) and p;.) are the first vertices of the paths forming the positive
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Fig. 9. (a) The E-shape and (b) the clause gadget of clause c;.

tunnel T]P of the positive literal of variable u;. If for some j the variable u; is not contained both
in negative and positive clauses, we artificially add two vertices NJQ and n? or PJQ and p;) on the
corresponding line segments in order to avoid having to treat special cases in the remainder of the
construction.

Tiers 1 and 3, variable gadgets. Recall that every clause edge has to pass through a gate that is
associated with some literal of the clause, and, thus, every edge is drawn in the tunnel of some
literal. We need to ensure that for no variable it is possible to use both the tunnel associated with its
positive literal, as well as the tunnel associated with its negative literal simultaneously. To this end,
we create a variable gadget with vertices in tiers 77 and T for each variable. The variable gadget of
variable u; is illustrated in Figure 10a. The variable gadgets are nested in the sense that they start
in 77 in the order uy, uy, ..., u|¢), from bottom to top and they end in the reverse order in 73, see
Figure 11. We force each tunnel with index at least j to be drawn between the vertices uj“ and uJ’.’.
This is done by subdividing the tunnel edges on this level, see Figure 10b. The long edge (ujs., u}t )
has to be drawn to the left or right of uJC in 75. Accordingly, it is drawn to the left of uj“ or to the

right of ujl? in 71. Thus, it is drawn either to the right (Figure 10b) of all the tunnels or to the left
(Figure 10c) of all the tunnels. As a consequence, the blocking edge (uJS , uf ) is also drawn either
to the right or the left of all the tunnels. Together with the edge (u}], uf ) it prevents clause edges
from being drawn either in the positive tunnel Tj'.o or negative tunnel T}" of variable u; which end

at level y(u;.]) because they cannot reach their endpoints in 7; without crossings. We say Tj‘.o or T}
are blocked respectively.

Technical Details. In the following two paragraphs, we describe the construction of the variable
gadgets in detail.
Tier 75 has Is — I, = 2 - |U| layers each of which contains precisely one vertex. We refer to

the vertex in layer (I3 — 2j + 1) as u}t and to the vertex in layer (I3 — 2j) as uj forj=1,...,|U|.
Tier 71 has I; — [y = 4 - |U| levels. In each of the levels (Iy + 4j — 3), (Iy + 4j — 1) and (I + 4j)
where j = 1,...,|U| we create one vertex. These vertices are called u;, u;? and uf respectively. In

level (I + 4j — 2) we create two vertices u]“ and ujl.’ in this order. We add the edges (u;, u;), (ujs., uf),
(wd, uf), (ul, uf) and (u], uf).

Finally, for j = 1, . |71 | we do the followmg, see Figure 10b or Figure 10c. In level (Iy + 4j — 2)
we create vertices P] p] WI p](ul, up |7J|’ .. Nj s n] and add them in this order between

uf and ub 7. In level (lo +4j— 1) we create vertices P] and p] in this order before u? 7 and we create

vertices N; ! and nj ! in this order after u . We create edges realizing the paths tP ®,..., Pj h,
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Fig. 10. (a) The variable gadget of u; in (b) positive and (c) negative state. For the sake of visual clarity, these
figures make use of the relaxed but equivalent version of ORDERED LEVEL PLANARITY which only requires
that the vertices of each level appear according to the total ordering corresponding to y, cf. Section 1.3. In
particular, a vertex v of a level V; with width A; = 1 may appear anywhere on the horizontal line L;. The
dash-dotted edges are clause edges.

= @) p) ), N = (ND,... N/ and ¢ = (n),...,n]""). The pair of paths T/ = (], 1)
is the positive tunnel of variable u;. The pair of paths T}" = (tJN ,1}') is the negative tunnel of
variable u;. If an edge e is drawn in the region between the two paths of a tunnel T, we say it is
drawn in T.

Runtime and Properties. The construction of the ordered level graph G can be carried out in
polynomial time. Note that its maximum degree is A = 2 and that no source or sink with degree A
is located on a level V; with width A; > 2.

Correctness. It remains to show that G has an ordered level planar drawing if and only if ¢ is
satisfiable. Assume that G has an ordered level planar drawing I'. We create a satisfying truth
assignment for ¢. If T"* is blocked we set u; to true, otherwise we set u; to false for j € 1,...,|U|.
Recall that the subgraph G induced by the vertices in tier 75 has a unique ordered level planar
drawing. Consider a clause ¢; and let f,g,j be the indices of the variables whose literals are
contained in ¢;. Clause edge e; = (e}, eit) has to pass level I, through one of the gates of ¢;. More
precisely, e; has to be drawn between either NJ? and n}, Ng and ng, or N' J{) and ng if ¢; is negative,

or between either PJ? and p}, Py and py, or P} and p} if ¢; is positive, see Figure 8c. First, assume

that c; is negative and assume without loss of generality that e; traverses [, between Nj‘.) and n?. In
this case e; has to be drawn in T". Recall that this is only possible if T}" is not blocked, which is the
case if u; is false, see Figure 10c. Analogously, if ¢; is positive and e; traverses w.l.o.g. between pf

and pf , then u; is true, Figure 10b. Thus, we have established that one literal of each clause in C
evaluates to true for our truth assignment and, hence, formula ¢ is satisfiable.

Now assume that ¢ is satisfiable and consider a satisfying truth assignment. We create an ordered
level planar drawing I of G. It is clear how to create the unique subdrawing of G,. The variable
gadgets are drawn in a nested fashion, see Figure 11. For j = 1,...,|U| — 1 we draw edge (ujf‘, ch)

to the left of uj“ , and ujs ., and edge (ujl.’,u;) to the right of u? . and u$, . In other words, the

+ j+1 410
pair ((uj‘.‘, ujc.), (ujl?, uj‘:')) is drawn between all such pairs with index smaller than j. Recall that the

vertices uf, ub, uj, uf and u;I are located on higher levels than the according vertices of variables
with index smaller than j and that ujt and uJC are located on lower levels than the according vertices

of variables with index smaller than j.
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Fig. 11. The nesting structure of the variable gadgets. Only the gadgets of the variables with the four largest
indices are shown. They are nested within the remaining variable gadgets. Tier 7; is located below all
these gadgets. As in Figure 10, this figure uses the version of ORDERED LEVEL PLANARITY which uses relative
x-coordinates on each level. The dash-dotted edges are clause edges.

Forj=1,...,|U| if u; is positive, we draw the long edge (qu, u]t) to the right of u}l? and u]c and,
accordingly, we have to draw all tunnels left of u} and u]q (except for T}, which has to be drawn to
the left of 4} and must end to the right of u}]), see Figure 10b. If u; is negative we draw the long
edge (u}, ujt) to the left of u]l.’ and u] and, accordingly, we have to draw all tunnels right of u; and u;.z
(except for T]‘.D , which has to be drawn to the right of u}s and end to the left of u?), see Figure 10c. We
have to draw the blocking edge (], uf ) to the right of nfrl if u; is positive and to the left of Pj:“
if u; is negative.

It remains to describe how to draw the clause edges. Let ¢; be a clause. There is at least one
true literal in c;. Let k be the index of the corresponding variable. We describe the drawing of
clause edge e; = (c}, c}) from bottom to top. We start by drawing e; in the tunnel T]f (T) if c; is
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Fig. 12. (a) A level V; with width A; > 2. (b) In order to reduce the level-width, we replace V; with A; — 1
levels. Thick edges are the stretch edges.

positive (negative). Immediately after level y(p’,j“) we end up to the left (right) of all tunnels with
index larger than k, see Figure 10b (Figure 10c). Note that since T]f (TY) is not blocked, we can

continue without having to cross blocking edge (u;, u'z ) or (uZ, u’z ). We draw e; to the left (right) of
all vertices belonging to variable gadgets with index larger than k, see Figure 11. This introduces
no crossings since above level y(p’]:”) all tunnels with index larger than k are drawn to the right

a a b b . t . N . - .
of Upspo o Uiy and the left of Upyyo o Uiy Connecting to c; in tier 7; is straight-forward since
every level contains only one vertex. O

We obtain NP-hardness for instances with maximum degree A = 2. In fact, we can restrict
our attention to instances with level-width A = 2. To this end, we split levels with width A; > 2
into A; — 1 levels containing exactly two vertices each.

LEmMMA 4.2. An instance G = (G = (V,E),y, x) of ORDERED LEVEL PLANARITY with maximum
degree A and level-width A > 2 can be transformed in linear time into an equivalent instance G’ =
(G" = (V',E"),y’, x") of ORDERED LEVEL PLANARITY with maximum degree A’ < A + 1 and level-
width A’ = 2. Further, if G contains no source or sink with degree A on a level V; with width ; > 2,
then A’ < A.

Proor. We replace each level V; with width |V;| = A; > 2 by A; — 1 levels with 2 vertices each,
as illustrated in Figure 12. Accordingly, vertices on levels above V; are shifted upwards by A; — 2

levels. Formally, let V; = {vy,...,vy,} with y(v1) < --- < x(vy,). We increase the level of vertex v;
by j-2forj=3,...,A; Forj=2,...,A;—1 we create a vertex v} one level above v; with (v}) = 0
and we create a new stretch edge (v;, v]f). Forj=2,...,4; weset y(v;) = 1.

For all the vertices v that have been split in this way into v and v’, the bottom vertex v inherits
all the incoming edges and the top vertex v’ inherits all the outgoing edges. Let G’ denote the
resulting instance, which can be constructed in linear time. It is easy to verify that the vertex
degrees behave as desired.

An ordered level planar drawing of G can easily be converted to a drawing of G’. For the
conversion in the other direction, we successively contract each stretch edge (v;, v;) back into
a single vertex, thereby merging two consecutive levels of G'. Apart from the edge (v;, v}), the
vertex v; has incident edges from below and the vertex v] has incident edges from above only.
Therefore, such a contraction cannot cause any problems. The stretch edges ensure that the vertices
of each level of G end up in the correct order. O
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COROLLARY 4.3. ORDERED LEVEL PLANARITY is NP -hard, even for acyclic ordered level graphs with
maximum degree A = 2 and level-width A = 2.

The reduction in Lemma 4.1 requires degree-2 vertices. With A = 1, the problem becomes
polynomial-time solvable. In fact, one can easily solve it as long as the maximum in-degree and the
maximum out-degree are both bounded by 1.

LEMMA 4.4. ORDERED LEVEL PLANARITY restricted to instances with maximum in-degree A~ = 1
and maximum out-degree A* = 1 can be solved in linear time.

Proor. Let G = (G = (V,E),y, y) be an ordered level graph with maximum indegree A~ = 1
and maximum outdegree A* = 1. Such a graph G consists of a set P of y-monotone paths. Each
path p € P has vertices on some sequence of levels, possibly skipping intermediate levels.

We define the following relation on P: We write p < g, meaning that p must be drawn to the left
of g, if p and g have vertices v, and v, that lie adjacent on a common level, i.e. y(v,) = y(vq) and
X(vg) = x(vp) + 1. This relation has at most |V| pairs, and by topological sorting, we can find in
O(|V|) time a linear ordering that is consistent with the relation <, unless this relation has a cycle.
The former case implies the existence of an ordered level drawing while the latter case implies that
the problem has no solution.

This follows from considerations about horizontal separability of y-monotone sets by translations,
cf. [3, 9]. An easy proof can be given following Guibas and Yao [16, 17]: Consider an ordered level
planar drawing of G. We say that a vertex is visible from the left if the infinite horizontal ray
emanating from that vertex to the left does not intersect the drawing. Among the paths whose
lower endpoint is visible from the left, the one with the topmost lower endpoint must precede
all other paths to which it is related in the <-relation. Removing this path and iterating the
procedure leads to a linear order that extends <. On the other hand, if we have such a linear order
x: P — {1,...,|P|}, we can simply draw each path p straight at x-coordinate x(p), subdivide all
edges properly and, finally, shift the vertices on each level such that the vertices of V' are placed
according to y while maintaining the order x. O

For A = 1, ORDERED LEVEL PLANARITY is solvable in linear time since LEVEL PLANARITY can
be solved in linear time [20]. Proper instances have a unique drawing (if it exists). The existence
can be checked with a simple linear-time sweep through every level. The problem is obviously
contained in N'P. The results of this section establish Theorem 1.1.

THEOREM 1.1. ORDERED LEVEL PLANARITY is NP -complete, even for acyclic ordered level graphs
with maximum degree A = 2 and level-width A = 2. The problem can be solved in linear time if the
given level graph is proper; or if the level-width is A = 1; or if A* = A~ = 1, where A* and A~ are the
maximum in-degree and out-degree respectively.

5 CONNECTED INSTANCES

In order to be able to reduce from ORDERED LEVEL PLANARITY to GEODESIC PLANARITY, our main
reduction (to ORDERED LEVEL PLANARITY) is tailored to achieve a small maximum degree of A = 2.
As a consequence, the resulting graphs are not connected. At the cost of an increased maximum
degree, it is possible to make our instances connected by inserting additional edges. In this section,
we discuss the necessary adaptations in order to obtain the following theorem.

THEOREM 1.8. The following problems are NP-hard even for connected instances with maximum
degree A = 4:

o ORDERED LEVEL PLANARITY even for level-width A = 2,
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Fig. 13. (a) The original clause gadget and (b) the augmented version for the connected case. The clause
edge starting at ¢; is not shown.

o CONSTRAINED LEVEL PLANARITY even for level-width A = 2 and prescribed total orderings,

o CLUSTERED LEVEL PLANARITY even for level-width A = 2 and flat cluster hierarchies that partition
the vertices into two non-trivial clusters, and

® BI-MONOTONICITY.

We begin by showing the NP-hardness of ORDERED LEVEL PLANARITY for connected instances.

LEMMA 5.1. PLANAR MONOTONE 3-SATISFIABILITY reduces in polynomial time to ORDERED LEVEL
PLANARrTY. The resulting instances are connected and have maximum degree A = 4. The maximum
in-degree A~ and maximum out-degree A* are both 3.

Proor. We proceed exactly as in Lemma 4.1. We augment the resulting instances such that
they become connected. During this augmentation step, we need to make sure that the degree
constraints remain satisfied.

Recall that U is the set of variables and that tier 75 contains precisely 2|U| vertices each of
which is the only vertex of its level, see Figure 10a and Figure 11. We connect all these vertices
with a directed path, that is, we insert the edges (ujc, u]t) for j=1,...,|U| and the edges (th, “;+1)
for j = 2,...,|U|. One can easily check that the degree constraints are satisfied: The degree of the

vertices ujt is now 3 (except for u!, which has degree 2). The degree of the vertices uj isnow 4 = A
c

lup
the largest in-degree is 3 = A

Recall that for each clause ¢; we have created a clause gadget as depicted in Figure 13a. We
replace this graph with the graph shown in Figure 13b. Precisely, we do the following: We add a
new vertex vy one unit below ¢§ and we add the edges (vo, c;), (c;, v4), (¢, vs). Again, the degree
bounds are easily verified: Vertex c¢; now has degree 4 = A (including the clause edge); vertices vy,
vs and vy have degree 3 and vertices v; and vs have degree 2. The overall maximum out-degree
is 3 = A*, while the maximum in-degree is 1.

Recall that the segments v]vg, v;v7 and v;vg of each clause gadget are called the gates of ¢;. All
gates (of all clauses) are located on the same level V;, see Figure 8c. We now ensure that all vertices
of V; become connected to each other. The two vertices that bound each gate are already connected
through the augmented clause gadgets. We connect two consecutive vertices u, v from different
gates by adding for each such pair u, v a new vertex w one level below V; with two edges (w, u)
and (w, v).

The resulting instance has two connected components: one containing all the clause gadgets,
clause edges and tunnels; the other containing all the variable gadgets. We can connect these
components by adding a path P between the top-most vertex v; and bottom-most vertex vy

(except for u¢,,, which has degree 3). The largest out-degree of all these vertices is 1 < A*, while
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of the instance. Note that v; = u’,u . The bottom-most vertex is vertex vy of the clause gadget

corresponding to the (unique) E-shape with the lowest horizontal line segment. Simply choosing P =
(vp,v;) would result in an increased maximum out-degree of 4. Instead, we choose the (undirected)
path P = (v, v,’), v;, vt ), where vl’) and v; are new vertices placed below v;, and above v; respectively.
This way, the out-degree of v}, remains 3.

The new connected instance is equivalent to the original one as the clause edge (c;, c!) can still
reach each of the three gates of ¢; by choosing the corresponding embedding. Aside from the edges
incident to the vertices c;, no new edge impairs the realizability of the instance in any way. O

We remark that it is possible to decrease the maximum in-degree guaranteed in Lemma 5.1
to A™ = 2 by splitting the vertices ujc before the augmentation step.

Since the maximum out-degree and in-degree of the instances produced by Lemma 5.1 are strictly
smaller than the maximum degree A = 4, it follows that no source or sink has degree A. Thus,
Lemma 4.2 implies the statement about ORDERED LEVEL PLANARITY and CONSTRAINED LEVEL
PLANARITY in Theorem 1.8. The statement about Bi-MonoTtonicITY follows from Theorem 1.4.
Finally, the statement about CLUSTERED LEVEL PLANARITY follows from the fact that the reduction
given in Lemma 3.2 does not change the graph except for the subdivisions of the edges and the
addition of isolated vertices. This concludes the proof of Theorem 1.8.

6 CONCLUSION

We introduced and studied the problem ORDERED LEVEL PLANARITY. Our main result is an NP-
hardness statement that cannot be strengthened. We demonstrated the relevance of our result by
stating reductions to several other graph drawing problems. These reductions answer multiple
questions posed by the graph drawing community and establish connections between problems
that (to the best of our knowledge) have not been considered in the same context before. Recently,
Da Lozzo, Di Battista, and Frati [7] used Theorem 1.1 to show the NP-hardness of another gener-
alization of ORDERED LEVEL PLANARITY. We expect that Theorem 1.1 will serve as a useful tool for
further reductions.

In Section 5, we extended most of our reductions in order to produce problem instances which are
connected. We did not provide such a modification for our reduction to GEODEsIC PLANARITY. Due
to the increased vertex degrees in ORDERED LEVEL PLANARITY instances generated by Theorem 1.8,
our reduction to GEODESIC PLANARITY in Step (i) of Lemma 2.1 breaks down, as there is not enough
space anymore to attach all the edges around each vertex. It does not seem straight-forward to
modify our construction in order to obtain a reduction to GEODEsIC PLANARITY that produces
connected instances. Thus, we leave it as an open question whether N'P-hardness still holds for
connected instances of (MANHATTAN) GEODESIC PLANARITY.
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