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EuroCG 2017, Malmö, Sweden, April 5–7, 2017

Ordered Level Planarity and Geodesic Planarity

Boris Klemz∗ Günter Rote∗

Abstract

We introduce and study the problem Ordered

Level Planarity which asks for a planar drawing
of a graph such that vertices are placed at prescribed
positions in the plane and such that every edge is re-
alized as a y-monotone curve. This can be interpreted
as a variant of Level Planarity in which the ver-
tices on each level appear in a prescribed total order.
We show NP-completeness even for the special case
that the number of vertices on each level is bounded
by λ = 2 and that the maximum degree is ∆ = 2.
This establishes a tight border of tractability since
for λ = 1 the problem is in P. Our result is moti-
vated by the following applications.

We establish a connection to geodesic drawings.
Geodesic Planarity asks for a planar drawing of
a graph such that vertices are placed at prescribed
positions in the plane and such that every edge e is
realized as a polygonal path p composed of line seg-
ments with two adjacent directions from a given set
S of directions symmetric with respect to the origin.
Our results on Ordered Level Planarity imply
NP-hardness for any S with |S| ≥ 4 even if the given
graph is a matching. Katz, Krug, Rutter and Wolff
claimed that for matchings Manhattan Geodesic

Planarity is in P [GD’09]. Our results imply that
this is incorrect unless P = NP. Further, our results
imply the NP-hardness of the Bi-Monotonicity

problem.
We narrow the gap between tractability and NP-

hardness in the established hierarchy of Level Pla-

narity variants. To this end, we provide reduc-
tions to T-Level Planarity, Clustered Level

Planarity and Constrained Planarity. As a
by-product, we strengthen previous NP-hardness re-
sults. In particular, our reduction to Clustered

Level Planarity generates instances with ∆ = 2,
λ = 2 and only two non-trivial clusters.

1 Introduction

An upward planar drawing of a directed graph is a
plane drawing where every edge e = (u, v) is realized
as a y-monotone curve that goes upward from u to v.
Upward planar drawings provide a very natural way
of visualizing a partial order on a set of items. The
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problem Upward Planarity of testing whether a
directed graph has an upward planar drawing is NP-
complete [5]. However, if the y-coordinate of each ver-
tex is prescribed, the problem can be solved in polyno-
mial time [6]. Formally, this is captured by the notion
of level graphs. A level graph G = (G, γ) is a directed
graph G = (V,E) together with a level assignment

γ : V → {0, . . . , h} for G where γ is a surjective map
with γ(u) < γ(v) for every edge (u, v) ∈ E. Value h
is the height of G. The vertex set Vi = {v | γ(v) = i}
is called the i-th level of G. Value λi = |Vi| is the
width of level i and the level-width λ of G is the max-
imum width of any level in G. A level planar drawing
of G is an upward planar drawing of G where the
y-coordinate of each vertex v is γ(v). The problem
Level Planarity of testing whether a given level
graph has a level planar drawing is solvable in linear
time [6].

We introduce a natural variant of Level Pla-

narity that takes into account a total order for the
vertices on each level. An ordered level graph G is a
triple (G = (V,E), γ,χ) where (G, γ) is a level graph
and χ : V → {0, . . . ,λ − 1} is a level ordering for G.
We require that χ restricted to domain Vi bijectively
maps to {0, . . . ,λi−1}. An ordered level planar draw-
ing of an ordered level graph G is a level planar draw-
ing of (G, γ) where for every v ∈ V the x-coordinate
of v is χ(v). Thus, the position of every vertex is
fixed. The problem Ordered Level Planarity

asks whether a given ordered level graph has an or-
dered level planar drawing. We remark that in the
above definitions, the x- and y-coordinates assigned
via χ and γ merely act as a convenient way to en-
code total and partial orders respectively. In terms of
realizability, the problems are equivalent to general-
ized versions were χ and γ map to the reals. In other
words, the fixed vertex positions can be any points in
the plane. All reductions and algorithms in this pa-
per carry over to these generalized versions, if we pay
the cost for presorting the vertices according to their
coordinates.

We establish a connection between ordered level
planar drawings and geodesic drawings. Let S ⊂ R

2

be a finite set of directions symmetric with respect to
the origin, i.e. for each direction s ∈ S, the reverse
direction −s is also contained in S. A plane draw-
ing of a graph is geodesic with respect to S if every
edge is realized as a polygonal path p composed of
line segments with two adjacent directions from S.
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Such path p is a geodesic with respect to the polyg-
onal norm that corresponds to S. An instance of the
decision problem Geodesic Planarity is a 4-tuple
G = (G = (V,E), x, y, S) where G is a graph, x and y
map from V to the reals and S is a set of directions
as stated above. The task is to decide whether G has
a geodesic drawing, that is, G has a geodesic draw-
ing with respect to S in which every vertex v ∈ V is
placed at (x(v), y(v)).

Katz, Krug, Rutter and Wolff [7] study Manhat-

tan Geodesic Planarity, which is the special case
of Geodesic Planarity where set S consists of
the two horizontal and the two vertical directions.
Geodesic drawings with respect to this set of direc-
tions are also referred to as orthogeodesic drawings.
Katz et al. [7] show that a variant of Manhattan

Geodesic Planarity in which the drawings are re-
stricted to the integer grid is NP-hard even if G is
a perfect matching. The proof is by reduction from
3-Partition and makes use of the fact the number
of edges that can pass between two vertices on a grid
line is bounded. In contrast, they claim that the stan-
dard version of Manhattan Geodesic Planarity

is polynomial-time solvable for perfect matchings. To
this end, they sketch a plane sweep algorithm that
maintains a linear order among the edges that cross
the sweep line. When a new edge is encountered it is
inserted as low as possible subject to the constraints
implied by the prescribed vertex positions. When
asked for more details, the authors informed us that
they are no longer convinced of the correctness of their
approach. Unless P = NP, one of the results of our
paper implies that their approach is indeed incorrect.

The results and layout of this abstract are as
follows. In Section 3 we study the complexity
of Ordered Level Planarity. While Upward

Planarity is NP-complete [5] in general but be-
comes polynomial-time solvable [6] for prescribed y-
coordinates, we show that prescribing both x and y-
coordinates renders the problem NP-complete. Pre-
cisely, our results are summarized in the following the-
orem.

Theorem 1 Ordered Level Planarity is NP-

complete, even for maximum degree ∆ = 2 and level-

width λ = 2. For level-width λ = 1, Ordered Level

Planarity can be solved in linear time.

Theorem 1 states an explicit gap between tractabil-
ity and NP-hardness. We motivate this result with
the multiple applications. In Section 2 we study the
complexity of Geodesic Planarity. We utilize
Theorem 1 to obtain the following:

Theorem 2 Geodesic Planarity is NP-hard for

any set of directions S with |S| ≥ 4 even for perfect

matchings in general position.

(a) (b) (c)

(d)

Figure 1: Reduction to Geodesic Planarity.

In the full version we provide reductions which
establish Ordered Level Planarity as a spe-
cial case of T-Level Planarity [1], Clustered

Level Planarity [1] and Constrained Pla-

narity [3]. As a by-product, we strengthen previ-
ous NP-hardness results. In particular, we show that
Clustered Level Planarity is NP-hard even for
instances with λ = 2, ∆ = 2 and only two non-trivial
clusters. We observe that Geodesic Planarity re-
stricted to instances as stated in Theorem 2 reduces
immediately to Bi-Monotonicty [4] if S contains
precisely the horizontal and vertical directions. Thus,
we settle the latter problem’s complexity.

2 Geodesic Planarity

In this section we sketch the proof of Theorem 2. To
this end, we transform an Ordered Level Pla-

narity instance Go = (Go = (V,E), γ,χ) with max-
imum degree ∆ = 2 and level-width λ = 2 into a
Geodesic Planarity instance Gg = (Gg, x, y, S)
where Gg is a perfect matching. In this abstract we
describe the reduction specifically for the case that the
set S consists of precisely the horizontal and vertical
directions. However, the construction is invariant un-
der shearing and, thus, works for any prescribed set S
of directions with |S| ≥ 4. The reduction is carried
out in two steps.

First, we transform Go into a Geodesic Pla-

narity instance G′

g = (Go, x
′, γ, S) by translating the

vertices of level Vi by 3i units to the right, see Fig.1a
and Fig.1b. Clearly, every geodesic drawing of G′

g

can be turned into an ordered level planar drawing
of Go. On the other hand, consider an ordered level
planar drawing of Go. W.l.o.g. all edges are realized
as polygonal paths in which bend points occur only
on the horizontal lines Li through the levels Vi of Go,
see Fig.1a. Further, assume that all bend points have
an x-coordinate in the interval [−1, 2]. We translate
all bend points on Li by 3i units to the right, see
Fig.1b. In the resulting drawing all edge-segments
have a slope from interval (0,∞). Thus, since the
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Figure 2: Representation of a planar monotone 3SAT
formula and its usage in the reduction to Ordered

Level Planarity.

maximum degree is ∆ = 2 we can be replace all edge-
segments by geodesic staircases that closely trace the
segments, see Fig.1c.

In the second step we turn Go into a perfect match-
ing in order to obtain Gg. To this end, we essentially
split each vertex v by replacing it with a small gad-
get that fits inside a 1/4× 1/4 square centered on v,
see Fig.1d. The gadget contains a degree-1 vertex for
every edge incident to v. In order to maintain equiv-
alence we have to prevent non-incident edges from
being drawn through the gadget square. To this end,
we create a blocking edge between vertices in the top
left and bottom right corners of the gadget square.

Note that all x-coordinates are distinct. Only the
up to 8 vertices of the gadgets on each level may
have duplicate y-coordinates. Thus, by placing these
vertices more carefully we can guarantee that the as-
signed vertex positions are in general position, that is,
no two vertices lie on a line with a direction from S.

3 Ordered Level Planarity

To obtain NP-hardness of Ordered Level Pla-

narity we perform a reduction from Planar Mono-

tone 3-Satisfiability. In this NP-hard [2] special
case of 3SAT the input is a 3SAT formula ϕ together
with a contact representation R of ϕ, see Fig. 2a. All
variables are represented as line segments arranged
on a line. Each clause c is represented as an E-shape
that touches precisely the variables contained in c.
Furthermore, all clauses are either positive or nega-

tive, i.e. they contain exclusively positive or negative
literals, respectively. In R all negative clauses are be-
low the line of variables and all positive clauses are
above the line.

Recall that in terms of realizability Ordered

Level Planarity is equivalent to the generalized
version where γ and χ map to the reals. For the sake
of convenience we will describe our construction in
this generalized setting. We create an ordered level
graph whose level assignment is partitioned into four
tiers T1, T2, T3, T4. Each clause ci is associated with a
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Figure 3: (a) The subgraph (black/red) created for
every E-shape (blue) and the three respective gates
(grey). (b) The variable gadget for uj .

clause edge starting in T1 and ending in T3. In tier T1
we do the following. We take the top part of R, rotate
it by 180◦ and place it to the left of the bottom part,
see Fig. 2b. For each E-shape we create a 11-vertex
subgraph as illustrated in Fig. 3a. The red vertex is
the bottom vertex of the clause edge belonging to the
clause that corresponds to the E-shape. Observe that
drawings of this subgraph are unique in the sense that
the left-to-right order of vertices and edges intersected
by a horizontal line through any of the vertices is the
identical in every ordered level planar drawing of the
subgraph. This is due to the fact that the order of
the top 6 vertices is fixed since they are placed on the
same level. As a consequence, the clause edge start-
ing at the red vertex has to intersect one of the thick
gray regions, which we call gates. Fig. 2c illustrates
the entirety of T1. The subgraph induced by T1 has
a unique drawing. Further, note that each gate is lo-
cated in the line segment of one of the variables of R.
We bundle all gates that are located in the line seg-
ment of the same literal together by creating tunnels

as depicted in the top of Fig. 2c. Observe that the
clause edge of clause ci has to be drawn inside the
tunnel of one of the literals of ci. This corresponds
to the fact that in a satisfying truth assignment every
clause has at least one satisfied literal.

We need to ensure that for each variable uj either
its positive tunnel T p

j or negative tunnel Tn
j can be

used, but not both. To this end, we create a vari-

able gadget for each variable uj , see Figure 3b. These
gadgets start in T2 and end in T4. In T2 the gadget
for uj starts above all the gadgets of variables with
smaller index. In T4 the gadget for uj ends below all
the gadgets of variables with smaller index. The tun-
nels T p

j and Tn
j end inside the gadget of variable uj

on level γ(uq
j). We force all tunnels with index at

least n to be drawn between ua
j and ub

j by subdivid-
ing the tunnel edges appropriately, see Fig. 4a. The
long edge (us

j , u
t
j) has to be drawn left or right of uc

j

in T4. Accordingly it has to be drawn left of ua
j or

right of ub
j in T2 and, thus, left or right of all the
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Figure 4: The two states of a variable gadet.

tunnels that are drawn between ua
j and ub

j . As a con-
sequence, the blocking edge (us

j , u
p
j ) is also drawn left

(Fig. 4b) or right (Fig. 4a) of all tunnels. Together
with the edge (uq

j , u
p
j ) it prevents clause edges from

being drawn in T p
j or Tn

j depending on whether the
long edge and the blocking edge are drawn left or
right.

We summarize the reduction. If there exists an or-
dered level planar drawing, then the clause edge of
each clause is drawn inside of a tunnel that corre-
sponds to one of its literals. Due to the variable gad-
gets, edges can only be drawn either inside the posi-
tive tunnel or inside the negative tunnel of a variable.
Thus, we obtain a satisfying truth assignment. On
the other hand, given a satisfying truth assignment
we can create a drawing by placing the long edges
of the variable gadgets according to the assignment.
Fig. 5 illustrates how variable gadgets can be nested
and clause edges can be drawn.

The resulting Ordered Level Planarity in-
stance has maximum degree∆ = 2. The level-width λ

is linear in the input size, however, it can be decreased
to λ = 2 by replacing a level with width λi > 2 with
λi− 1 levels containing exactly two vertices each. For
more details, we refer to the full version. For λ = 1
Ordered Level Planarity is solvable in linear
time since Level Planarity can be solved in lin-
ear time [6].
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D.: Hanani–tutte, monotone drawings, and level-
planarity. In: Thirty Essays on Geometric Graph The-
ory, pp. 263–287. Springer (2013)

[5] Garg, A., Tamassia, R.: On the computational com-
plexity of upward and rectilinear planarity testing.
SIAM J. Comput. 31(2), 601–625 (2001)
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