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1 Introduction

A d-dimensional polycube (polyomino if d = 2) is a connected set of cells on the cubical
lattice Zd, where the connectivity is through (d−1)-dimensional faces. Polycubes and other
lattice animals (e.g., polyiamonds and polyhexes) play for more than half a century an
important role in enumerative combinatorics [7] as well as in statistical physics [6].

The size (volume, or area in the plane) of a polycube is the number of d-dimensional cells
it contains. The counts of n-cell polyominoes are currently known up to n = 70 [4]. Counts
of 3-dimensional polycubes are currently known up to size 22 (see sequence A000162 in the
On-line Encyclopedia of Integer Sequences [10]). Counts of higher-dimensional polycubes
were published as well; see, e.g., Refs. [1, 9].

A composition of two d-dimensional polycubes is the placement of one of them relative to
the other, such that they touch each other (sharing one or more (d−1)-dimensional faces)
but do not overlap, so that the union of their cell sets is a valid (connected) polycube, see
Figure 1 for an example in the plane. This definition generalizes for other lattice animals
in a straightforward way. The number of compositions plays an important role in proving
bounds on the growth constant of lattice animals. For example, it was used for obtaining an
upper bound on the growth constant of polyiamonds (edge-connected sets of cells on the
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4:2 On the Number of Compositions of Two Polycubes

P1 P2

Figure 1 Aligning the edges connected by the arrow-curve creates a composition of the two
polyominoes P1 and P2, as shown on the right. The alignment along the dotted curve does not
create a valid composition because it would lead to an overlap between P1 and P2.

Table 1 The number of compositions of two polycubes of total size N .

Number of Two Dimensions d ≥ 3 Dimensions
Compositions Lower Bound Upper Bound Lower Bound Upper Bound

Minimum Θ(N1/2) 2(N/2)1−1/d O(2dd(N/2)1−1/d)

Maximum N2/2O(log1/2 N) O(N2) Θ(dN2)

regular planar triangular lattice) [5].1
In this paper, we address the following.

Question 1: Given two polycubes of total size N , how many different compositions
do they have?

We can also ask a restricted version:

Question 2: Given two polycubes, each of size n, how many different compositions
do they have?

Notice that all the polycubes, as well as their compositions, are considered up to transla-
tions. That is, polycubes that can be obtained from each other by a parallel translation are
considered as the same combinatorial object.

Since the situation in Question 2 is a special case of that in Question 1, some bounds
for one of the questions carry over to the other question. Namely, any lower (resp., upper)
bound on the minimum (resp., maximum) number of compositions in Question 1 also carries
over to Question 2, and any upper (resp., lower) bound on the minimum (resp., maximum)
number of compositions in Question 2 also carries over to Question 1. In fact, all our bounds
apply to both versions of the question. In addition, any specific example provides both an
upper bound on the minimum and a lower bound on the maximum of the respective number
of compositions. To avoid confusion, we denote by N throughout the paper the total size of
the two polycubes under discussion. We summarize our results in Table 1.

1 A linear upper bound on the maximum possible number of compositions of polyominoes has been
incorrectly claimed [3, Theorem 2.5], leading to an erroneous improvement of an upper bound on the
growth constant of polyominoes [3, Theorem 2.6]. After finding a counterexample, we regarded it as a
challenge how far away from the claimed linear upper bound we could push. An almost quadratic lower
bound on the number of compositions is given below in Theorem 4, while a quadratic upper bound is
trivial (Observation 3).
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Interestingly, when it comes to finding the pair of polycubes, each of size n, with the
largest number of compositions, there is a huge difference between two and higher dimensions:
Obtaining the tight quadratic bound in higher dimensions is almost trivial, whereas the
planar case requires considerable effort.

We also provide an efficient algorithm for computing the number of compositions of two
given polyominoes (or polycubes) (Theorem 13 in Section 5).

2 Two dimensions

2.1 Minimum number of compositions
▶ Theorem 1. (i) Any two polyominoes of sizes n1 and n2 have Ω((n1 +n2)1/2) compositions.
(ii) For every two numbers n1 ≥ 1, n2 ≥ 1, there is a pair of polyominoes of sizes n1 and n2
with Θ((n1 + n2)1/2) compositions.

Proof. Let N = n1 + n2, and consider a pair of polyominoes P1, P2 of sizes n1 and n2.
Assume without loss of generality that n1 ≥ n2, that is, n1 ≥ N/2. Assume, also without loss
of generality, that the width (x-span) of P1 is greater than (or equal to) the height (y-span)
of P1. Hence, the width of P1 is at least n

1/2
1 . Then, P2 may touch P1 from below or above

in different ways at least twice this width: Simply put P2 below (or above) P1 so that the left
column of P2 is aligned with the ith column of P1 (for 1 ≤ i ≤ n

1/2
1 ) and translate P2 upward

(or downward) until it touches P1. Hence, we have a least 2n
1/2
1 ≥ (2N)1/2 compositions.

To see that this lower bound is tight, we take polyominoes that fit in a square with side
lengths k1 = ⌈n

1/2
1 ⌉ and k2 = ⌈n

1/2
2 ⌉. We form P1 and P2 by filling the respective squares

row-wise until they have the desired size. Polyominoes P1 and P2 can be composed in at
most 4(k1 + k2 − 1) ≤ 4(n1/2

1 + n
1/2
2 + 1) ≤ 4

√
2(n1 + n2)1/2 + 4 = 4

√
2N1/2 + 4 ways. ◀

The following is a direct corollary of Theorem 1.

▶ Corollary 2. Any two polyominoes of total size N have Ω(N1/2) compositions. This lower
bound is attainable. ◀

2.2 Maximum number of compositions
In this section, we find bounds on the maximum number of compositions of two polyominoes
of size n. First, we show a (quite trivial) upper bound of O(n2). Next, we show that it
is “almost tight” by constructing an example that yields a lower bound of Ω(n2−ε), for
any ε > 0.

2.2.1 Upper bound
▶ Observation 3. Any two polyominoes of sizes n1 and n2 have O(n1n2) compositions.

Proof. Let n1, n2 denote the sizes of polyominoes P1 and P2, respectively. Then, every cell
of P1 can touch every cell of P2 in at most four ways, yielding 4n1n2 as a trivial upper bound
on the number of compositions. For N = n1 +n2, this directly gives the bound of O(N2). ◀

2.2.2 Lower bound
It was claimed [3] that the number of compositions of two polyominoes of total size N is
bounded from above by 2N , which would be a substantial improvement of the bound O(N2)

CGT



4:4 On the Number of Compositions of Two Polycubes

from Observation 3. Unfortunately, its proof contained an erroneous argument, and here we
construct an example showing that in fact “almost” N2 compositions are possible.

▶ Theorem 4. For every n ≥ 1, there are two polyominoes, each of size at most n, that have
at least

n2

28·
√

log2 n
(1)

compositions.

Remarks. From now on, “log” will always denote the binary logarithm. The denom-
inator 28·

√
log n grows asymptotically more slowly than xε for any ε > 0. Hence, the

maximum number of compositions is Ω(n2−ε) for any ε > 0. On the other hand, if n ≤ 264,
then 8 ≥

√
log n, and the denominator of the bound (1) can be estimated as

28·
√

log n ≥ 2
√

log n·
√

log n = n.

Hence, the claimed bound (1) is not bigger than n, which is weaker (smaller) than the
number 4n of compositions of two 1 × n “sticks.” Thus, the bound in the general form (1)
starts to beat the trivial bound only for very large values of n. The reason for this is that
our analysis concentrates on getting bounds that are both explicit and asymptotically strong,
at the expense of small n.

After we describe and analyze our construction, we discuss weaker bounds that can be
derived from it and that exhibit superlinear growth already for moderate sizes.

Proof. We will recursively construct a series of polyominoes D0, D1, D2, . . . , which we
call dense toothbrushes, and a series of polyominoes S0, S1, S2, . . ., which we call sparse
toothbrushes; see Figure 2. We refer to Dk and Sk as toothbrushes of order k. In addition
to k, these polyominoes are also parameterized by a degree parameter, r ≥ 2, that indicates
how many copies of toothbrushes of order k−1 are used to construct a toothbrush of order k.
We use r = 3 in Figure 2. The basic building elements of toothbrushes are sticks—rectangles
of height 1 or width 1—with one extreme cell identified as root and another as apex, so that
each stick is considered to be oriented from its root to its apex. Toothbrushes Dk and Sk

consist of i-sticks—sticks at levels i = 0, 1, 2, . . . , k—where (< k)-sticks come recursively
from toothbrushes of order < k, and they are attached to a “new” k-stick. The sticks
cycle directions while opposing each other and have increasing lengths as shown in Table 2.
(Level −1 does not exist, but it is convenient to define ℓ−1 = 1.)

The toothbrushes are constructed as follows. The 0-order toothbrushes D0 and S0 are
simply 0-sticks, i.e., horizontal 1 × 2 dominoes, the root being the left cell for D0, and the
right cell for S0. For k ≥ 1, the toothbrush Dk (resp., Sk) consists of a handle—a k-stick
of length ℓk, oriented as specified in Table 2—to which r copies of Dk−1 (resp., of Sk−1)
are attached, so that their roots coincide with the cells of the handle at distance α · oD

k

(resp., α ·oS
k ), α = 0, 1, . . . , r−1 cells away of its apex. The factors oD

k , oS
k are listed in Table 2

as the offsets between successive copies of Dk−1 (resp., of Sk−1) along the handle of Dk

(resp., of Sk). As an exception to this rule, the smallest dense toothbrush D1 is constructed
by attaching the copies of D0 at distances 1, 3, 5, . . . , 2r − 1 from the apex, instead of the
distances 0, 2, 4, . . . , 2r − 2 that would conform to the general pattern.

Figure 2 illustrates the construction. Dense toothbrushes are green, and sparse tooth-
brushes red. For dense and sparse toothbrushes of order 0 and 1, the roots are marked by
blue dots. Arrows indicate the positions where the toothbrushes are attached to the handle
of the next order.
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Table 2 Orientations and sizes of i-sticks for the recursive construction; the offsets between
successive copies of Di−1 or Si−1 along the i-sticks.

Level i
Orientation of i-sticks Stick length ℓi

Offset oD
i Offset oS

i

in Di in Si in Di in Si

(−1) 1
0 → ← 2
1 ↑ ↓ 2r2 2 2r

2 ← → 4r2 4 4r

3 ↓ ↑ 4r4 4r2 4r3

4 → ← 8r4 8r2 8r3

5 ↑ ↓ 8r6 8r4 8r5

...
...

...
...

...
...

0 mod 4
2 mod 4

→
←

←
→ 2(i+2)/2ri 2(i+2)/2ri−2 2(i+2)/2ri−1

1 mod 4
3 mod 4

↑
↓

↓
↑ 2(i+1)/2ri+1 2(i+1)/2ri−1 2(i+1)/2ri

As a result of these rules, sub-brushes always fan off to the right of the handle when
viewed from the root towards the apex. As k increases, the orientation of the brushes cycles
counterclockwise in the order left-down-right-up.

Thus, the difference between dense and sparse toothbrushes is that the copies of (k − 1)-
order toothbrushes are denser in Dk and sparser in Sk, and that D0 is oriented to the right
and S0 to the left, and then similarly for higher levels: the sticks of the same level have
opposite orientations in Dk and Sk.

For later reference, we record the relations between lengths and offsets from Table 2:

oD
i = 2ℓi−2, oS

i = r · oD
i , ℓi = r · oS

i = 2r2ℓi−2. (2)

As a consequence, one can observe that when we increase the level i by two steps, all
dimensions increase by a factor of 2r2.

The 0-sticks consist of two squares, but since one of these squares overlaps a vertical
1-stick, they appear as single-square protrusions, or notches. These notches will play a crucial
role in counting the compositions. Each of the toothbrushes Dk and Sk has rk notches.
We represent each notch N of Dk by a sequence A = (α1, α2, . . . , αk), where αi indicates
that the copy of Di−1 that contains N is attached to the level-i handle at distance αio

D
i

from its apex (or for i = 1, at distance 1 + αio
D
i = 1 + 2α1). The “digits” αi of this

representation (for 1 ≤ i ≤ k) are in the range 0 ≤ αi ≤ r − 1. We also use a similar
encoding B = (β1, β2, . . . , βk) for notches of Sk. In Figure 2, two notches are marked by
crosses: the notch (2, 0, 2, . . . ) of (green) Dk and the notch (1, 2, 2, . . .) of (red) Sk.

▶ Lemma 5. The size of Dk and Sk is bounded from above by 2(k+2)/2rk+1(
1+ 2

r

)
for even k,

and by 2(k+3)/2rk+1(
1 + 1

r

)
for odd k. A common upper bound for both cases is

3
(√

2 · r
)k+1

. (3)

Proof. To get an upper bound, we simply add the sizes of all sticks, ignoring the overlaps.
Let us begin with k being even. The handle of Dk or Sk is horizontal and has size 2(k+2)/2rk.

CGT
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ℓ2 = 4r2

ℓ2 = 4r2oD2 = 4

D0

S0

D1

S1

ℓ1 = 2r2

oS1 = 2r

ℓ1 = 2r2

oD1 = 2

oS2 = 4r

D2

S2

Figure 2 The construction for r = 3. The roots of D0, S0, D1, S1, D2, S2 are marked with blue
dots.
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There are r copies of Dk−1 or Sk−1, and their r vertical handles have total size r × 2k/2rk.
Together, the sticks at the top two levels have size

2k/2+1rk + 2k/2rk+1 = 2k/2rk+1(
1 + 2

r

)
. (4)

When going down two levels, the stick length decreases by a factor of 2r2, but the number of
sticks increases by a factor of r2. Thus, the total size of the sticks decreases by a factor of 2.
Counting separately the sticks at even and at odd levels, we therefore get an upper bound
on the total size of all sticks if we multiply (4) by 1 + 1

2 + 1
4 + · · · = 2. This proves the first

statement.
For odd k, we obtain in a similar way(

2(k+1)/2rk+1 + r × 2(k+1)/2rk−1
)

×
(
1 + 1

2 + 1
4 + · · ·

)
= 2(k+3)/2rk+1(

1 + 1
r

)
.

The factor 3 in (3) is large enough to cover the extra term
√

2 ×
(
1 + 2

r

)
≤

√
2 × 2 for the

even case and 2 ×
(
1 + 1

r

)
≤ 2 × 3

2 for the odd case. ◀

▶ Lemma 6. There are at least r2k compositions of Dk and Sk.

Proof. For each notch ND of Dk and for each notch NS of Sk, we can translate Dk and Sk

so that the upper edge of ND coincides with the lower edge of NS . In the inset of Figure 2,
the two involved notches are marked by crosses.

We claim that (1) Such r2k compositions are distinct; and (2) Each of them is valid in the
sense that Dk and Sk positioned in this way are disjoint. (We ignore many other compositions,
but asymptotically, this gives the dominant term of the total number of compositions.)

(1) We first argue that all these compositions are distinct. Let ND be a notch of Dk

represented by a sequence A = (α1, α2, . . . , αk), as explained above. Let us position Dk so
that the notch encoded by (0, 0, . . . , 0) has coordinates

(0
0
)
. Then, the coordinates of the

notch ND are(
0
0

)
+ α1

(
0

−oD
1

)
+ α2

(
oD

2
0

)
+ α3

(
0

oD
3

)
+ α4

(
−oD

4
0

)
+ · · · =(

4 · α2 − 8r2 · α4 + 16r4 · α6 − 32r6 · α8 + . . .

−2 · α1 + 4r2 · α3 − 8r4 · α5 + 16r6 · α7 − . . .

)
. (5)

If we similarly encode the notch NS of Sk by B = (β1, β2, . . . , βk) and position Sk so that the
notch encoded by (0, 0, . . . , 0) has coordinates

(0
0
)
, then the coordinates of the notch NS are(

0
0

)
+ β1

(
0

oS
1

)
+ β2

(
−oS

2
0

)
+ β3

(
0

−oS
3

)
+ β4

(
oS

4
0

)
+ · · · =(

−4r · β2 + 8r3 · β4 − 16r5 · β6 + 32r7 · β8 − . . .

2r · β1 − 4r3 · β3 + 8r5 · β5 − 16r7 · β7 + . . .

)
. (6)

The translation of Sk that brings NS to the cell directly above ND is found by taking the
difference between Equations (5) and (6), and adding

(0
1
)
:(

4α2 + 4rβ2 − 8r2α4 − 8r3β4 + . . .

1 − 2α1 − 2rβ1 + 4r2α3 + 4r3β3 − . . .

)
.

Since both the successive multipliers 4, 4r, 8r2, 8r3, . . . for the x-coordinate and the suc-
cessive multipliers 2, 2r, 4r2, 4r3, . . . for the y-coordinate differ at least by a factor of r,

CGT
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B(Si)

B(Di)

(2r2 − 2r + 1)ℓi−2

(2r − 1)ℓi−2

ℓi−2

ℓi−2

ℓi = 2r2ℓi−2

Di

Si

ℓi−2

(2r − 1)ℓi−2

Figure 3 Schematic illustration of bounding boxes and rims for toothbrushes Di and Si.

and the coefficients αi and βi are between 0 and r−1, we conclude that distinct (2k)-
tuples (α1, α2, . . . , αk, β1, β2, . . . , βk) lead to distinct translations.

(2) It remains to prove that the r2k compositions described above are valid. That is,
to show that if we translate Dk and Sk so that some notch ND of Dk is just below some
notch NS of Sk, then the union of Dk and Sk is disjoint. This will be accomplished by the
following Claims 7 and 8.

For each polyomino P , let its bounding box B(P ) be the smallest (filled) grid rectangle
that contains it. It is easy to see that the bounding boxes of Di and of Si have size ℓi × ℓi−1
or ℓi−1 × ℓi (using the convention ℓ−1 = 1). We define the rim of a toothbrush as the union
of the sides—one horizontal and one vertical—of its bounding box that contain the root of
its handle. In fact, one of the sides of the rim of an i-order toothbrush is its handle, and the
other side is contained in the handle of the (i + 1)-order toothbrush to which it belongs. In
Figure 3, bounding boxes of two toothbrushes are shown by bold frames, and the bending
point of the respective rims are marked by a blue dot. Bounding boxes of some toothbrushes
of smaller order are shown by light green or pink background. Respective rims are shown by
dashed lines. One should keep in mind that this figure is schematic and sticks of different
levels are not to scale.

▷ Claim 7. Consider a composition of Dk and Sk as described above. Let 1 ≤ i ≤ k,
and suppose that the composition is established via the notches ND of Dk and NS of Sk.2
Suppose further that ND lies in some copy of Di and the notch NS lies in some copy of Si.
Then the bounding boxes B(Di) and B(Si) overlap, but neither bounding box overlaps the
rim of the other toothbrush. (Refer to Figure 5 for a schematic depiction of the statement.)

2 Recall that this means that ND is just below NS .
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2r − 1

D1 S1

2r

Figure 4 Proof of Claim 7, case i = 1.

B(Di)

B(Si)

Figure 5 Illustration of Claim 7: Bounding boxes overlap, but the rims never overlap. Since the
situation is symmetric, it is sufficient to prove the claim for one of the rims.

Proof. We prove the claim by induction. For i = 1, it is easily checked by inspection; refer
to Figure 4. The notches do not overlap since all the notches of D1 fit into gaps between
notches in S1. It remains to show that B(D1) cannot reach the uppermost row of B(S1).
Indeed, if ND is the lowest notch of D1, the vertical distance from its upper edge to the top
of B(D1) is r · oD

1 − 1 = 2r − 1. If NS is the highest notch of S1, the vertical distance from
its lower edge to the top of B(S1) is oS

1 = 2r. Thus, if the upper edge of ND coincides with
the lower edge of NS , the top of B(D1) is still strictly below the top of B(S1).

Now let i ≥ 2. Assume without loss of generality (and consistently with Figure 3) that
the rim of Di occupies the lower and the right side of B(Di), and the rim of Si occupies the
upper and the left side of B(Si), as shown by bold frames in Figure 3. Let Di−1 and Si−1
be specific copies of the lower-order toothbrushes that contain the notches ND and NS .
Their bounding boxes are shown in the figure with a shaded background. Since B(Di−1)
and B(Si−1) overlap by induction, we immediately get the overlap of B(Di) and B(Si).

To prove that the rim of Si does not overlap B(Di), we need to show that B(Di) can
reach neither the highest row nor the leftmost column of B(Si). The former claim is easy:
If B(Di) intersects the highest row of B(Si), then B(Di−1) intersects the rim of Si−1, which
contradicts the induction hypothesis.

To show that B(Di) cannot reach the leftmost column of B(Si), we use the relations (2) in
the calculation. The horizontal extension of each (i−1)-order sub-brush Di−1 or Si−1 is ℓi−2.

CGT



4:10 On the Number of Compositions of Two Polycubes

The (i−1)-order sub-brushes of Di span in total a horizontal range of width (r−1)oD
i +ℓi−2 =

(2(r − 1) + 1)ℓi−2, extending to the right from the left side of B(Di). The (i−1)-order sub-
brushes of Si span in total a horizontal range of width (r − 1)oS

i + ℓi−2 = (2r(r − 1) + 1)ℓi−2,
extending to the left from the right side of B(Si). The sum of these two distances is equal to
ℓi = 2r2ℓi−2, the horizontal extension of Di and Si. It follows that B(Di) cannot reach the
leftmost column of B(Si) if the bounding boxes of some (i − 1)-order sub-brushes overlap,
which holds by induction for the specified copies of Di−1 and Si−1. ◀

▷ Claim 8. Consider two (sub-)brushes Di and Si of order i ≥ 2. If two of their
sub-brushes Di−1 and Si−1 have overlapping bounding boxes, then no other pair of sub-
toothbrushes D′

i−1 and S′
i−1 of order i−1 can have overlapping bounding boxes.

Proof. We employ the same assumption as for the orientation of Di and Si as in the previous
proof. The horizontal dimension of the bounding boxes of level i−1 is then ℓi−2. The offset
between different copies of Di−1 is oD

i = 2ℓi−2, by (2). Hence, the distance between their
bounding boxes is ℓi−2, and, therefore, no toothbrush Si−1 can intersect with two different
copies of Di−1.

We also have to argue that no two copies of Si−1 can be intersected by some Di−1. The
offset between successive copies of Si−1 is oS

i = 2rℓi−2, and, hence, the gap between their
bounding boxes is (2r − 1)ℓi−2. On the other hand, all copies of Di−1 together fit in a box of
horizontal extension (2r − 1)ℓi−2. Hence, no toothbrush Di−1 can intersect with two different
copies of Si−1. ◀

With Claims 7 and 8, we can now conclude that Dk and Sk are disjoint: It follows from
Claim 7 that the handle of Dk is disjoint from Sk (even from its bounding box), and vice
versa. All cells that are not in the handle are in the sub-brushes Dk−1 and Sk−1. There is
exactly one pair Dk−1, Sk−1 that contains ND and NS , respectively, and by Claim 7, the
respective bounding boxes overlap. By Claim 8, this means that all other pairs S′

k−1, L′
k−1

are disjoint. It suffices, therefore, to prove the claim for sub-brushes Dk−1 and Sk−1 that
contain ND and NS .

However, the proof above applies for sub-brushes of any order. In this way, we proceed
by induction to toothbrushes of lower order until we reach the order-0 pair D0, S0 containing
the notches ND and NS , for which disjointness is obvious. This concludes the proof of
Lemma 6. ◀

In order to finish the proof of Theorem 4, we apply the construction with the parameters
k := ⌊

√
log n⌋ − 1 and r := 2k. As discussed after the statement of the theorem, our claimed

lower bound is implied by the trivial construction of two orthogonal sticks for n ≤ 264. Thus,
we may assume that n > 264. Hence, k ≥ 7 and r ≥ 128.

We use Lemma 5 to show that the size of the polyominoes is at most n. The logarithm
of the bound (3) is

log
(
(
√

2 · r)k+13
)

= log
(
(
√

2 · 2k)k+1)
+ log 3

= (k + 1/2)(k + 1) + log 3

≤ (
√

log n − 1/2)
√

log n + log 3

= log n −
√

log n/2 + log 3
≤ log n,

where the last relation holds for n ≥ 1059.
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Figure 6 A rendering of a variation of our sparse toothbrush S5 as an L-system.

Now we apply Lemma 6 in order to estimate the number of compositions from below.
Again, we compute the logarithm of the desired quantity:

log(r2k) = log
(
(2k)2k

)
= 2k2 ≥ 2(

√
log n−2)2 = 2 log n−8

√
log n+8 ≥ 2 log n−8

√
log n.

From this, we directly get the bound (1). ◀

There are a few obvious local improvements of our construction. For example, the
necessary spacing between the level-1 vertical sticks in D2 is only 3 instead of the 4 that we
use. Removing all notches allows to reduce the spacing even further, without reducing the
number of compositions that we count. Alternatively, we could replace the notches by sticks
of length r and adjust all horizontal dimensions accordingly. This would increase the number
of compositions by the factor r−1, while increasing the sizes only by a constant factor. By
contrast, our proof strives to make the description of the construction as easy as possible
and to keep simple expressions for the dimensions in terms of powers of 2 and r.

By choosing a small constant order k, we already obtain superlinear bounds from
Lemmata 5 and 6. For example, k = 3 leads to toothbrushes of size n = O(r4) with
at least r6 compositions, i.e., Ω(n3/2) compositions. Setting k = 4 leads to toothbrushes of
size n = O(r5) with at least r8 compositions, i.e., Ω(n8/5) compositions, etc. For any fixed k,
we get Ω(n2−2/(k+1)) compositions.
Remark: As k → ∞, the toothbrushes Dk and Sk, properly scaled and rotated, converge
to tree-like structures whose substructures are “similar” to the whole structure: thus, it
bears some similarity to fractals. The limits are different for Dk and Sk, and, in addition,
we have to distinguish between even and odd values of k. When going down two orders,
all lengths are uniformly scaled by 1/(2r2), and, hence, we find self-similar substructures.
However, since the number of substructures is only r2, the total length is finite, and the
fractal dimension is 1. Hence, we don’t have a fractal in the strict sense. We mention that
our toothbrushes, like many fractals, can be modeled by L-systems,3 for example, as follows:

Constants: X
Axiom: --X
Rule1: X=[-FFXFXFX]
Rule2: F=FFF

3 https://en.wikipedia.org/wiki/L-system
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An L-system renderer (http://www.kevs3d.co.uk/dev/lsystems/) produces, using the
specification above, the fractal shown in Figure 6. In this L-system, a string of symbols
is converted to an image by interpreting the symbols as turtle graphics commands: The
letter F makes a step forward, and the symbol ‘-’ makes a right turn by 90◦. The symbol ‘[’
saves the current position and orientation on a stack, and ‘]’ returns to the previously saved
state. The letter X is ignored for the drawing. In one iteration, all occurrences of X and F
in the current string are simultaneously substituted according to the two rules. Figure 6 is
produced from the starting string (axiom) “–X” after 6 iterations.

We note that the fractal dimension [11] is not the relevant parameter for our problem
since it measures the length of a fractal curve (the boundary of the polyomino, in our setting)
in terms of the diameter. However, for our application, we also want the size (the area
enclosed by the boundary) to be small.

3 Higher dimensions

3.1 Minimum number of compositions
3.1.1 Lower bound
▶ Theorem 9. Any two d-dimensional polycubes of total size N have at least 2(N/2)1−1/d

compositions.

Proof. The proof is similar to that of Theorem 1. Consider two polycubes P1, P2 of total
size N . Assume, without loss of generality, that P1 is the larger of the two polycubes, that
is, the size (d-dimensional volume) of P1 is at least n=N/2. Let Vi (for 1 ≤ i ≤ d) be the
(d−1)-dimensional volume of the projection of P1 orthogonal to the xi axis. An isoperimetric-
like inequality of Loomis and Whitney [8] ensures that

∏d
i=1 Vi ≥ nd−1. Let Vk ≥ n1−1/d be

largest among the numbers V1, . . . , Vd. Then, there are at least 2Vk ≥ 2n1−1/d different ways
for how P2 may touch P1. Indeed, the polycube P1 has Vk “columns” in the xk direction.
Pick one specific such “column” of P2 and align it with each “column” of P1, putting it either
“below” or “above” P1 along direction xk, and find the unique translation along xk by which
they touch for the first time while being translated one towards the other. ◀

3.1.2 Upper bound
▶ Theorem 10. There exist pairs of d-dimensional polycubes, of total size N , that have
O(2dd(N/2)1−1/d) compositions.

Proof. Let us first assume that N is of the form N = 2kd. In this case, we compose two
copies of a polycube P that is a cube made of N cells (see Figure 7). The two copies of P

can slide towards each other in 2d directions (two directions in each dimension) until they
touch. Once we decide which facets of the hypercube touch each other, this can be done
in (2k−1)d−1 ways. Indeed, in each of the d−1 dimensions orthogonal to the sliding direction,
there are 2k−1 possible offsets of one hypercube relative to the other. (This can be visualized
easily in two and three dimensions.) Overall, the total number of compositions is

(2d)(2k − 1)d−1 = 2d(2(N/2)1/d − 1)d−1 = Θ(2dd(N/2)1−1/d).

If N is not of the form N = 2kd, let k = ⌊(N/2)1/d⌋. We form two polycubes P1 and P2
that contain the cube [0, k]d of side length k, and that are contained in the cube [0, k + 1]d
of side length k+1, in such a way that the cells along any axis-parallel line form a connected

http://www.kevs3d.co.uk/dev/lsystems/
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k

k

Figure 7 A composition of two hypercubes.

n

(a) A stick (b) A side-facet composition (c) An extreme-facet composition

Figure 8 Compositions of two “sticks.”

interval. (This can be achieved, for example, by starting with the smaller cube and adding
extra cells of the larger cube [0, k +1]d in lexicographic order.) Arguing as above, we conclude
that the number of compositions is at least (2d)(2k − 1)d−1 and at most (2d)(2k + 1)d−1. ◀

3.2 Maximum number of compositions in d ≥ 3 dimensions
▶ Theorem 11. Let d ≥ 3. Any two d-dimensional polycubes of total size N = 2n have
O(dn2) compositions. The upper bound is attainable: There are two d-dimensional polycubes
of total size 2n with Ω(dn2) compositions.

Proof. Similarly to two dimensions, any two polycubes P1, P2 of total size 2n have O(dn2)
compositions. Indeed, let n1, n2 denote the sizes of P1 and P2, respectively, where n1+n2 = 2n.
Then, every cell of P1 can touch every cell of P2 in at most 2d ways, yielding 2dn1n2 ≤ 2dn2

as a trivial upper bound on the number of compositions.
The lower bound is attained asymptotically, for example, by two nonparallel “sticks”

of size n, as shown in Figure 8(a). Each stick has two extreme (d−1)-dimensional facets
(orthogonal to the direction along which the stick is aligned), plus 2(d−1)n many (d−1)-
dimensional side facets. The number of compositions that involve only side facets is 2(d −
2)n2 = Ω(dn2), see Figure 8(b): Indeed, for each of the d−2 coordinate directions that are
not parallel to any of the two directions of the sticks, there are 2n2 different choices for
letting two side facets of the sticks touch. The compositions that involve an extreme facet
can be neglected since there are only 4n of them, see Figure 8(c). ◀

Note the difference, for the maximum number of compositions, between the cases d = 2
and d > 2. If d > 2, the dimensions along which the sticks are aligned, restrict the
compositions of the sticks, but the existence of more dimensions allows every pair of cells,

CGT



4:14 On the Number of Compositions of Two Polycubes

A1

A2

−A2

Figure 9 The sets A1 and A2 of cell centers of the polyominoes P1 and P2, respectively, from
Figure 1, the Minkowski difference F = A1⊕ (−A2) (circles), and the set of valid composition vectors
(squares). P1 and P2 have 27 compositions. The composition from Figure 1 is highlighted.

one of each polycube, to have compositions through this pair only. This is not the case in
two dimensions, a fact that makes the proof of Theorem 4 much more complicated.

4 Compositions and the Minkowski sum

As a preparation for the algorithm that determines (or counts) all compositions, we discuss
an elementary connection between compositions of two polyominoes and the Minkowski sum,
the element-wise sum of two sets of vectors A and B:

A ⊕ B := { a + b | a ∈ A, b ∈ B }.

In this connection, it is better to regard a polyomino as a discrete set A of points, namely
the centers of the grid squares of which it is composed. The polyomino itself can then be
obtained as the Minkowski sum of A with a unit square U centered at the origin: A ⊕ U .

For two polyominoes P1, P2, we call an integer vector t ∈ Zd a valid composition vector,
or simply a valid composition of P1 and P2, if P1 and P2 + t form a valid composition, i.e.,
they do not overlap, but share at least one common edge.

▶ Observation 12. Let P1, P2 be polyominoes and let A1, A2 be their sets of centerpoints.
1. The set of (integer) translations t for which P1 and P2 + t overlap is the Minkowski

difference

F := A1 ⊕ (−A2) := { c1 − c2 | c1 ∈ A1, c2 ∈ B }.

We call F the forbidden set.
2. The set of valid composition vectors for P1 and P2 is the set of neighbors of F : those

integer vectors that have distance 1 from a point of F but that do not themselves belong
to F .

See Figure 9 for an example.

Proof. The first statement is obvious: A vector t is of the form t = c1−c2 for some c1 ∈ A1 and
c2 ∈ A2 if and only if the cells c1 ∈ A1 and c2+t ∈ A2+t coincide: t = c1−c2 ⇐⇒ c1 = c2+t.

To see the second statement, let t /∈ F be a vector and t′ ∈ F an adjacent vector. Then,
c1 ∈ A1 and c2 + t′ ∈ A2 + t′ coincide. If we move A2 + t′ by one unit to A2 + t, the cell
c2 + t ∈ A2 + t is adjacent to c2 + t′ = c1 ∈ A1, but A2 + t becomes disjoint from A1, and
hence t is a valid composition.

On the other hand, if t is a valid composition, then t /∈ F , but there must be two adjacent
cells c2 + t ∈ A2 + t and c1 ∈ A1. Moving A2 by one unit brings these two cells to coincide;
hence, there is a vector t′ adjacent to t such that c2 + t′ = c1, or in other words, t′ ∈ F . ◀
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5 Counting compositions

We now describe an efficient algorithm for finding all compositions of two polyominoes
or polycubes.4 We assume the unit-cost model of computation, in which numbers in the
range [−n, n] can be accessed and be subject to arithmetic operations in O(1) time, and up
to O(n2d) memory cells can be accessed by their address in O(1) time.

▶ Theorem 13. (i) Given two polyominoes, each of size at most n, their number of composi-
tions can be computed in O(n2) time and O(n2) space.
(ii) Given two d-dimensional polycubes, each of size at most n, their number of compositions
can be computed in O(d2n2) time and O(dn2) space.

Proof. A straightforward approach would try all O(n2) possibilities of moving a cell y ∈ P2
next to a cell c1 ∈ P1, in 2d possible ways, and check whether the two translated polyominoes
overlap. Testing for overlap can be done very naively in O(n2) time, or with little effort
in O(n) time, but even this leads to an overall runtime of O(n3).

However, we can do better, by using the connection to the Minkowski sum from Observa-
tion 12. Let us first deal with the situation in the plane (d = 2 dimensions). To compute F ,
we can use a bitmap data structure T , which holds the status of all possible translations in
a (2n + 3) × (2n + 3) array, with indices in the range −n−1 ≤ t ≤ n+1 in each direction.
Initially, all entries of T are cleared. In a double loop over the pairs of cells c1 ∈ P1, c2 ∈ P2,
we set the entry in T corresponding to the translation t = c1 − c2. This sets the bits of F .

Obviously, both the size and preparation time of T are O(n2). Finally, by scanning each
cell of T , we can determine in constant time if it lies outside F but has a neighbor belonging
to F , and hence, according to Observation 12, represents a valid composition. Overall, the
entire process requires Θ(n2) time and space.

These bounds assume the worst case, in which size-n polyominoes have an extent of Θ(n)
in each dimension. By contrast, typical polyominoes can be expected to be somewhat
compact. However, we are not aware of any empirical evidence for this statement.

Finally, let us list the differences needed for following the same approach in d dimensions.
Each cell now has d coordinates (instead of two), and so every cell or translation operation
(e.g., setting, comparing, checking, etc.) requires Θ(d) instead of constant time. Instead
of four neighboring cells, each polycube cell now has 2d neighbors. The size of the input
is Θ(dn). A bitmap would require space Θ(nd), and we would like to avoid this exponential
growth in d.

Instead, we will identify the cells of F by sorting. We generate the at most n2 elements
of the Minkowski difference P1−P2, one at a time, in O(n2d) time, and store them in a list.
Then we sort this list, using radix sort. Radix sort sorts the list in d passes over the data,
each time assigning the elements to buckets according to one selected digit (coordinate). Each
pass takes O(n2) time (plus O(n) time for the range of values of the ith coordinate). Thus,
in O(n2d) time, we get the elements of F in sorted order, and then it is easy to eliminate
duplicates.

In the second step, we generate 2d neighbors of each element of F . These are O(n2d)
candidates for translations that may lead to valid compositions. We have to remove the
candidates that belong to F , because they lead to collisions, and we have to eliminate

4 For higher dimensions, the conference version of this paper [2, Thm. 7] provides three alternative
algorithms which exhibit a trade-off between time and space. Our improved algorithm of Theorem 13(ii)
dominates all of these algorithms both in time and space.
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Figure 10 Distributions of the number of compositions of pairs of polyominoes of sizes n1, n2.
Numbers in parentheses are values by which the curves are normalized (shifted horizontally to the
left).

duplications. Again, we rely on radix-sort, but in order to save space, we use a special
representation: Each neighbor of an element x of F is represented as a triplet (x, i, s). The
first component is a pointer to x. The index i lies in the range 1 ≤ i ≤ d and indicates
which coordinate is to be incremented (s = 1) or decremented (s = −1). This representation
requires only constant space per candidate neighbor, and nevertheless, it is possible to access
each coordinate in constant time.

In total, we need O(n2d) space: O(d) space for each of the O(n2) elements of F , which
are represented explicitly; and O(1) space for each of the O(n2d) candidates. We sort F plus
the list of all candidates, using radix sort, in O(n2d2) time. This brings all elements with the
same coordinates together, and allows us to eliminate duplicate or invalid candidates.5 ◀

We mention that our algorithm actually generates all valid compositions within the
same running time, in the sense that some procedure can visit every composition once, for
example in order to collect some statistics. If one insists on producing an explicit list of all
compositions, the storage requirement might increase to Ω(d2n2): By Theorem 11, there can
be inputs with Ω(dn2) compositions, each requiring size Θ(d) to write down.
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6 Distribution and average in two dimensions

In this section, we present some empirical data concerning the interesting question of
the distribution of NC(n1, n2), the number of compositions of all pairs of polyominoes of
sizes n1, n2.

Figure 10(a) shows with filled circles the distributions of the number of compositions of
pairs of polyominoes of the same size. For each size up to n = 9, we took all pairs P1, P2 of
polyominoes of size n and counted the number of their compositions. For each number p

of compositions, the graph shows the multiplicity with which p occurs, i.e., the number of
pairs (P1, P2) among the A(n)2 pairs that have p compositions, on a logarithmic scale. The
points for a given size n are connected by a curve. In order to make the curves for different
values of n comparable, we normalized the number p by subtracting the average number of
compositions for size n (specified in the figure in parentheses). Thus, the horizontal axis is
actually the deviation of p from the average. The averages are shown in Figure 10(b).

For polyominoes of size 10 ≤ n ≤ 14, we sampled uniformly s = 5·107 out of all A(n)2 pairs
because considering all pairs of polyominoes would be too time consuming. (The experiments
reported here took about 10 days of CPU time.) The obtained results were multiplied
by A(n)2/s in order to get an estimate for the true multiplicities. These samples represent
only a small fraction of all pairs: roughly 1.7 · 10−4 for n = 10 and 1.1 · 10−8 for n = 14.
Nevertheless, the estimates (shown with crosses in Figure 10(a)) appear visually consistent
with the exact results, except that the sampling missed numbers of compositions with too
few realizing pairs of polyominoes. The data were fitted to various discrete distributions,
using the statistics module of the Python package scipy. The best fit was found with the
negative-binomial distribution.

Figure 10(b) plots the average number of compositions of a pair of polyominoes of size n,
as a function of n, and the vertical bars show the ranges of the numbers. The data suggest
that the average value of NC(n, n) for two random polyominoes grows linearly with n. With
the available data for 3 ≤ n ≤ 14 (considering the first two values as outliers), a linear
regression gives the relation NC(n, n) ≈ 2.19n + 4.97.

Similar patterns of distributions of the number of compositions are observed also for
polyominoes of different sizes. In order not to clutter the figure, we show overlays of
distributions of the number of compositions of pairs of polyominoes of the same total size.
Figures 10(c–d) show the distributions of the number of compositions of pairs of polyominoes
whose total size is 12 and 14, respectively. Again, each curve is normalized with respect to
the average value which is specified in the figures in parentheses.

7 Conclusion

In this paper, we provide almost tight bounds on the minimum and maximum possible
numbers of compositions of two polycubes in two and higher dimensions. While this goal
is easy to achieve in three and higher dimensions, much more effort is needed in the two-
dimensional case. We also provide an efficient algorithm for computing the number of
compositions that two given polycubes have.

Future research directions include an estimation of the average number of composition

5 In theory, one could combine the two phases, the generation of the elements of F , and of their neighbors,
into one step without affecting the worst-case running time bound. In practice, however, eliminating
duplications in F will reduce the number of elements that need to be considered in the second phase.
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two polyominoes have. An efficient upper bound on this number may overcome the error in
Ref. [3] and yield an upper bound on the growth constant of polyominoes.
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