
On the Complexity of the

Linkage Recon�guration Problem

Helmut Alt, Christian Knauer,

G�unter Rote, Sue Whitesides

B 03-02
January 2003

On the Complexity of the Linkage Recon�guration Problem

Helmut Alt� Christian Knauer� G�unter Rote� Sue Whitesidesy

February 4, 2003

Abstract

We consider the problem of recon�guring a linkage of rigid straight segments from

a given start to a given target position with a continuous nonintersecting motion. The

problem is nontrivial even for trees in two dimensions since it is known that not all con�gu-

rations can be recon�gured to a straight position. We show that deciding recon�gurability

for trees in two dimensions and for chains in three dimensions is PSPACE-complete.

Keywords: Computational Geometry, Linkage recon�guration, PSPACE-completeness

1 Introduction

A linkage in d-space is a crossing-free straight line embedding of a graph in R
d where the

edges are considered as rigid bars and the vertices are considered as hinges. A recon�guration

is a continuous motion of the vertices that preserves the lengths of the edges and never causes
edges to collide.

We investigate several complexity issues concerning the recon�guration of simple (non-
crossing) polygonal chains of �xed-length segments in 3D and of simple trees of �xed-length
segments in 2D. To be more precise, we consider the complexity of variants of the following

Linkage recon�guration problem: Given two linkages S and T in d-space,
can we recon�gure S into T ?

In 2D, every simple polygonal chain of �xed length segments can be continuously moved
to a straight con�guration, [10, 5]. Nevertheless, the general question is nontrivial since it is
known that simple trees of �xed length segments cannot always be moved to con�gurations
that are essentially
at, [5], and that there are polygonal chains in 3D that cannot be moved
to a straightened con�guration [3, 1].

In Section 2 we observe that the linkage recon�guration problem is decidable in polynomial
space for any �xed dimension d. In Section 3 we complement these upper bounds by showing
that the recon�guration problem for trees in 2D is PSPACE-hard. The technique we use is
based on work of Joseph and Plantinga [7]. Finally, in Section 4 we sketch an extension of
the PSPACE-hardness result to the recon�guration problem for chains moving in 3D.

�Institut f�ur Informatik, Freie Universit�at Berlin, Takustra�e 9, D{14195 Berlin, Germany,

falt,knauer,roteg@inf.fu-berlin.de
ySchool of Computer Science, McGill University, 3480 University Street, Montreal H3A 2A7, Canada,

sue@cs.mcgill.ca, Research supported by NSERC and FCAR.

1

2 Deciding the recon�guration problem in polynomial space

Any embedding of a linkage consisting of n links in d-dimensional space can be described
by giving the dn coordinates of the vertices. Thus, any embedding can be represented as
a point in R

dn . Furthermore, the condition that no two links may intersect can be written
as a formula in the �rst order theory of the reals, i.e., a formula that is built by joining
atomic formulas which involve the variables that represent the coordinates of the vertices,
using addition and multiplication as operators, and � as a predicate, with the usual boolean
connectives. Furthermore, for each link, we can add to this formula the condition that its two
endpoints lie a �xed distance (the length of the link) apart.

The region where this formula is true is a semialgebraic subset F of Rdn of the feasible

embeddings of the linkage. Assume that two linkages S and T are given. Obviously linkage
S can be recon�gured into linkage T precisely when there exists a path within F starting at
S and ending at T .

The application of this technique to motion planning problems was investigated �rst by
Schwartz and Sharir [9] and shown to be decidable using the techniques of Collins [4], which
were improved later by Canny [2]. Afterwards, Renegar [8] showed that problems of this kind
are in PSPACE. So we can conclude

Theorem 1 The recon�guration problem for arbitrary linkages in d-dimensional space, d 2
N, is in PSPACE.

3 The recon�guration problem for planar trees is PSPACE-

hard

We show that it is PSPACE-hard to decide whether a given planar linkage S can be recon-
�gured to a prescribed target con�guration T in the plane. In fact we show that the problem
is already PSPACE-hard when S and T are trees.

Theorem 2 The recon�guration problem for trees in the plane is PSPACE-hard.

Our approach uses ideas from Joseph and Plantinga's PSPACE-hardness proof for the
reachability problem for 2D linkages in the presence of polygonal obstacles [7].

We show directly that any language L 2 PSPACE can be reduced to the planar tree
recon�guration problem in polynomial time. Assume that L is recognized by the deterministic,
polynomially space-bounded single-tape Turing machine M . Let P denote the polynomial
that bounds the space complexity of M . We may assume w.l.o.g. that M has a unique
accepting con�guration in which it has erased the tape and moved the tape head to the �rst
tape cell, and that there is no transition that leaves the accepting state.

We will �rst describe a reduction that transforms an input x to M in time polynomial in
jxj to a pair of forests S and T such that

M accepts x if, and only if, S can be recon�gured to T .

The two forests will actually consist of only two trees each, and we will describe an easy
modi�cation of the reduction that ensures that S and T are trees.

A con�guration of the Turing machineM describes the current state and tape head position
of the machine, along with the content of the work tape. In what follows, we assume that

2

a con�guration of M occurring during a computation with input x can be encoded with n
bits. Since M is polynomially space-bounded, it follows that n = �(P (jxj)). Our goal is to
describe a reduction that is polynomial in n.

The reduction works by �rst building two trees. The �rst one, C, is a chain and is used to
encode the con�gurations of M . The second tree, E, is an almost rigid structure that is built
from elementary gadgets which are designed according to the transitions of M . The chain C
will be con�ned to lie inside E; by moving chain C within the environment E, we will be able
to simulate the computation of M . The forests S and T will be two di�erent placements of C
inside E. The �rst represents the initial con�guration of M on x and the latter, the unique
accepting con�guration of M .

3.1 Encoding a con�guration

The chain C is depicted in Figure 1. It consists of a sequence of n smaller chains C1; : : : ; Cn,
called switches, each of which is made up of 3 segments and used to encode a single bit of
the con�guration of M . The construction below will ensure that the chain is forced to move
inside a narrow environment, so that the switches can only point towards the end of the chain
as is indicated in Figure 1. When Ci is on one side of the chain C, the corresponding bit of
the encoded con�guration is true, and when it is on the other side, it is false.

false side

2i
4i−1

8n

2iCi

true side

Figure 1: The chain encoding the con�guration

The chains Ci are scaled copies of C1, where the size increases with i. They are linked
together (in consecutive order) by long intermediate segments. In addition, a long segment is
placed before the �rst and after the last switch, respectively.

The i-th switch is depicted in the upper left part of Figure 1. The intermediate segments
have length 8n. The total length of the chain is therefore 8n+

Pn
i=1 8n+8i� 1 = 12n2+11n

units. If the chain is con�gured such that it is completely
at with all switches pointing
forward, it has length L = 8n+

Pn
i=1 8n+ 1 = 8n2 + 9n units.

3.2 Simulating the transitions

Ideally, we would like the environment E to be a rigid structure. However, since it is a linkage
and bars can rotate around hinges freely (if unconstrained), we design a nearly rigid structure
instead. The idea is simple and is illustrated in Figure 2: in order to lock a hinge, we surround
it with small chains and attach them to the hinge in such a way that the resulting tree is very
nearly rigid.

The environment tree E simulates a simple polygon that con�nes the ways in which C can
move. It is built by combining several elementary gadgets. For each possible transition t ofM

3

Figure 2: Fixing a hinge

and each possible tape position p, we build an elementary gadget Gt;p. Each gadget consists
of two parts. The �rst part is a tunnel-like structure. It is called the checker Et;p, and it can
be passed by C if the con�guration c that is encoded allows the application of the transition
t at position p of the head. We call this property the precondition of the transition-position
pair (t; p).

The second part of the gadget is a dead-end tunnel-like structure St;p called the setter.
Once C has entered this tunnel, the parts of the chain that correspond to the bits that are
changed by the corresponding transition are provided enough space to move to the other
side of the chain. The gadgets are combined in such a way that the setters provide the only
possibilities for the chain to recon�gure. The chain can be pulled out of the gadget through
the checker again if the postcondition of the pair (t; p) is satis�ed, i.e., if the bits have been
changed in such a way that the con�guration encoded is the one obtained from c by applying
transition t at position p of the tape.

The fact that the checker can be passed by satisfying either the pre- or the postcondition
makes it possible to go through a gadget without changing the con�guration c or even to
simulate a step of M backwards. We will deal with this problem later. We will now describe
the gadgets and their parts in more detail and explain how they are assembled into E.

3.2.1 Checkers

When con�gurations are encoded by boolean variables z1; z2; : : : ; zn, the pre- and postcondi-
tion of a transition-position pair can be written as a conjunction of these variables or their
negations: a tape position can be encoded with O(logP (jxj)) = O(log n) bits, and a state
and tape symbol can be encoded with O(1) bits. So all in all, the pre- and postconditions
of a transition-position pair (t; p) can be written as conjunctions Pt;p = x1 ^ � � � ^ xr and
Qt;p = y1 ^ � � � ^ yr of the variables zi or their negations with r = O(log n).

2-clause checkers Our aim is to build a gadget that checks whether the chain C encodes
a con�guration that ful�lls the pre- or the postcondition of a transition-position pair (t; p).
Note that we can rewrite

Pt;p _Qt;p = (x1 ^ � � � ^ xr) _ (y1 ^ � � � ^ yr)

= (x1 _ y1) ^ � � � ^ (xi _ yj) ^ � � � ^ (xr _ yr)

as a 2-CNF formula with r2 2-clauses.
First we describe a gadget that can check a 2-clause k = x _ y. This is a tunnel-like

structure Ek with the property that C can enter Ek at one end and leave it at the other end

4

if, and only if, it encodes a con�guration that satis�es the clause k. Inside Ek the parts of the
chain C that do not correspond to the literals x and y cannot change their status (i.e., from
true to false or vice versa), and when the chain leaves Ek it encodes the same con�guration
as when it entered. The gadget is depicted in Figure 4. Speaking with reference to Figures 3
and 4, the entrance is below the exit on the extreme left of the diagram. The chain C can
always enter the gadget at the entrance. In order to be able to leave via the exit, it has to
be shortened a little bit, so that the leftmost segment of C can be moved above the small
notch that separates the entrance from the exit. After that, the chain can be pulled out of
the gadget via the exit. For each of the two literals that are to be checked in Ek, there is a
small box on the top (if the literal is positive) or at the bottom (if the literal is negative) of
the tunnel. The position of the structure corresponds to the position of the switch of C that
encodes the variable that is being checked. When the corresponding variable has the right
value, the piece of the chain that encodes the variable can enter the box, which allows the
chain to be shortened. The process is depicted in Figure 3.

1 2 3 4

5 6 7 8

Figure 3: Animation showing how the chain can move around the notch
when the checked variable has the right value

The box that checks for the (positive) literal zi is depicted in Figure 5. From the drawing
it is clear that the chain can be shortened by almost one length unit when the chain can enter
a box.

j−th switch"notch" i−th switch

exit

entrance

Figure 4: Checking the 2-clause (zi _ �zj)

4i

4i−1
1

h

Figure 5: The box checking for zi

The piece of the chain that encodes a variable zi cannot reach the boxes that check literals
corresponding to variables zj for j > i, because the chain gets stuck at the dead-end of the
gadget. On the other hand, the boxes that check literals corresponding to variables zj for
j < i do not provide enough space for the piece of the chain that encodes zi to enter and thus
shorten the chain.

The width of the tunnel below/above the two boxes, called the base tunnel, is h = 1=(2mn),
where m = �(P (jxj)) = �(n) denotes the number of transition-position pairs of M . In

5

particular, the width of the tunnel is smaller than one unit, so the chain cannot recon�gure
inside the tunnel. The length of the tunnel is L, so the chain, if completely
attened, would
exactly �t into the gadget.

Note that the chain can shorten a little bit by zig-zagging inside the base tunnel, cf.,
Figure 6. In that case the height of the tunnel is an upper bound on how much the chain
can be shortened when a single switch folds up, so in total, the chain cannot shorten by more
than n � h = 1=(2m) < 1=2 length units. The length of the notch that separates the entrance
from the exit is 3=4, so the only way for the chain to leave the gadget is to be shortened in a
box.

Figure 6: The chain can shorten in the base tunnel

Combining 2-clause checkers The �nal checker Et;p for the condition Pt;p _Qt;p is made
by combining all the corresponding 2-clause checkers k1; : : : ; kr2 by appropriately attaching
the exit of tunnel ki to the entrance of tunnel ki+1 to simulate the conjunction of the clauses.
The scheme is shown in Figure 7.

entrance

Checker for the 1st 2−clause

Checker for the 2nd 2−clause

...

Checker for the 3rd 2−clause

exit

Checker for the last 2−clause

Figure 7: Scheme showing how the 2-clause checkers are combined

Since a box checking for a literal in a 2-clause checker can have height up to �(n) length
units, the chain C could recon�gure in the tunnels on the left side of Figure 7. This is avoided
by replacing each such tunnel by a staircase-like structure of narrow tunnels, called a wire

gadget, through which C has to move in order to get to the next checker.
Figure 8 shows how two 2-clause checkers are connected. The checkers are depicted on

the right side. The wire gadget is on the left side. It is a tunnel of width twice the length of
the
attened chain. It consists of a sequence of interleaved tunnels of height 2h length units
(the �rst and the last tunnel that connect to the checker gadgets are actually only h length
units high).

6

8n+h

L

2L

Figure 8: Combining two 2-clause checkers with a wire gadget

The distance between the exit of the lower 2-clause checker and the entrance of the upper
one can be up to �(n) length units. Therefore the number of tunnels in the wire gadget is
O(n2m). The number of segments is of the same order.

The �nal gadget Et;p combines r2 2-clause checkers, and thus consists of O(r2n2m) seg-
ments. It is O(n2) length units wide and O(r2n) length units high. Note also that, by
construction, it is a tree.

3.2.2 Setters

For each transition-position pair (t,p) we build a setter St;p that allows the switches that
correspond to the bits of a con�guration c that would be a�ected by t at position p to
recon�gure; note that t changes at most O(r) bits of c. The gadget is depicted in Figure 9.

i−th switch

i−th bay

Figure 9: Setter allowing the i-th bit (among others) to
ip

It is a dead-end tunnel, and for each variable zi that is changed by (t; p) there is a small
bay widening in the tunnel. The position of the bay corresponds to the position of the switch
of C that encodes the variable that is being changed. Apart from the bays, the gadget is so
narrow that the chain cannot recon�gure inside.

If the piece of the chain that encodes the variable zi has reached the corresponding bay,
the switch has enough space to recon�gure. This process is depicted in Figure 10.

The length of the tunnel is L + 8n � 1 length units, the height of the tunnel is h. This
ensures that the piece of the chain that encodes the variable zi cannot reach the bays that
correspond to the variables zj for j > i, because the chain gets stuck in the dead-end of the
gadget. On the other hand, since the size of the switches increases along the chain, the bays

7

that correspond to variables zj for j < i do not provide enough space for the piece of the
chain that encodes zi to recon�gure. The checker St;p consists of O(r) segments.

1 2 3 4

5 6 7 8

Figure 10: Animation showing how a bit of the con�guration can
ip in the
corresponding setter

3.2.3 Assembling the environment

For each transition-position pair (t; p), we �rst combine the checker Et;p and the setter St;p

(with an additional wire-gadget) to build the gadget Gt;p, which is again a tree; it consists of
O(r2n2m) segments, and it is O(n2) length units wide and O(r2n) length units high.

Finally all the gadgets Gt;p are connected to a root tunnel of height mh = 1=(2n) < 1=2
length units and width L length units. The choice of the tunnel width ensures that the chain
cannot recon�gure inside the root tunnel.

#1 #2 #3
root tunnelmh ... #m

L

Figure 11: A schematic drawing of the en-
vironment

Figure 12: Making the environment-
tree rigid

The transition gadgets are lined up at the right end of the tunnel. A long horizontal
corridor of height h length units connects a transition gadget to the root tunnel. The length
of the corridor leading to the i-th gadget is O(in2). After combining the m gadgets, the
environment consists of O(r2n2m2) segments and is O(n2m) length units wide and O(r2n)
length units high.

Note that the environment as depicted in Figure 11 is not a tree. To make it into a tree,
we cut open the root tunnel in the lower left corner and place a rigid lock-gadget there, cf.
Figure 12 and Figure 2.

3.2.4 The forests S and T

Remember that there is a unique accepting con�guration cacc in whichM has erased the tape
and moved the tape head to the �rst tape cell, and that there is no transition that leaves the
accepting state. By cx, we denote the initial con�guration of M on x. By Cx and Cacc, we
denote the con�gurations of the chain C encoding the con�gurations cx and cacc, respectively.

8

The forest S is obtained by placing the chain Cx into the root tunnel. Let us assume
without loss of generality that the precondition of the �rst transition gadget checks for the
accepting con�guration cacc. Since there is no transition that leaves the accepting state, the
associated setter is just a tunnel without any bays. The forest T is obtained by placing the
chain Cacc in that setter.

3.3 Computing the coordinates

The coordinates of the vertices of S and T are computed approximately with a precision of
�(n) bits, so that the encoding length of the coordinates of these vertices is polynomial in
the input size, and S and T can be constructed in polynomial time.

As a consequence, the vertices of the construction described above are rounded to a grid
where the distance between two grid points is �(1=2cn) for some constant c > 0. The grid
size (and thus the roundo� error) is negligible compared to the deviations of the construction,
and so the rounding does not in
uence the functionality of the gadgets.

The issue of rigidity. Since the coordinates of the construction are only computed ap-
proximately, the environment is not completely rigid. The mechanism depicted in Figure 2
will not keep the angle between the two hinges �xed but allow them to rotate slightly by an
angle of O(1=2cn) degrees. If we add up all these angular deviations and multiply them by the
total length of all segments used in the construction we get an upper bound of O(r4n4m3=2cn)
length units on how much the distance between any two vertices of the construction can vary.
Again this is negligible compared to the deviations of the construction, and does not in
uence
the functionality of the gadgets.

3.4 Correctness of the reduction

We need to show that S can be recon�gured to T precisely when M accepts x.
On the one hand, an accepting computation of M on x can be turned into a recon�g-

uration that transforms S to T . To see this, look at the sequence of con�gurations of the
accepting computation of M on x. Each transition c ! c0 in that sequence that transforms
a con�guration c to another con�guration c0 via some transition t (applied at some tape po-
sition p) can be simulated by moving C encoding c into the gadget that corresponds to the
transition-position pair (t; p), changing C in the setter of that gadget to C 0 encoding c0 and
pulling C 0 out of the gadget.

It remains to show that a recon�guration that transforms S to T yields an accepting
computation of M on x. To this end we subdivide the recon�guration into phases that start
when the linkage leaves a transition gadget and that end when it enters the next one, so
within a phase the chain is in the root tunnel. We ignore the steps of the recon�guration
process where the chain is inside a gadget. As was mentioned before, the construction ensures
that the chain C encodes a unique con�guration c during a phase. Thus the recon�guration
gives a sequence c1; : : : ; ck of con�gurations of M on x, where c1 = cx and ck = cacc. The
construction ensures that either ci = ci+1, ci ! ci+1 or ci+1 ! ci for i = 1; : : : ; k � 1. If we
delete successive duplicates ci = ci+1 from that sequence we are left with a sequence

c1 $ c2 $ � � � $ ck�1 $ ck;

9

where $ is either ! or . Now assume that

� � � $ cj�1 cj ! cj+1 $: : :

Since M is a deterministic machine, we can conclude that cj�1 = cj+1, so the backward
transition cj�1 cj can be eliminated from the sequence. If we iterate this process we are
left with a sequence of con�gurations of M forming an accepting computation of M on x.
Note that ck = cacc is never eliminated during that process since, according to our assumption,
there is no transition that leaves the accepting state.

3.5 From forests to trees

In order to prove Theorem 2 we have to modify the reduction slightly. The idea is simple:
we use a chain of very short segments { called the leash { to attach the chain C to the
environment. With reference to Figure 11, one end of the leash is tied to the upper left corner
of the root tunnel, and the other end of the leash is attached to the initial endpoint of chain
C.

The leash itself is assembled from segments small enough not to restrict the possible
motions of the chain inside the environment compared with the unconstrained setting. A
detailed analysis shows that a leash of length O(n7) allows the chain to reach the same
positions as before and that a total number of segments in the leash of O(n10) makes it

exible enough.

4 The recon�guration problem for chains in R
3 is PSPACE-

hard

We describe a modi�cation of the construction from Section 3 that shows that the problem
of deciding whether a given polygonal chain S0 can be recon�gured into a prescribed target
chain T 0 in 3-space is also PSPACE-hard.

Theorem 3 The recon�guration problem for polygonal chains in R
3 is PSPACE-hard.

Let us �rst sketch the idea behind the modi�ed reduction. Assume that we turn the two-
dimensional environment E of the previous section into a solid 3D maze by erecting vertical
solid walls above the edges of E and putting a solid lid on top and a solid bottom underneath.
It is clear from the construction of the previous section that C can be moved from the root
tunnel to the setter of the �rst gadget without self-intersecting and without penetrating the
walls of the maze if, and only if,M accepts x (under the assumption that the distance between
the bottom and the lid is suÆciently small enough). This remains true if the chain is tied
to the maze with a leash as above. Now instead of using solid walls as the building blocks
of the maze we use a �ne mesh woven with a polygonal chain, and we blow up the vertices
of C slightly (using a structure also made from a polygonal chain). The width of the mesh
is chosen small enough and the size of the vertex structures is made so large that the chain
cannot leave the maze.

The basic building block of the construction is a (nearly) rigid tetrahedron � made from
a polygonal chain as follows.

10

Figure 13: A polygonal chain forming a rigid tetrahedron �

We start with four pairs of interlocked polygonal chains whose construction is given in
[6]. These pairs are placed at the four corners of a tetrahedron and connected by more bars
along the edges of the tetrahedron as shown in Figure 13.

First, every vertex of the chain C is replaced by a small copy of � so that it cannot be
moved through a suÆciently �ne-meshed grid.

The maze is constructed as follows: we build the environment tree E as in the previous
section, laid out in the xy-plane. We turn E into a path P by doubling all vertices and edges,
and connecting them according to a walk around E; we choose the lower left corner of the root
tunnel as the start and end point of the walk. Now we place a copy P 0 of P directly above P
(so that P 0 projects vertically to P in the xy-plane), and make them into a single polygonal
chain E0 by connecting two corresponding endpoints. The vertical distance between the two
copies is small enough so that the chain C cannot
ip the bits encoding the con�guration of
M. The
oor, ceiling and walls of the maze are built by wrapping a polygonal chain G around
E0 in a grid-like fashion and connecting it to one end of E0 to form a chain E00. The width
of the grid is chosen so that it does not provide enough room for C to pass through. We
surround every intersection point of the grid with a small copy of the tetrahedral chain � and
make a single chain from these chains (that connects to one end of E00) by connecting them
appropriately. The whole maze is then made almost rigid by adding all the diagonals to the
grid. This again can be done with a polygonal chain that pierces the copies of the tetrahedron.
Finally the chain C is attached to the environment tree as in the previous section to form S0

and T 0

More detailed considerations show that the number of segments used to build the chains
S0 and T 0 is polynomial in n and that it is suÆcient to compute the coordinates of the vertices
of the two paths approximately with a precision of O(n) bits. In particular the two paths can
be constructed in time polynomial in n.

5 Conclusion and open problems

We have shown that the linkage foldability problem is PSPACE-complete for trees moving in
2D and chains moving in 3D. The hardness proofs use rigid or inseparable substructures to
simulate a motion planning problem and mimic the known hardness proofs for these problems.
One interesting question that remains open (see [1]) and leaves room for further work is to
determine the complexity of the problem of deciding whether trees in 2D or chains in 3D can
be straightened out
at (in the case of trees in 2D, made arbitrarily close to
at).

11

References

[1] T. C. Biedl, E. D. Demaine, M. L. Demaine, S. Lazard, A. Lubiw, J. O'Rourke, M. H.
Overmars, S. Robbins, I. Streinu, G. T. Toussaint, and S. Whitesides. Locked and
unlocked polygonal chains in three dimensions. Discrete and Computational Geometry,
26:269{281, October 2001.

[2] J. Canny. The Complexity of Robot Motion Planning. ACM { MIT Press Doctoral
Dissertation Award Series. MIT Press, Cambridge, MA, 1987.

[3] J. Cantarella and H. Johnston. Nontrivial embeddings of polygonal intervals and unknots
in 3-space. Journal of Knot Theory and its Rami�cations, 7:1027{1039, 1998.

[4] G. E. Collins. Quanti�er elimination for real closed �elds by cylindrical algebraic de-
composition. In Proc. 2nd GI Conference on Automata Theory and Formal Languages,
volume 33 of Lecture Notes Comput. Sci., pages 134{183. Springer-Verlag, 1975.

[5] R. Connelly, E. D. Demaine, and G. Rote. Straightening polygonal arcs and convexifying
polygonal cycles. Discrete and Computational Geometry, 2003. To appear.

[6] E. D. Demaine, S. Langerman, J. O'Rourke, and J. Snoeyink. Interlocked open linkages
with few joints. In Proceedings of the eighteenth annual symposium on Computational

geometry, pages 189{198. ACM Press, 2002.

[7] D. A. Joseph and W. H. Plantinga. On the complexity of reachability and motion
planning questions. In Proc. 1st Annu. ACM Sympos. Comput. Geom., pages 62{66,
1985.

[8] J. Renegar. On the computational complexity and geometry of the �rst-order theory of
the reals, I-III. Journal of Symbolic Computation, 13:255{352, 1992.

[9] J. T. Schwartz and M. Sharir. On the \piano movers" problem II: general techniques for
computing topological properties of real algebraic manifolds. Advances in Appl. Math,,
4:298{351, 1983.

[10] I. Streinu. A combinatorial approach to planar non-colliding robot arm motion planning.
In IEEE Symposium on Foundations of Computer Science, pages 443{453, 2000.

12

