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Abstract

Principle component analysis (PCA) is a commonly
used to compute a bounding box of a point set in R

d.
In this paper we give bounds on the approximation
factor of PCA bounding boxes of convex polygons in
R

2 (lower and upper bounds) and convex polyhedra
in R

3 (lower bound).

1 Introduction

Substituting sets of points or complex geometric
shapes with their bounding boxes is motivated with
many applications. For example, in computer graph-
ics, it is used to maintain hierarchical data structures
for fast rendering of a scene or for collision detec-
tion. Additional applications include those in shape
analysis and shape simplification, or in statistics, for
storing and performing range-search queries on a large
database of samples.

Computing a minimum-area bounding box of a set
of n points in R

2 can be done in O(n log n) time,
for example with the rotating caliper algorithm [9].
O’Rourke [6] presented a deterministic algorithm, a
rotating caliper variant in R

3, for computing the exact
minimum-volume bounding box of a set of n points
in R

3. His algorithm requires O(n3) time and O(n)
space. Barequet and Har-Peled [2] have contributed
two (1+ǫ)-approximation algorithms for computing
the minimum-volume bounding box problem for point
sets in R

3, both with nearly linear complexity. The
running times of their algorithms are O(n + 1/ǫ4.5)
and O(n log n + n/ǫ3).

Numerous heuristics have been proposed for com-
puting a box which encloses a given set of points.
The simplest heuristic is naturally to compute the
axis-aligned bounding box of the point set. Two-
dimensional variants of this heuristic include the well-
known R− tree, the packed R− tree [7], the R∗− tree
[8], the R+ − tree [3], etc. A frequently used heuris-
tic for computing a bounding box of a set of points
is based on principal component analysis. The princi-
pal components of the point set define the axes of the
bounding box, and the dimension of the bounding box
along an axis is given by the extreme values of the pro-
jection of the points on the corresponding axis. Two
distinguished applications of this heuristic are OBB-
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tree [4] and BOXTREE [1], hierarchical bounding box
structures, which support efficient collision detection
and ray tracing. Computing a bounding box of a set
of points in R

2 and R
3 by PCA is quite fast, it requires

linear time. To avoid the influence of the distribution
of the point set on the directions of the PCs, a possible
approach is to consider only the boundary of the con-
vex hull of the point set. Thus, the complexity of the
algorithm increases to O(n log n). The popularity of
this heuristic besides its speed, lies in its easy imple-
mentation and in the fact that usually, PCA bounding
boxes are tight-fitting.

We are not aware of any previous published results
about the quality of the bounding boxes obtained by
PCA. Here we give guarantees on the approximation
factor of bounding boxes of convex polygons in R

2

and convex polyhedra in R
3.

The paper is organized as follows. In section 2 we
review the basics of principal component analysis. In
Section 3 we give lower bounds on the approximation
factor of PCA bounding boxes in R

2 and R
3, and in

Section 4 an upper bound in R
2. We conclude with

future work and open problems in Section 5.

2 Principal Component Analysis

The central idea and motivation of PCA [5] (also
known as the Karhunen-Loeve transform, or the
Hotelling transform) is to reduce the dimensional-
ity of a data set by identifying the most signifi-
cant directions (principal components). Let X =
{x1, x2, . . . , xm}, where xi is a d-dimensional vector,
and c = (c1, c2, . . . , cd) be the center of gravity of X .
For 1 ≤ k ≤ d, we use xik to denote the kth coordi-
nate of the vector xi. Given two vectors u and v, we
use 〈u, v〉 to denote their inner product. For any unit
vector v ∈ R

d, the variance of X in direction v is

var(X, v) =
1

m

m
∑

i=1

〈xi − c, v〉2. (1)

The most significant direction corresponds to the unit
vector v1 such that var(X, v1) is maximum. In gen-
eral, after identifying the j most significant directions
Bj = {v1, v2, . . . , vj}, the (j+1)th most significant di-
rection corresponds to the unit vector vj+1 such that
var(X, vj+1) is maximum among all unit vectors per-
pendicular to v1, v2, . . . , vj .
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It can be verified that for any unit vector v ∈ R
d,

var(X, v) = 〈Cv, v〉, (2)

where C is the covariance matrix of X . C is a
symmetric d × d matrix where the ij-th component,
Cij , 1 ≤ i, j ≤ d, is defined as

Cij =
1

m

m
∑

k=1

(xik − ci)(xjk − cj). (3)

The procedure of finding the most significant direc-
tions, in the sense mentioned above, can be formu-
lated as an eigenvalue problem. Namely, it can be
shown that, if λ1 ≥ λ2 ≥ · · · ≥ λd are the eigenval-
ues of C, then the unit eigenvector vj for λj is the
jth most significant direction. It follows that all λjs
are non-negative as λj = var(X, vj). Since the ma-
trix C is symmetric positive definite, its eigenvectors
are orthogonal. The following result summarizes the
above background knowledge on PCA. For any set S
of orthogonal unit vectors in R

d, we use var(X, S) to
denote

∑

v∈S var(X, v).

Lemma 1 For 1 ≤ j ≤ d, let λj be the j-th largest
eigenvalue of C and let vj denote the unit eigen-
vector for λj . Let Bj = {v1, v2, . . . , vj}, sp(Bj) be
the linear subspace spanned by Bj , and sp(Bj)

⊥ be
the orthogonal complement of sp(Bj). Then λ1 =
max{var(X, v) : unit vector v in R

d} and for any
2 ≤ j ≤ d,

i) λj = max{var(X, v) : unit vector v in sp(Bj−1)
⊥}.

ii) λj = min{var(X, v) : unit vector v in sp(Bj)}.

iii) var(X, Bj) ≥ var(X, S) for any set S of j orthog-
onal unit vectors.

Since the covariance matrix depends on the distribu-
tion of the points, there is not necessarily a strong cor-
relation between the eigenvectors and the directions
of the axes of the minimal bounding box. Consider
for example the situation when a significant num-
ber of points is located in a small part of the space,
see figure 1. Moreover, by adding points inside or
on the boundary of the convex hull of the point set,
the PCA bounding box can arbitrarily vary between
the minimum-volume bounding box and maximum-
volume bounding box of the convex hull of the point
set. To overcome this problem, one possible approach
is to consider only the points on the boundary of the
convex hull of the point set when the covariance ma-
trix is computed. This is the approach we take in
the rest of the paper. This lead us to so-called con-
tinuous PCA. In that case, X is a continuous set of
d-dimensional vectors and it can be verified that the
derivations and the lemma above also hold.

1stPC

2ndPC

1stPC

2ndPC

Figure 1: Four points and its PCA bounding-box
(left). Dense collection of additional points signifi-
cantly affect the orientation of the PCA bounding-box
(right).

3 Lower Bounds

The following connection between hyperplane reflec-
tive symmetry and principal components will help us
to derive the lower bounds of the approximation fac-
tor of the PCA bounding boxes.

Theorem 2 Let P be a d-dimensional point set sym-
metric with respect to a hyperplane H. Then, a prin-
cipal component of P is orthogonal to H.

Proof. Without loss of generality, we can assume
that the hyperplane of symmetry is spanned by the
last n− 1 standard base vectors of the d-dimensional
space and the center of gravity of the point set coin-
cides with the origin of the d-dimensional space, i.e.,
c = (0, 0, . . . , 0). Then, the components C1j and Cj1,
for 2 ≤ j ≤ d, are 0 and the covariance matrix has
the form:

C =











C11 0 . . . 0
0 C22 . . . C2d

...
...

. . .
...

0 Cd2 . . . Cdd











(4)

Its characteristic polynomial has the form:

det(C − λ I) = (C11 − λ)f(λ) (5)

where f(λ) is a polynomial of degree d − 1, with co-
efficients determined by the elements of the (d− 1)×
(d− 1) submatrix of C. From this it follows that C11

is a solution of the characteristic equation, i.e., it is an
eigenvalue of C and the vector (1, 0, ...,0) is its cor-
responding eigenvector (principal component), which
is orthogonal to the assumed hyperplane of symme-
try. �

3.1 R
2

We obtain a lower bound in R
2 from a rhomb. Let

its side length be a. Since the rhomb is symmetric,
its PCs coincide with its diagonals. On the left side
in figure 2 its optimal-area bounding boxes, for 2 dif-
ferent angles, are shown, and on the right side its
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corresponding PCA bounding boxes. As the rhomb’s
angles approach 90◦, its optimal-area bounding box
approaches a square with side length a, and the PCA
bounding box a square with side length

√
2a. So, the

ratio between the area of the PCA bounding box and
the area of the optimal-area bounding box in the limit
goes to 2.

aa

α

aa

α → 0 α → 0

α

a a

a a

Figure 2: An example which gives us the lower bound
of the area of the PCA bounding box of an arbitrary
convex polygon in R

2.

Proposition 3 In general, the ratio between the area
of the PCA bounding box and optimal-area bounding
box of a convex polygon cannot be smaller than 2.

3.2 R
3

We obtain a lower bound in R
3 from a square dipyra-

mid, having a rhomb with side length
√

2 as a base.

Its other side lengths are
√

3
2 . Similarly as in R

2, we
consider the case when its base, the rhomb, in limit
approaches the square. Then the ratio of the volume
of the bounding box on the left side in figure 3, and
the volume of its PCA bounding box, on the right in
figure 3, goes to 4.

1

1

√

2

2

2

√

2

Figure 3: An example which gives the lower bound of
the volume of the PCA bounding box of an arbitrary
convex polygon in R

3.

Proposition 4 In general, the ratio between the vol-
ume of the PCA bounding box and optimal-volume

bounding box of a convex polyhedron cannot be
smaller than 4.

4 Upper Bound in R
2

Let P be a set of points in R
2, and P the boundary of

its convex hull. P , its PCA bounding box and the line
lpca, which coincides with the 1st PC of P , are given
in the left part of figure 4. The optimal bounding
box and the line l 1

2

, going through the middle of its
smaller side, parallel with its longer side, are given in
the right part of figure 4.

The sides of any bounding box of P , BB(P ) (let
us denote them with a and b, s.t. a ≥ b) cannot be
larger than the diameter of P . From the other side,
it is true that diam(P ) ≤ diam(BB(P )) ≤

√
2a. So

we have the following relation

apca ≤ diam(P ) ≤
√

2aopt. (6)

We denote with d2(P , l) the integral of the squared

apca

bpca

lpca

P

l1

2

bopt

aopt

P

b′

Figure 4: PCA bounding-box and the optimal
bounding-box of the polygon P .

distances of the points of P to the arbitrary line l, i.e.
d2(P , l) =

∫

x∈P d2(x, l)ds. From continuous version of
lemma 1, part ii), follows that lpca is the best fitting
line in the sense that it minimize the sum of squared
distances, and therefore

d2(P , lpca) ≤ d2(P , l 1

2

). (7)

We denote with BBOPT the boundary of the optimal
bounding box of the P . It is true that

d2(P , l 1

2

) ≤ d2(BBOPT , l 1

2

)

=
bopt

2aopt

2 +
bopt

3

6 .
(8)

Due to space limitation, we leave the proof of (8) to a
full paper. Now we look at P and its PCA bounding

Tupp

Tlow

U1 L1

apca

bpca

lpca

P
b
′

L2U2

U3

L3

a1
a2

b1 b2

Figure 5: Lower bound for d2(P , lpca).

box (figure 5). lpca divides P into an upper and a
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lower part, Pupp and Plow. Let us denote with lupp

the orthogonal projection of Pupp onto lpca, with U1

and U2 as its extreme points, and with llow the or-
thogonal projection of Plow onto lpca, with L1 and L2

as its extreme points. Since P is convex, the following
relations hold:

|lupp| ≥
b′

bpca

apca, and |llow| ≥
bpca − b′

bpca

apca. (9)

We inscribe in Pupp a triangle Tupp(△U1U2U3), and
in Plow a triangle Tlow(△L1L2L3). It then holds that

d2(P , lpca) = d2(Pupp

⋃Plow, lpca) ≥
d2(Tupp

⋃

Tlow, lpca) = d2(Tupp, lpca) + d2(Tlow, lpca).
(10)

Due to space limitation, we leave also the proof of
(10) to a full paper. The value

d2(Tupp, lpca) =
b′2

3
(
√

a2
1 + b′2 +

√

a2
2 + b′2)

is minimal when a1 = a2 =
|lupp|

2 . So with (9) we get

d2(Tupp, lpca) ≥ b′3

3bpca

(
√

a2
pca + 4b2

pca).

Analogously, we have for the lower part:

d2(Tlow , lpca) ≥
(bpca − b′)3

3bpca

(
√

a2
pca + 4b2

pca).

The sum d2(Tupp, lpca)+d2(Tlow, lpca) is minimal when

b′ =
bpca

2 . This, together with (10), gives:

d2(P , lpca) ≥
b2
pca

12

√

a2
pca + 4b2

pca. (11)

Combining (7), (8) and (11) we have:

1

2
aoptb

2
opt +

1

6
b3
opt ≥

b2
pca

12

√

a2
pca + 4b2

pca. (12)

Let apca = αaopt and bpca = βbopt. Replacing b2
pca

with β2b2
opt in (12), we obtain:

6aopt + 2bopt ≥ β2
√

a2
pca + 4b2

pca ≥ β2apca.

Replacing further apca with αaopt, we obtain:

6aopt + 2bopt ≥ β2αaopt =
β2α

8
(6aopt + 2aopt).

Since aopt ≥ bopt, we have

6aopt + 2bopt ≥
β2α

8
(6aopt + 2bopt),

and from this

β ≤
√

8

α
. (13)

Finally, from (6) and (13) we obtain:

area(BBPCA(P))
area(BBOP T (P)) =

apcabpca

aoptbopt
= αβ ≤

√

8
√

α

≤
√

8
√

2 ≈ 3.3635856.

We summarize this result in the following theorem:

Theorem 5 Let P be the boundary of the convex
hull of the point set P ⊂ R

2. The ratio between the
area of the PCA bounding box of P and the area of
its optimal bounding box is bounded from above by
3.3636.

5 Future Work and Open Problems

Improving the upper bound in R
2, as well as obtain-

ing an upper bound in R
3 are our current interests. A

variant of the PCA bounding box problem, where in-
stead of considering only the points on the boundary
of the convex hull all points from the convex hull are
taken into account, is also of interest. A very demand-
ing open problem is to get an approximation factor of
PCA bounding boxes in arbitrary dimension.
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