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Abstract. Nonograms are a popular type of puzzle, where an arrange-
ment of curves in the plane (in the classic version, a rectangular grid)
is given together with a series of hints, indicating which cells of the
subdivision are to be colored. The colored cells yield an image. Curved
nonograms use a curve arrangement rather than a grid, leading to a
closer approximation of an arbitrary solution image. While there is a
considerable amount of previous work on the natural question of the
hardness of solving a classic nonogram, research on curved nonograms
has so far focused on their creation, which is already highly non-trivial.
We address this gap by providing algorithmic and hardness results for
curved nonograms of varying complexity.

Keywords: Nonogram · Arrangement · Puzzle · Dynamic Programming
· Complexity

1 Introduction

Nonograms, also known as Japanese puzzles, paint-by-numbers, or griddlers, are
a popular puzzle type where one is given an empty grid in which some grid cells
are to be colored (filled); the remaining cells remain empty (unfilled). For every
row and column, there is a clue sequence (sometimes called description) that
constrains the set of colored grid cells in this row or column. The clue sequence
specifies how many consecutive blocks of cells should be filled and how large
these blocks are. Two filled blocks need to be separated by one or more unfilled
cells. A solved nonogram typically results in a picture (see Figure 1).

Nonograms provide an accessible and contained environment for logical de-
duction. They have been used successfully to teach logical thinking [10,32], and
have been shown to stimulate brain activity to prevent dementia [16].

Batenburg et al. [2] introduce the notion of a simple nonogram, which can be
solved efficiently. A nonogram is simple when it can be solved by only looking
at a single row or column at a time. More precisely, they consider a nonogram
simple if it can be solved by repeatedly focusing a row or column, considering
all possible solutions for it that are consistent with the fixed cells determined
so far, and fixing all cells which have the same value in every possible solution.
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Fig. 1: (a) A classic nonogram puzzle. (b) An inference based on the highlighted
clue. (c) The solved nonogram.

This procedure is called settling a row/column (or simply Settle) and will
be considered in more detail in the preliminaries (Section 2). Note that since
repeated application of settling a row or column is a deterministic process, the
existence of multiple solutions for a nonogram immediately implies that it cannot
be simple; however, the converse is not true, i.e., there are uniquely solvable
nonograms that are not simple. In fact, Batenburg and Kosters introduce a
whole hierarchy of complexity for nonograms, depending on the number of rows
and columns which have to be considered simultaneously (by a specific solver)
in order to definitively identify a cell whose status can be settled; puzzles with
unique solutions can be found at all levels of this hierarchy.

Nonogram puzzles that appear in newspapers or similar platforms tend to
be of this simple type [3], which contradicts to some extent the popular opinion
that all interesting games and puzzles are NP-hard [11,29].

1.1 Solving Nonograms

A large amount of research on solving nonograms appears in software repos-
itories, discussion forums, or on personal web pages, as collected in an on-
line survey [31] of Jan Wolter. Besides, there has also been substantial aca-
demic interest in nonograms. The natural question is to come up with an algo-
rithm to decide whether a given nonogram can be solved. A number of solvers
using various strategies have been presented in the literature. These include
heuristic approaches [21], DFS-based solving methods [15,33,23], genetic algo-
rithms [24,6,22,1,9], line-by-line solving combined with probing (using low prob-
ability guesses to quickly achieve contradictions) [5], SAT solvers [20], integer lin-
ear programming [17], and a combination of heuristics and neural networks [8].
The performance of two general solving strategies (DFS and so called soft com-
puting) has been experimentally compared on a small set of four nonogram
instances [30].

The computational problem of deciding if a nonogram has a solution is NP-
complete, as was first shown by Uada and Nagao [25]; see also [14,28]. This
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Fig. 2: Three types of curved nonograms of increasing complexity [26], shown
with solutions. (a) Basic puzzles have no popular faces. (b) Advanced puzzles
may have popular faces, but no self-intersections. (c) Expert puzzles have self-
intersecting curves.

of course implies that computing this solution is also at least NP-hard. Uada
and Nagao additionally prove that, given a nonogram and a solution, deciding
if this solution is unique is also NP-hard, via a parsimonious reduction from
three-dimensional matching.

In contrast, Batenburg and Kosters [3] gave a polynomial-time algorithm
that, given a sequence of partially settled cells and a corresponding clue sequence,
finds a cell that is either filled or unfilled in every possible solution, if such a
cell exists. Their procedure can be used to either solve a given nonogram in
polynomial time or decide that it is not simple.

1.2 Curved Nonograms

Van de Kerkhof et al. [26] introduced curved nonograms, a variant in which
the puzzle is no longer played on a grid but on any arrangement of curves (an
example is shown in Figure 2); see also [27]. For distinction, we will refer to
the nonograms played on a grid as classic nonograms. In curved nonograms, the
numbers of filled faces of the arrangement in the sequence of faces that appear
along a side of a curve, are specified by a clue sequence (one on each side).
Curved nonograms allow cells with more organic shapes than classic nonograms,
and thus lead to clearer or more specific pictures. Van de Kerkhof et al. focus on
heuristics to automatically generate such puzzles from a desired solution picture
by extending curve segments to a complete curve arrangement.

Additionally, they define three different levels of complexity of curved nono-
grams — not in terms of how hard it is to solve a puzzle, but how hard it is
to understand the rules (see Figure 2). It turns out that these difficulty levels
nicely correspond with properties of the underlying curve arrangement as ob-
served by De Nooijer et al. [13] (see [12] for the conference version). Specifically,
basic curved nonograms are exactly the puzzles in which each clue sequence
corresponds to a sequence of distinct faces. The analogy with clue sequences in
classic nonograms is straightforward. In an advanced curved nonogram, a face
may be incident to the same curve multiple times, but only on the same side,
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and therefore a face can appear more than once in a sequence. If such a face
is filled it is also counted multiple times when checking consistency with a clue
sequence; in particular, it is no longer true that the sum of the numbers in a
clue sequence is equal to the total number of filled faces incident to the curve.
Expert curved nonograms may have clue sequences in which a single face is in-
cident to the same curve on both sides (which corresponds to the presence of a
self-intersecting curve in the arrangement).

Research on curved nonograms has so far focused on their production. Klute,
Löffler and Nöllenburg [18] investigate the geometric problem of adding clue
sequences to the ends of curves and provide polynomial-time algorithms for
restricted cases and hardness results for the general problem. De Noojier et
al. [13] aim to eliminate all faces with multiple incidences to the same curve
(so-called popular faces) from a nonogram by adding one additional curve to the
arrangement. The same goal was recently pursued by reconfiguring the curve
arrangement through local crossing resolution [7].

1.3 Contribution

In this paper, we investigate for the first time the computational problem of solv-
ing curved nonograms. In particular, we investigate how the concept of simple
nonograms translates to curved nonograms. After some preliminaries in Sec-
tion 2, we present in Section 3 a dynamic program which leverages the nested
structure of popular faces in advanced nonograms to check for a given sequence
of faces along a curve, some of which are already filled or unfilled, if it can still
be extended to a solution that is consistent with a given clue sequence. This
implies a procedure solving simple advanced curved nonograms in O(l7) time,
where l is the length of the longest clue sequence. This runtime can be improved
to O(l6) by using an additional top-down phase of the dynamic program. In the
case the nonogram is basic, the dynamic program coincides with a special case
of the one presented by Batenburg and Kosters [3], showing that simple basic
curved nonograms can be solved in the same way as simple classic nonograms.
Then Section 4 shows that self-intersecting curves likely make curved nonograms
significantly harder to solve, since even simple curved expert nonograms are at
least as hard to solve as classic nonograms with a guaranteed unique solution.
We close with some further research questions in Section 5.

This work will be presented at the 36th International Workshop on Combi-
natorial Algorithms (IWOCA 2025), in Bozeman, Montana, in July 2025. The
version in the proceedings of this workshop [19] uses a different terminology.

2 Preliminaries

In this section we introduce the basic concepts and notation as well as the basic
problems, which naturally arise in the context of solving nonograms.
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2.1 Nonograms

Let A be a curve arrangement consisting of h curves A1, . . . , Ah all contained
in and starting and ending at a rectangle called the frame. Every piece of a
curve A between two consecutive intersections (or the start or end of A) is a
curve segment of A. A face of A (also called cell) is popular if two or more curve
segments incident to the face belong to the same curve. Every cell initially has
the value unsettled which we denote with ?. If a value is assigned one of the two
values empty (0) or filled (1) we say that the cell is settled. Here we follow the
notation of Batenburg and Kosters [3].

We choose an arbitrarily orientation for each curve; accordingly, a face f
incident to a curve segment s is said to be on the left or on the right side of s.
Let s1, s2, . . . , sk be the curve segments of a curve ℓ in A. We call the list of
faces f1, . . . , fk, s.t. fi is on the right (left) of si the right (left) sequence Sr

ℓ (Sl
ℓ)

of ℓ. Popular faces can appear multiple times in the same sequence, and if ℓ is a
self-intersecting curve, faces can appear in both sequences.

A progress descriptor for a sequence S is a string ΨS = ψ1ψ2 . . . ψk ∈
{0, 1, ?}k, and it encodes the current state of knowledge about the faces in the
sequence. If ΨS contains no ?, then it is a fix. If the sequence in question is clear
from context, we may omit the superscript. If for two progress descriptors Ψ and
Ψ ′ of the same sequence S it holds that either ψi = ? or ψi = ψ′

i for all i, we say
that Ψ ′ refines Ψ .

A clue sequence D = d1, . . . , dt is a list of t numbers. One such number di will
be called a clue of D. A fix Ψ of S is consistent with D if and only if Ψ contains
exactly t maximal blocks of consecutive 1s and the i-th block consists of exactly
di 1s. Since these blocks are maximal, consecutive blocks are separated by one
or more 0s. A progress descriptor Ψ of S is consistent with D if there exists a fix
that is consistent with D and refines Ψ .

In a curved nonogram, a face can appear more than once along a curve. This
leads to additional constraints in the form of equations ψi = ψj . We encode
this by a sequence of letters f1 . . . fl, like abcdefdbgbh, where repeated letters
indicate positions that belong to the same face. For example, the 2nd, 8th, and
10th edges lie on a common face, marked b. We call this the face pattern of the
sequence.

We will only consider progress descriptors Ψ that fulfill all equality con-
straints.

A curved nonogram C consists of a curve arrangement together with a set of
clue sequences and progress descriptors (one for each sequence in C respectively).
If all progress descriptors are fixes, we say the nonogram is solved and conversely
solving a given nonogram means obtaining a fix for every progress descriptor that
is consistent with its clue sequence. For any i ≤ j we write i . . j for the list of
numbers between i and j (including both).

2.2 Settling and Nonogram Complexity

Given a progress descriptor Ψ , which is consistent with a clue sequence D, ob-
taining a progress descriptor Ψ ′ that refines Ψ and is still consistent with D
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Fig. 3: An example of the Settle function. Filled cells are shown with a filled
square, empty cells with a dot; all other cells are unsettled. For example, in
a row with progress descriptor Ψ and clue sequence D = 5-1-2 (shown in the
top left), there are five possible fixes of Ψ consistent with D, as shown in the
top right. Cells already settled in Ψ are colored black, others gray. The blocks
corresponding to the three parts of D are indicated in corresponding colors. One
cell is filled and two are empty for all five fixes. This is indicated with yellow
entries.

is called making progress on Ψ . The procedure Settle(Ψ,D) takes a progress
descriptor and a clue sequence and (if possible) returns a progress descriptor Ψ ′,
which refines Ψ and is consistent with D. It does so by settling any unsettled
cells to be filled (or empty) if they have the same value in all possible fixes which
refine Ψ and are consistent with D. This procedure is illustrated in Figure 3.

Note that there can be exponentially many such fixes. However, while Settle
is defined via equality of the value of a cell over all possible fixes, an implemen-
tation of Settle does not necessarily need to enumerate all possible fixes to
find such a cell. For example in a classic nonogram, the dynamic program of
Batenburg and Kosters [3] finds such a cell in polynomial time or decides that
no such cell exists. Applying Settle to all rows and columns of a nonogram
until no progress can be made is called a FullSettle.

If every progress descriptor of a nonogram has a fix consistent with its clue
sequence it is solvable and correspondingly we will call a nonogram in which
every progress descriptor is a fix the solution of the nonogram. If a nonogram is
solvable via a FullSettle it is called simple. We remark that this definition is in
line with [3], whose algorithm can solve simple classic nonograms in polynomial
time.

3 Solving Simple Advanced Curved Nonograms

In this section we present a dynamic program which, given a sequence S together
with a progress descriptor Ψ and a clue sequence D decides in polynomial time
if there exists a fix Ψ ′ consistent with D that refines Ψ . This is analogous to the
existing dynamic program by Batenburg and Kosters for classic nonogram [3].
Readers familiar with their work will easily spot the parallels; however, the pres-
ence of popular faces requires the maintenance of an additional data structure.
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The application of our algorithm to simple basic curved nonograms (i.e., those
without popular faces) is discussed at the end of the section.

The property of advanced nonograms that is crucial for us is that the equality
constraints are properly nested:

Observation 1 Let i, j, k and l be four indices of letters in the face pattern of
a sequence S belonging to a curve A in an advanced curved nonogram, such that
fi = fj ̸= fk = fl. W.l.o.g. assume min(i, j, k, l) = i and k < l. Then either (i)
j < k ∧ j < l or (ii) j > k ∧ j > l.

Proof. We only have to exclude the order i < k < j < l. Assume w.l.o.g. that
we are considering the left side of A. Let a and b be points on the i-th and j-th
segment of A, respectively. Since these segments lie on a common face, we can
connect a and b by a curve B in that face, on the left side of A. Let A[a, b] be the
subcurve of A between a and b. Then C = A[a, b] ∪B is a Jordan curve (simple
and closed). If i < k < j < l, C encloses the face on the left side of the k-th
segment, but it does not enclose the face on the left side of the l-th segment.
Hence, these faces cannot be identical, contrary to our assumption fk = fl, and
therefore, the order i < k < j < l is impossible. ⊓⊔

We mention that the nesting property of Observation 1 is the only property
on which our algorithm relies. If a curve A has self-intersections but there are
no faces that lead to a violation of the nesting property, our algorithm can be
applied.

Theorem 1. Consistency of a sequence S of length l with a clue sequence D
with

∑
d∈D d = k can be decided in time O(k3l) = O(l4).

Proof. In a bottom-up phase of the dynamic program we try to match larger and
larger intervals of the progress descriptor with larger and larger parts of the clue
sequence. In a subsequent top-down phase we will discover which assignments
are consistent with an overall solution.

We translate D = d1d2 . . . dt to a clue bitstring = a1a2 . . . ak of 0s and 1, by
creating blocks of di 1s for every 1 ≤ i ≤ t and concatenating them with one 0
between consecutive blocks. Additionally we artificially pad the list by an extra
0 at the beginning and at the end. This assumption implies that every row and
column starts and ends with an empty cell. Every nonogram can obviously be
padded with empty rows and columns to achieve this. For example, D = 5-1-2
is translated to D01 = 011111010110, with the understanding that a 0 has the
potential to stretch to an arbitrary larger number of unfilled cells. A progress
descriptor is consistent with this clue bitstring if one can create two equal strings
by replacing every ? in the progress descriptor with either 0 or 1 and replacing
any 0 in the clue sequence with one or more 0. The following example shows this
for D = 5-1-2.

clue bitstring D01 = a1a2 . . . ai . . . ak = 011111010110

progress descriptor Ψ = ψ1ψ2ψ3 . . . ψj . . . ψl−1ψl = 0???1???10??1??0?0
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Fig. 4: (a) A schematic representation of a curve arrangement indicating the face
incidences for top side of the horizontal line and (b) its hierarchical decomposi-
tion into subintervals. For clarity, multiple occurrences of the same face (such as
b1, b2, b3) are distinguished by indices. A white node denotes a decomposition of
a complete group into brackets; a black node denotes decomposition of a bracket
into complete groups. Black and white nodes occur in alternate levels of the tree.

In the finished nonogram, all ?’s should be turned into 0’s or 1’s, subject
to the requirement that the resulting sequence fits the progress descriptor. We
want to know whether a particular ? can be turned only into 0 or only into 1
in all possible solutions, because then this ? can be fixed to this value. In other
words we aim to implement the Settle procedure.

Recall that the finished solution must satisfy certain equations ψi = ψj when
two edges are incident to a common face, which we have encoded by a face
pattern f1 . . . fl, like abcdefdbgbh, where repeated letters indicate that edges
belong to the same face. According to Observation 1, these repeated occurrences
are nested : The pattern . . . x . . . y . . . x . . . y . . . cannot occur in the sequence.

We solve the following subproblems Match i. .i′

j. .j′ , for every 1 ≤ i ≤ i′ ≤ k and
for a certain set J of 2l − 1 selected intervals j . . j′ with 1 ≤ j ≤ j′ ≤ l:

Can the ?’s in ψj . . ψj′ be turned into 0’s or 1’s such that the resulting
string is consistent with the clue bitstring ai . . ai′?

The subproblem Match i. .i′

j. .j′ results in a Boolean value true or false. Accordingly,
we will say that a subproblem is consistent or inconsistent. See Figure 6 for an
example.

The set J of intervals j . . j′ of the curve that we consider is defined as
follows.

Suppose that the cells j1 < j2 < · · · < jm are the cells belonging to some
common face: fj1 = fj2 = · · · = fjm . We call the interval j1 . . jm a complete
group, and we call the intervals j1 . . jp, for p = 1, . . . ,m the progressive sleuths.
The first progressive sleuth is the singleton interval j1 . . j1. If a face occurs only
once along the curve, at position j, then the singleton interval j . . j forms a
complete group.
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Fig. 5: The binary composition tree T corresponding to the tree of Figure 4b, in
which nodes of higher degree have been replaced by sequences of binary nodes.
This is a binary tree whose leaves are the singleton intervals.

An interval jp+1 . . jp+1 between two successive occurrences of the same face,
including the second occurrence but not the first, is called a bracket. A bracket
consists of a nonempty sequence of complete groups, followed by an occurrence
of the face of the enclosing group at position jp+1. We consider also the whole
interval 1 . . l as a bracket although it lacks the final element of the enclosing
group (see Figure 4 for an illustration).

We will build up the whole curve 1 . . l, starting from singleton intervals j . . j.
These can be seen as the leaves of a binary composition tree T (see Figure 5)
This binary tree represents how we will combine certain pairs of consecutive
intervals j . . j′ and j′ + 1 . . j′′ into larger intervals j . . j′′. This is done as
follows.

Every complete group is built up from left to right by successive addition of
brackets:

[j1 . . jp] ∪ [jp + 1 . . jp+1] = [j1 . . jp+1]

Similarly, every bracket is built up from left to right by successive addition of
the complete groups that make it up (plus the final cell of the enclosing group).
In total, a set J of 2l − 1 = O(l) intervals j . . j′′ are considered. Each such
interval with j < j′′ – an internal node in T – is built in a unique way from two
disjoint subintervals in J :

[j . . j′′] = [j . . j′] ∪ [j′ + 1 . . j′′] (1)

See Figure 5 for an example.
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Fig. 6: Illustration of a subproblem Match i. .i′

j. .j′ = Match 2. .10
3. .13. A possible corre-

spondence between a2 . . . a10 and ψ3 . . . ψ13 is indicated, showing that this sub-
problem is consistent.

The singleton subproblems of the form Matchj. .j are trivial to solve: For a
clue bitstring of length 1, we have Match i. .i

j. .j ⇐⇒ ψj = ? ∨ ψj = ai, while
Match i. .i′

j. .j is trivially inconsistent for i < i′, since a single cell can never be
consistent with a clue bitstring of length larger than 1.

Following the decomposition (1), each subproblem of the type Matchj. .j′′
with j′′ > j is associated to two families of smaller subproblems Matchj. .j′ and
Matchj′+1. .j′′ , for some fixed j′. We solve these subproblems by the following
recursion:

Match i. .i′′

j. .j′′ ⇐⇒
∨

i′:i≤i′≤i′′−1

(
Match i. .i′

j. .j′ ∧ Match i′+1. .i′′

j′+1. .j′′ ∧ ai′ = ai′′
)

∨
∨

i′:i≤i′≤i′′

(
ai′ = 0 ∧ Match i. .i′

j. .j′ ∧ Match i′. .i′′

j′+1. .j′′ ∧ ai′ = ai′′
)
,

(2)

where the final condition ai′ = ai′′ is present only in case of composing a pro-
gressive sleuth with a bracket. This extra condition ensures that occurrences of
the same face have the same color 0 or 1; when combining two complete groups,
there are no shared faces that need to be considered, and the condition ai′ = ai′′
is omitted.

The first clause considers all possibilities of splitting the interval i . . i′′ into
two disjoint parts i . . i′ and i′ + 1 . . i′′. The second clause considers in addition
the possibility that the two parts of the curve can use overlapping parts of the
clue bitstring if the overlap is a 0.

This completes the description of the bottom-up phase. The target problem
Match 1. .k

1. .l describes the original problem: consistency of the whole progress de-
scriptor Ψ with the complete clue bitstring D01.

In total, there are O(k2l) subproblems, and each subproblem can be evaluated
by trying O(k) choices for i′, for a total running time of O(k3l). ⊓⊔
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3.1 Making progress

Having solved the consistency problem, we immediately get a polynomial-time
solution algorithm for making progress.

Proposition 1. Given a single sequence S of length l and a clue sequence D
with

∑
d∈D d = k we can make progress or decide that no progress can be made

in time O(k3l2) = O(l5).

Proof. We tentatively set a ? letter to 0 or 1 and check consistency again. If one
of the options is inconsistent, then we know that ? must be replaced by the other
letter, thus making progress. This is repeated most l times, for each occurrence
of ?. ⊓⊔

However, we can solve this more efficiently and avoid the additional factor l
by a top-down phase, in which we mark certain subproblems as extensible.

Theorem 2. Given a single sequence S of length l and a clue sequence D that
describes k ones we can make progress or decide that no progress can be made
in time O(k3l) = O(l4).

Proof. We call a subproblem Match i. .i′

j. .j′ extensible if it is consistent and in ad-
dition, some solution that fits the clue bitstring ai . . ai′ can be extended to a
complete solution by setting the remaining ?’s outside the substring bj . . bj′

appropriately.
We begin by marking the target problem Match 1. .k

1. .l , as extensible, assuming
it is consistent. Then we use the recursion (2) in reverse. If Match i. .i′′

j. .j′′ is ex-
tensible, then, if any of the parenthesized clauses on the right-hand side of (2)
holds for some i′, we mark the two corresponding subproblems Match i. .i′

j. .j′ and

Match i′(+1). .i′′

j′+1. .j′′ as extensible.
Finally we look at each unsettled position j with bj = ?, and we check

for which clue bitstring positions i the problem Match i. .i
j. .j is extensible. If all

extensible problems among these have ai = 0, we can conclude that bj must
be set to 0, and settle an unsettled color in this way. Similarly, if all extensible
problems have ai = 1, we can fix the unsettled value bj to 1 at this position.

⊓⊔

Theorem 2 can be used to obtain the following corollary by the simple fact
that there are only a linear number of rows and columns and cells in the nono-
gram. After applying the dynamic program once to every row and column, we
must have made progress on at least one sequence, so there is at most an over-
head of O(l2).

Corollary 1. Simple advanced curved nonograms can be solved in time O(l6).
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Fig. 7: (a) A classic nonogram with w = 5 columns and h = 5 rows. (b) In the
reduction we pad a given nonogram to guarantee it has one more column than
rows. The result here is a padded nonogram with w = 6 columns and h = 5
rows. The hints are annotated with the order in which they are collected into
(c) a single self-intersecting vital curve that contains all grid lines of the classic
nonogram and all clue sequences in one vital clue sequence.

3.2 Back to Basic Nonograms

When our algorithm is applied to a curve in a basic nonogram, there are no
groups, and the whole sequence is just one bracket whose sequence of “complete
groups” consists of singletons. The decomposition tree degenerates, and the al-
gorithm simply grows the intervals 1 . . i and 1 . . j by adding one symbol at
at time. Here our dynamic program reduces to the seminal algorithm of Baten-
burg and Kosters [3] (which is actually more general because it can deal with a
specified range of lengths for each 1-block instead of a fixed length).

4 Solving Simple Expert Curved Nonograms

In this section we show that solving a simple curved expert nonogram is at
least as hard as finding the solution to a not necessarily simple classic nonogram
provided that the classic nonogram has a unique solution.

Unique Solution Nonogram (1-SN). Given a classic nonogram N with the
guarantee it has a unique solution, find the solution for the nonogram N .

Note that testing if a classic nonogram has a solution is NP-hard in general,
as shown by Ueda and Nagao [25]. This of course implies that finding such a
solution is also NP-hard. Ueda and Nagao [25] also show that testing if a given
nonogram has more than one solution, even if we are given a solution, is NP-hard.

However this does not directly imply that finding a solution for a classic
nonogram is still NP-hard if we are guaranteed that it has a unique solution.
By providing a reduction from 1-SN to Simple Curved Expert Nonogram
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we still show that finding the solution to a simple curved expert nonogram is at
least as hard as solving 1-SN.

4.1 High Level Overview

The high-level overview of our reduction is as follows. We first describe the
construction of a curved expert nonogram C based on a given not-necessarily-
simple classic nonogram N . If we are guaranteed that N has a unique solution,
then C will equally have a unique solution, and additionally we will show that
C is simple. Next we argue that the sequences along all but one curve can be
trivially filled (using the Settle procedure) by simply filling all sequences whose
clue sequence requires the entire sequence to be colored black. This will yield
a partially filled curved expert nonogram, in which all cells that are not yet
colored are part of the right sequence Sr

ℓ along a single curve ℓ. Moreover the
progress descriptor Ψ of this sequence includes already filled chains of cells and
there is a one-to-one correspondence between any chain of unsettled cells to a
row or column of the input classic nonogram. Given any fix which refines Ψ and
is consistent with the clue sequence of Sr

ℓ will fill in all remaining cells of C and
immediately yields a solution for N .

Since C is simple, it can be solved with an application of FullSettle.
Therefore a polynomial time algorithm for FullSettle on curved expert nono-
grams would imply that classic nonograms can be solved in polynomial time, if
we are guaranteed that their solution is unique.

4.2 Constructing the curved expert nonogram

Consider a classic nonogram N with w columns and h rows, as in Figure 7(a).
We will assume w.l.o.g. that we have w = h + 1; this can be achieved through
appropriate padding, see Figure 7(b). Note that adding empty (or completely
filled) rows or columns does not change the difficulty of the puzzle. All cells of N
will also be contained in the curved expert nonogram C we created based on N .
We will call these cells the original cells.

Now, conceptually, we will trace a single vital curve through all w+1 vertical
and h+1 horizontal line segments that make up the grid of the puzzle (excluding
the section that contains the clue sequences); refer to Figure 7(c). Doing this
will concatenate the clue sequences from all rows and columns of the original
nonogram into a single clue sequence; specifically, it will intersperse the clue
sequences of the columns (from left to right) and the rows (from top to bottom).
We will refer to the resulting clue sequence as the vital clue sequence.

However, this alters the difficulty of the puzzle, as the information which
sections of the vital clue sequence belong to separate rows or columns is lost. To
solve this, we again pad the original nonogram, but now with rows and columns,
which we will force to be entirely colored in a solution of C as follows.

We let k = 1+max
(
⌊w
2 ⌋, ⌊

h
2 ⌋
)
; this value is chosen to ensure that 2k is more

than either w or h. We first construct another padded w+ 2+ 2k by h+ 2+ 2k
grid: the original grid with a single empty and k full rows added on all sides.
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Fig. 8: (a) An even more padded version of the nonogram from Figure 7. (b) The
final construction including k = 3 additional rows and columns of filled cells on
all sides. Original filled cells are yellow; padding cells are orange. In the vital
clue sequence, numbers are orange if they are at least 2k and yellow otherwise.

Refer to Figure 8(a). All filled/empty cells that are added by this procedure are
called the filled/empty padding cells.

Then, we construct a curved nonogram C which consists of this grid sur-
rounded by some additional potentially non-rectangular cells (which will be
called boundary cells). In total, it consists of 4k + 5 curves: k + 1 straight lines
on each side of the input picture, plus 1 very long curve ℓ which contains all
original grid lines. Refer to Figure 8(b). Note that by construction all clue se-
quences which consists of a single clue require their entire sequence to be filled.
Settling all cells of these sequences to be filled also uniquely determines a fix
for all sequences with clue sequences consisting of two clues and we state the
following observation.

Observation 2 Any sequence other than Sr
ℓ has a clue sequence of length one

or two. Moreover all boundary and filled padding cells can trivially be settled to
be filled and all empty padding cells can trivially be settled to be empty. Every
unsettled cell is an original cell and contained in Sr

ℓ .

Next we consider the vital clue sequenceD. Note that we can partitionD into
2(w+h+4)+1 (possibly empty) parts, s.t., these parts alternatingly correspond
to the clue sequence of a column or row of N and clues which require 4k − 1
consecutive filled cells (with the exception of the first and last part, which require
exactly k+ 1 filled cells). We call the parts requiring 4k− 1 cells blockers. Since
the first and last cell in the vital sequence are filled, the first and last clue of the
vital clue sequence are necessarily already fulfilled. Note two things. First there
is a matching of already settled cells along the vital sequence and blockers, s.t.,
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all blockers are fulfilled and second there are either w + 2 or h + 2 unsettled
cells between two consecutive chains of 4k − 1 already filled cells and therefore
no blocker can be fulfilled in such a space. Therefore this matching is the only
possible realization of the blockers and we know that every chain of unsettled
original cells in C has to accommodate exactly the clues that the original row
or column in N had to realize. With this we state the following observation.

Observation 3 If we restrict the solution of C to its original cells, we obtain
exactly the solution of N .

Lemma 1. If N has a unique solution the constructed curved expert nonogram
C also has only a single solution. Moreover C is simple.

Proof. The first part of the lemma follows as a direct consequence of Observa-
tions 2 and 3. Over all solutions of C, any padding and boundary cell in C can
have exactly one value (filled or unfilled) and any original cell can have at most
as many values as the corresponding cell in N over all valid solutions of N . If
this solution of N is unique, every original cell can have only one such value.

The second part of the lemma statement is a consequence of Observation 2.
Since the value of all cells, which are not part of the vital sequence can trivially
be settled, if we would apply the Settle procedure to the vital sequence, we
would settle all remaining cells, since they can have only one value in a solution
(because this solution is unique). ⊓⊔

4.3 Correctness

We are now ready to prove the main theorem.

Theorem 3. Solving Simple Curved Expert Nonogram is (a) at least as
hard as 1-SN and (b) in NP.

Proof. To prove statement (a) it suffices to show that we can construct C based
on a given nonogram N in polynomial time and given a solution of Simple
Curved Expert Nonogram, i.e., a filled version of C, we can construct a so-
lution to 1-SN for the instance N in polynomial time. The first part is immediate
as the construction as described in Section 4.2 which yields C based on a given
N adds only a polynomially many cells to N and the curves can be obtained
by connecting at most a polynomial number of grid lines. Since N has a unique
solution by definition of 1-SN, it follows from Lemma 1.

The second part, i.e., constructing a solution for N based on a given solution
for C follows from Observation 3. By simply settling all cells in N according to
the value of the original cells in C, we obtain the solution.

To prove statement (b) it suffices to observe that, given a solution for Sim-
ple Curved Expert Nonogram, we can enumerate all polynomially many
sequences, and check in polynomial time if their fix is consistent with their clue
sequence. This concludes the proof. ⊓⊔
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As previously mentioned we only show with Theorem 3 that Simple Curved
Expert Nonogram is at least as hard as 1-SN. While it seems reasonable to
expect 1-SN to be NP-hard (equivalent to the generalized problem, i.e., finding
a solution to any classic nonogram), the exact complexity of 1-SN remains an
open question.

We note that the construction of our hardness proof produces a simple curve
arrangement, i.e., there are no three curves intersect in the same point, no two
curves touch without crossing, and no curves locally overlap in more than a
single point.

5 Conclusions

We have shown that the concept of simple nonograms extends to curved nono-
grams to some extent. In general, simple curved nonograms are not necessarily
easy to solve: even the problem of testing for progress on a single clue sequence is
already as hard as solving a classic nonogram under the assumption that it has a
unique solution and while we suspect this problem to be NP-hard, the complexity
of solving a simple curved expert nonogram remains an open question. However,
for the restricted classes of basic and advanced curved nonograms, we show that
simple puzzles can be solved in polynomial time. It would be of interest how
other measures of difficulty like the ones proposed by Batenburg and Kosters [4]
extend to curved nonograms.
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A Python problem for the settle algorithm

1 # indices start at 0 (following Python conventions) and not at 1 (as in the paper)
2

3 from collections import defaultdict
4

5 def decomposition_tree(f, show=False):
6 """construct the binary decomposition tree.
7 f is a the "face pattern", a string (or list of numbers or other objects)
8 with one entry for each segment of the curve.
9 Equal letters indicate segments belonging to the same face.

10

11 Tree has three types of nodes, see Figure 5:
12 * "Singleton", a leaf.
13 * "Separate", with two children (white node).
14 * "Progressive", with two children (black node): progressive sleuth + bracket
15 "Separate" and "Progressive" store a triplet (i,j,k) of indices:
16 f[i..k] (f[i:k+1] in Python notation) is the current range,
17 and it is split after f[j]. """
18 assert all(c!=d for c,d in zip(f,f[1:])) # Consecutive letters must be distinct.
19 where = defaultdict(list)
20 for i,c in enumerate(f):
21 where[c].append(i) # store in which positions each letter appears
22

23 # The tree is built by the recursive procedure "decompose". This is
24 # not described in the paper.
25 def decompose(i,j):
26 """Either f[i]=f[j]=c and i is the first occurrence of c, or i=0,
27 or the symbol f[i-1] occurs again after f[i..j] but not in f[i..j]."""
28 c = f[j] # pick pieces from the end
29 first = where[c][0]
30 if first<i: # illegal pattern
31 d = f[i-1]
32 raise ValueError(c,first,j, d,i-1,f.index(d,i))
33 if i==j:
34 return ("Singleton",i)
35 if first>i:
36 return("Separate", (i,first-1,j),
37 decompose(i,first-1),
38 decompose(first,j)) # complete group
39 # else: # first==i
40 where[c].pop()
41 prev=where[c][-1]
42 return("Progressive", (i,prev,j),
43 # progressive sleuth
44 decompose(i,prev),
45 # plus bracket
46 ("Separate", (prev+1,j-1,j),
47 decompose(prev+1,j-1),
48 ("Singleton",j)))
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49 try:
50 Tree = decompose(0,len(f)-1)
51 except ValueError as err:
52 c,i1,i2, d,j1,j2 = err.args
53 print(f"Error: Sequence {f} has interleaving faces.")
54 print(f"f[{i1}]=f[{i2}]={c}, f[{j1}]=f[{j2}]={d}")
55 assert f[i1]==f[i2]==c and f[j1]==f[j2]==d
56 assert c!=d
57 assert i1<j1<i2<j2
58 return
59 if show:
60 print("decomposition tree for",repr(f)+":")
61 print_tree(Tree,f)
62 return Tree
63

64 def print_tree(t,f,level=0):
65 typ = t[0]
66 if typ == "Singleton":
67 print(" "*level,*t, f[t[1]])
68 else:
69 ranges = t[1]
70 print(" "*level,typ,ranges,f[ranges[0]:ranges[-1]+1])
71 for sub in t[2:]:
72 print_tree(sub,f,level+1)
73

74 def settle(progress_descriptor, clue_sequence, face_pattern, show_tree=False):
75 """progress_descriptor is a string of '0', '1', and '?'.
76 It is assumed that it contains the added artificial '0' at the
77 beginning and at the end.
78

79 clue_sequence is a sequence of positive integers (clues)
80

81 face_pattern gives the sequence of incident faces along the curve segments.
82 face_pattern has the same length as progress_descriptor.
83 """
84 f = face_pattern
85 clue_bitstring = [0]
86 for n in clue_sequence:
87 clue_bitstring += [1]*n+[0]
88 a = ''.join(str(c) for c in clue_bitstring) # convert to 0-1 string
89 k = len(a)
90 l = len(face_pattern)
91 assert l==len(progress_descriptor)
92 psi = progress_descriptor
93 print(f"{a=} {k=}\n{f=} {l=}\nprogress_descriptor {psi=}")
94 T = decomposition_tree(face_pattern, show=show_tree)
95

96 Match = defaultdict(bool) # defaults to False
97 # For convenience, we use dictionaries instead of arrays.
98
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99 def solve_bottom_up(t):
100 if t[0]=="Singleton":
101 j = t[1]
102 for i in range(k):
103 Match[i,i, j,j] = psi[j]=="?" or psi[j]==a[i]
104 else:
105 typ,split, sub1,sub2 = t
106 solve_bottom_up(sub1) # visit subproblems first
107 solve_bottom_up(sub2)
108

109 lenient = typ=="Separate" # (strict for typ=="Progressive")
110 j1,j2,j3 = split
111 for i1 in range(k):
112 for i3 in range(i1,k): # recursion (2) of the paper
113 Match[i1,i3, j1,j3] = (
114 any(
115 Match[i1,i2, j1,j2] and
116 Match[i2+1,i3, j2+1,j3] and
117 (lenient or a[i2]==a[i3])
118 for i2 in range(i1,i3))
119 or
120 any(a[i2]=="0" and
121 Match[i1,i2, j1,j2] and
122 Match[i2,i3, j2+1,j3] and
123 (lenient or a[i2]==a[i3])
124 for i2 in range(i1,i3+1))
125 )
126 def solve_top_down(t):
127 if t[0]=="Singleton":
128 j = t[1]
129 if psi[j]=="?":
130 for i in range(k):
131 if Extensible[i,i,j,j]:
132 Possible_letters[j,a[i]] = True
133 else:
134 typ,split, sub1,sub2 = t
135 lenient = typ=="Separate" # need not check extra equality
136 j1,j2,j3 = split
137 for i1 in range(k):
138 for i3 in range(i1,k):
139 if Extensible[i1,i3, j1,j3]:
140 for i2 in range(i1,i3):
141 if (Match[i1,i2, j1,j2] and
142 Match[i2+1,i3, j2+1,j3] and
143 (lenient or a[i2]==a[i3])):
144 Extensible[i1,i2, j1,j2] = True
145 Extensible[i2+1,i3, j2+1,j3] = True
146 for i2 in range(i1,i3+1):
147 if (a[i2]=="0" and
148 Match[i1,i2, j1,j2] and
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149 Match[i2,i3, j2+1,j3] and
150 (lenient or a[i2]==a[i3])):
151 Extensible[i1,i2, j1,j2] = True
152 Extensible[i2,i3, j2+1,j3] = True
153 solve_top_down(sub1)
154 solve_top_down(sub2)
155

156 solve_bottom_up(T)
157 result = Match[0,k-1, 0,l-1]
158 assert result
159

160 Extensible = defaultdict(bool)
161 Extensible[0,k-1, 0,l-1] = True
162 Possible_letters = defaultdict(bool)
163

164 solve_top_down(T)
165

166 Settlestring = list(psi)
167 for i,ps in enumerate(psi):
168 if ps=="?":
169 if not Possible_letters[i,"0"]:
170 Settlestring[i]="1"
171 if not Possible_letters[i,"1"]:
172 Settlestring[i]="0"
173 return "".join(Settlestring)
174

175 ####### A FEW TEST CASES #######
176

177 print("Example from the paper, Fig.4/5")
178 decomposition_tree("abcdefghebib", show=True)
179

180 print("\nBad example: not nested, should raise an error.")
181 decomposition_tree("ababcdefghebib", show=True)
182

183 print("\nExample from the paper, Fig.3 (simple nonogram)")
184 Psi = "0???1???10??1??0?0"
185 se = settle( Psi, (5,1,2), list(range(len(Psi)))) # f is trivial (basic nonogram)
186 print(f"settled: '{se}'\n")
187 assert se=="0???11??10??1?0000" # as claimed in Fig.3
188

189 print("Example from the paper, Fig.6 (advanced nonogram)")
190 print("settled:", settle( Psi, (5,1,2), "abcdedfghigjdklmbn", show_tree = True))
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