
Obnoxious Centers in Graphs

Sergio Cabello∗ Günter Rote†

Abstract

We consider the problem of finding obnoxious cen-
ters in graphs. For arbitrary graphs with n vertices
and m edges, we give a randomized algorithm with
O(n log2 n+m logn) expected time. For planar graphs,
we give algorithms with O(n log n) expected time and
O(n log3 n) worst-case time. For graphs with bounded
treewidth, we give an algorithm taking O(n log n) worst-
case time. The algorithms make use of parametric
search and several results for computing distances on
graphs of bounded treewidth and planar graphs.

1 Introduction

A central problem in locational analysis deals with
the placement of new facilities that optimize a given
objective function. In the obnoxious center problem,
there is set of sites in some metric space, each with
its own weight, and we want to place a facility that
maximizes the minimum of the weighted distances from
the given sites. The problem arises naturally when
considering the placement of an undesirable facility
that will affect the environment, or, in a dual setting,
when searching for a place away from existing obnoxious
facilities. Algorithmically, obnoxious facilities have
received much attention previously; see [1, 6, 12, 21,
22, 23] and references therein.

In this paper, we consider the problem of placing
a single obnoxious facility in a graph, either at its
vertices or along its edges; this is often referred to as the
continuous problem, as opposed to the discrete version,
where the facility has to be placed in a vertex of G. A
formal definition of the problem is given in Section 2.1.
We use n, m for the number of vertices and edges of G,
respectively.

Previous results. Subquadratic algorithms are
known for the obnoxious center problem in trees and
cacti. Tamir [21] gave an algorithm with O(n log2 n)

∗Department of Mathematics, IMFM, and Department

of Mathematics, FMF, University of Ljubljana, Slovenia,

sergio.cabello@fmf.uni-lj.si. Partially supported by the Eu-

ropean Community Sixth Framework Programme under a Marie

Curie Intra-European Fellowship, and by the Slovenian Research

Agency, project J1-7218-0101.
†Freie Universität Berlin, Institut für Informatik, Takustraße

9, 14195 Berlin, Germany, rote@inf.fu-berlin.de.

worst-case time for trees. There are faster algorithms for
some special classes of trees [6, 21]. For cactus graphs,
Zmazek and Žerovnik [23] gave an algorithm using
O(cn) time, where c is the number of different weights in
the sites, and recently Ben-Moshe, Bhattacharya, and
Shi [1] showed an algorithm using O(n log3 n) time.

For general graphs, Tamir [20] showed how to solve
the obnoxious center problem in O(nm+n2 log n) time.
We are not aware of other works for special classes of
graphs. However, for planar graphs, it is easy to use
separators of size O(

√
n) [14] to solve the problem in

roughly O(n3/2) time.

Our results. In general, we follow an approach
similar to Tamir [21], using the close connection between
the obnoxious center problem and the following covering
problem: do a set of disks cover a graph? See Section 2.2
for a formal definition. A summary of our results is as
follows:

• A covering problem in G can be solved construct-
ing a shortest path tree in an augmented graph
obtained by adding an apex to G. See Section 3.

• We give a randomized algorithm to find an obnox-
ious center in O(m log n + n log2 n) expected time.
The best previous algorithm used O(nm) worst-
case time [20]. See Section 3.

• For graphs with bounded treewidth, we give an
algorithm to find an obnoxious center in O(n log n)
worst-case time. Previously, only algorithms for
trees (graphs with treewidth one) were known, and
they used O(n log2 n) time [21]. See Section 4.

• For planar graphs, we give two algorithms to find an
obnoxious center: one taking O(n log n) expected
time and one taking O(n log3 n) worst-case time.
The best previous algorithm used roughly O(n3/2)
time, as discussed above. See Section 5.

A main difficulty in the obnoxious center problem is
that it may have many local optima, since the objective
depends on the closest neighbors of the placement.
This is in contrast to the classical center problem,
where we want to minimize the maximum weighted
distance to the given sites. Thus, pruning techniques

like Megiddo’s [17] solution to the classical problem do
not seem fruitful here.

Randomized algorithms have not been considered
previously in the context of obnoxious centers. Our
randomized algorithm for general graphs is simple and
easy to program, since it only uses linear programs
in two variables and shortest paths in graphs, and it
already improves the previous best bound by a factor of
n/ logn.

Our approach for graphs with bounded treewidth
is based on parametric search [15, 16]. However,
an interesting point is our use of Cole’s [9] speed-up
technique: instead of applying it to a sorting network,
as it is most common, we use it in a network arising
from a tree decomposition of the graph. To make
this approach fruitful and remove a logarithmic factor
in the running time, we employ an alternative tree
decomposition with logarithmic depth, but larger width.
For example, we improve the previous running time for
trees by considering a tree decomposition of width five
and logarithmic depth.

Our randomized algorithm for planar graphs uses
the shortest path algorithm by Henzinger et al. [11].
Our deterministic algorithm for planar graphs is based
on the results and techniques developed by Fakcharoen-
phol and Rao [10] and Klein [13] for computing several
shortest paths in planar graphs.

2 Preliminaries

2.1 Obnoxious Centers Let G be an undirected
graph with n vertices, with a function w : V (G) → R+

assigning positive weights to the vertices of G and a
function ℓ : E(G) → R+ assigning lengths to the edges
of G. We assume that w and ℓ are part of the graph
G. The lengths of the edges naturally define a distance
function δG : V (G)×V (G)→ R+, where δG(u, v) is the
minimum length of all walks in G from u to v.

The continuous center problem allows the center to
be placed on an edge: we regard each edge e = uv ∈
E(G) as a curve A(e) of length ℓ(e) between u and v,
containing a point at distance λ from u (and at distance
ℓ(e)− λ from v), for every λ in the range 0 < λ < ℓ(e).
We denote by A(G) the set of all points on all edges and
vertices of G. We will use the notations A(e) and A(G)
in order to emphasize that we mean the continuous set
of points on the graph, as opposed to the edge e and the
graph G as a discrete object. The distance function δG

can be extended from the vertices to A(G) in the natural
way. When the graph G is understood and there is no
possible confusion, we use δ instead of δG.

We can now define an objective function

COST: A(G)→ R+ as

COST(a) = min
v∈V (G)

{w(v) · δ(a, v)},

which, for a point a, measures the weighted closest
site vertex from a. Note that in this setting, the
larger the weight, the less relevant is the point. In
particular, if a vertex is irrelevant, then its weight is
+∞.1 An obnoxious center is a point a∗ ∈ A(G) such
that COST(a∗) = maxa∈A(G) COST(a).

2.2 Covering Problem and Decision Problem

Let D(v, r) = {a ∈ A(G) | δ(a, v) ≤ r} denote the
close disk with radius r ≥ 0 and center v ∈ V (G).
Given radii rv for all v ∈ V (G), consider the following
covering problem: does

⋃

v∈V (G) D(v, rv) cover A(G),

or equivalently, is A(G) =
⋃

v∈V (G) D(v, rv)? We use

(G, {(v, rv) | v ∈ V (G)}) to represent an instance to the
covering problem.

The decision problem associated to the obnox-
ious center problem asks, for a given value t, if t ≥
COST(a∗). The decision problem corresponds to a
covering problem where the radii of the disks are a
function of the value t. To make this relation pre-
cise, we think of the disks as growing around their
centers v with speed 1/w(v), and we define the union
U(t) =

⋃

v∈V (G) D(v, t/w(v)) of the disks at time t. We

have U(t) = { a ∈ A(G) | COST(a) ≤ t }, and therefore
we obtain the following connection to obnoxious centers.

Lemma 2.1. Let a∗ be an obnoxious center of G. The

optimum value of the objective function is given by

COST(a∗) = t∗ := min{ t ∈ R+ | U(t) = A(G) }. ⊓⊔

3 General Graphs

Our running times will be expressed as a function
of Tsssp(G), the time needed to solve a single source
shortest path problem in graph G with nonnegative edge
lengths. It is well known that if G has n vertices and
m edges, then Tsssp(G) = O(n log n + m) time. Better
results are known for some special classes of graphs.

Consider a covering instance (G, {(v, rv) | v ∈
V (G)}). A useful concept for our subsequent discussion
is the coverage C(v) of a vertex v ∈ V (G), defined as

C(v) = max{ ru − δ(u, v) | u ∈ V (G) }.

1Other authors use a different setting, namely assuming nega-

tive weights at the vertices and defining the cost as the maximum

of the weighted distances. It is easy to see that these two models

are equivalent.

Intuitively, the coverage of v is the maximum remaining
“covering capacity” when trying to cover the graph by
paths that pass through v. The relevance of coverages
is reflected in the following observation.

Lemma 3.1. For an e = uv ∈ E(G), the edge A(e)
is covered by

⋃

v∈V (G) D(v, rv) if and only if ℓ(e) ≤
C(u) + C(v). ⊓⊔

For any graph G, we define the graph G+ as
(V (G) ∪ {s}, E(G) ∪ {sv | v ∈ V (G)}), that is, G+

is obtained from G by adding a new “apex” vertex
s adjacent to all vertices V (G). We will now show
that all coverages C(v) can be computed by a single-
source shortest path computation in G+. We define an
upper bound L = max{n · ℓmax} on any shortest path
in G, where ℓmax is the length of the longest edge in
G. Henceforth, we assume that rv ≤ L, v ∈ V (G), as
otherwise it is clear that G is covered.

Consider the graph G+ where each edge already
existing in G keeps the same length and each edge of
the form sv has length 2L − rv. We have chosen the
edges adjacent to s long enough such that the distance
between two vertices u, v ∈ V (G) is the same in G and
in G+, that is δG(u, v) = δG+

(u, v) for any u, v ∈ V (G).

Lemma 3.2. The coverages C(v) in G are related to the

distances from s in G+ as follows :

C(v) = 2L− δG+
(s, v). ⊓⊔

Combining Lemmas 3.1 and 3.2, we achieve the
following:

Proposition 3.1. We can solve the covering problem

in a graph G in O(Tsssp(G+)) time. ⊓⊔

To study the relation to obnoxious centers, we need
the coverage C(v, t) as a function of t ≥ 0,

C(v, t) = max{ t/w(u)− δ(u, v) | u ∈ V (G) }.

This is an increasing piecewise linear function in t. For
an edge e = uv ∈ E(G), let te be the unique value
satisfying ℓ(e) = C(u, te) + C(v, te). This is the first
time when the edge A(e) becomes covered, that is,
te = min{ t ∈ R+ | A(e) ⊂ U(t) }.

Lemma 3.3. The values te, e ∈ E(G), have the follow-

ing properties:

1. t∗ = max{ te | e ∈ E(G) };

2. for any two edges e, e′, we have te ≤ te′ if and only

if A(e) ⊂ U(te′). ⊓⊔

Lemma 3.4. For any edge e = xy ∈ E(G), we can

compute te in O(Tsssp(G)) time.

Proof. We parameterize the edge A(e) by the distance
λ from x (0 ≤ λ ≤ ℓ(e)). Then the objective function
value COST(a) of the point a with parameter λ is the
minimum of the 2n linear functions

{w(v) · (δ(v, x) + λ) | v ∈ V (G) }
∪{w(v) · (δ(v, y) + ℓ(e)− λ) | v ∈ V (G) }

The set of distances δ(v, x) and δ(v, y) can be computed
for all v by solving two shortest path problems with
sources x and y, respectively, in O(Tsssp(G)) time. The
value λ that maximizes the lower envelope of 2n linear
functions can then be found in O(n) time as a linear
programming problem in two variables [17]. ⊓⊔

Theorem 3.1. For a graph G with n vertices, the

algorithm Obnoxious-Center-Randomized in Figure 1

finds an obnoxious center in O(Tsssp(G+) log n) expected

time.

Proof. Correctness is clear from Lemma 3.3: in steps
6–7, we exclude the edges e′ with te′ ≤ tei

. Thus,
we compute increasing values t1, t2, . . . from { te | e ∈
E(G) }, and we maintain the invariant Ei = { e ∈
E(G) | te > ti }. Therefore, when Ei = ∅ we have
t∗ = ti = max{te | e ∈ E(G)}, and it is clear that the
edge ei contains an obnoxious center. To bound the
running time, we first show that the while-loop in lines
2–7 is iterated an expected number of O(log |E(G)|) =
O(log n) times. Indeed, if In denotes the expected
number of remaining iterations when |Ei| = n, then

we have the recurrence In = 1 + 1
n

∑n−1
i=1 Ii, I1 = 1,

which solves by induction to

In = 1 +
1

2
+

1

3
+ · · ·+ 1

n
≤ (1 + lnn).

Finally, note that each iteration of the loop in lines 2–7
takes O(Tsssp(G+)) time because of Lemmas 3.4, 3.2,
and 3.1. ⊓⊔

If G has n vertices and m edges, then G+ has O(n)
vertices and O(n+m) edges, and therefore Tsssp(G+) =
O(n log n + m). Using the previous lemma we conclude
the following.

Corollary 3.1. For graphs with n vertices and m
edges, we can solve the obnoxious center problem by a

randomized algorithm in O(n log2 n + m logn) expected

time. ⊓⊔

An approach to obtain a deterministic algorithm that
finds an obnoxious center would be to use parametric

'

&

$

%

Algorithm Obnoxious-Center-Randomized

Input: A graph G
Output: Computes t∗ and finds an obnoxious center
1. i← 0; E0 ← E(G);
2. while Ei 6= ∅
3. i← i + 1;
4. ei ← random edge in Ei;
5. compute tei

by Lemma 3.4;
6. E′ ← {e′ ∈ E | A(e′) ⊂ U(tei

)};
7. Ei ← Ei−1 \ E′;
8. find the best point a in A(ei); (∗ A(ei) contains an obnoxious center ∗)
9. return tei

as t∗ and a as an obnoxious center;

Figure 1: Algorithm Obnoxious-Center-Randomized

search [16], based on a parallel algorithm for the decision
problem, i. e., the covering problem. However, the
parallel algorithms that are known for single source
shortest path do not provide any improvement over the
current O(nm) time bound by Tamir [20].

4 Graphs with Bounded Treewidth

4.1 Tree Decompositions and Treewidth We re-
view some basic properties of tree decompositions and
treewidth [3, 4].

Definition 1. A tree decomposition of a graph G is

a pair (X, T), with a collection X = {Xi | i ∈ I} of

subsets of V (G) (called bags), and a tree T = (I, F)
with node set I, such that

• V (G) =
⋃

i∈I Xi;

• For every e = uv ∈ E(G), there is some bag Xi

such that u, v ∈ Xi;

• For all v ∈ V (G), the nodes {i ∈ I | v ∈ Xi} form

a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ I}, T) is

maxi∈I |Xi| − 1. The treewidth of G is the minimum

width over all tree decompositions of G.

We will use the term vertices for the elements of
V (G) and nodes for the elements of V (T).

For graphs with bounded treewidth, Bodlaender [2]
gives an algorithm to construct in linear time a tree de-
composition of minimum width. Furthermore, Bodlaen-
der and Hagerup [5] show that the tree can be assumed
to be a binary tree of height O(log n), at the expense of
a constant factor in terms of the width:

Lemma 4.1. Let k0 be a fixed constant. For graphs with

n vertices and treewidth at most k0, we can construct in

linear time a tree decomposition (X, T) of width at most

3k0 + 2, whose tree T is a rooted binary tree of height

O(log n) with O(n) nodes.

In fact, for our solution to the obnoxious center problem,
we will spend O(n log n) time, but we only need to
construct once a tree-decomposition as described in
Lemma 4.1. Therefore, we could replace Bodlaender’s
algorithm [2] by Reed’s algorithm [19], which takes
O(n log n) time but is simpler.

Chaudhuri and Zaroliagis [8, Lemma 3.2] have
shown that all distances between pairs of vertices in
the same bag can be computed in linear time (even if
negative edges are permitted):

Lemma 4.2. Let (X, T) be a tree decomposition of width

k for a graph G with n vertices. Then the distances

δG(u, v) for all pairs of vertices u, v that belong to a

common bag Xi can be calculated in O(k3n) time.

4.2 A Decision Algorithm and a Parametric

Search Algorithm Tamir [21] showed that the cov-
erage problem is solvable in O(n) when the graph is a
tree. We will now generalize this result to graphs with
bounded treewidth. Note that if G has treewidth at
most k0, then G+ has treewidth at most k0 + 1: from
a tree decomposition for G of width k0 we can obtain
a tree decomposition for G+ of width k0 + 1 by adding
the special vertex s to all bags. Since Chaudhuri and
Zaroliagis [8] showed that a shortest path tree in graphs
with bounded treewidth can be constructed in linear
time, Proposition 3.1 leads to the following result.

Lemma 4.3. Let k0 be a fixed constant. For a graph

with n vertices and treewidth at most k0, we can solve

the covering problem in O(n) time. ⊓⊔

Theorem 3.1 gives a randomized algorithm with
O(n log n) expected time for graphs with bounded
treewidth. We next show how to achieve the same
time bound deterministically. The approach is to use
a modification of the parallel algorithm by Chaudhuri
and Zaroliagis [7] for computing a shortest path tree
in parallel. Moreover, our modification also applies the
technique of Cole [9], to obtain a speed-up when later
applying parametric search [16]. This leads to an algo-
rithm using O(n log n) time in the worst case. We next
provide the details.

The idea of the algorithm is to utilize the structure
of the tree-decomposition to construct in G+ a shortest
path tree from s. First we compute the distances
between all pairs of vertices in the same bag. After
that, we can compute shortest paths from s in an
upward sweep along T followed by a downward sweep.
We compute shortest paths (as most algorithms do)
by maintaining vertex labels d(v) and carrying out a
sequence of relaxation operations

d(v) := min{d(v), d(u) + ℓ(u, v)}.

Classically, ℓ(u, v) is the length of the edge uv. However,
we will apply this operation to two vertices u, v belong-
ing to the same bag, and we will use the precomputed
distance δG(u, v) = δG+

(u, v) in G:

(1) d(v) := min{d(v), d(u) + δG(u, v)}.

The algorithm Decision-Tree-Width in Figure 3 is
complicated and slower than our previous approach, but
it is better for the parametric search framework. It uses
a directed graph H given by

V (H) = { (u, v, i) | i ∈ I, u, v ∈ Xi, u 6= v },
E(H) = { ((u, v, i), (u′, v′, j)) | u, v ∈ Xi, u′, v′ ∈ Xj ,

j parent of i in T }.

Each vertex (u, v, i) ∈ V (H) is identified with the
relaxation d(v) = min{d(v), d(u)+δG(u, v)} (1) that has
to be made when considering the bag Xi, see Figure 2.
An edge ((u, v, i), (u′, v′, j)) in H indicates some order
in which relaxations (u, v, i) and (u′, v′, j) have to take
place: in the bottom-up part (lines 8–18), we always
perform relaxation (u, v, i) before (u′, v′, j), and in
the top-down part (lines 20–30) we always perform
relaxation (u′, v′, j) before (u, v, i). Therefore, in the
bottom-up part (lines 8–18), a relaxation (u, v, i) is
performed only when the relaxations of its predecessors

Γ−(u, v, i) in H have been performed, and an analogous
statement holds for the top-down part with respect
to the successors Γ+(u, v, i). The algorithm maintains
the set A of active relaxations, from which a subset
A′ is selected for execution (lines 13 and 25). When
the algorithm is carried out within the framework of
parametric search, the selection of A′ is beyond the
control of the algorithm; it is only guaranteed that the
total weight of the executed relaxations is at least half of
the weight of all active relaxations. The correctness of
the algorithm does not depend on the order in which the
relaxations in lines 15 and 27 are carried out. Note that
the same pair u, v can be relaxed several times during
one sweep, as part of different bags Xi. The correctness
of the algorithm follows from tools commonly used in
tree-width; here we only state it.

Lemma 4.4. The algorithm Decision-Tree-Width cor-

rectly decides if U(t) covers A(G). ⊓⊔

Note that the value of L computed in line 3 is
actually completely irrelevant. Changing L amounts to
adding a constant to all variables d(v), and this constant
cancels in all operations of the algorithm, including the
final test in line 32. Setting L = 0 corresponds to
choosing negative lengths for the arcs sv.

Lemma 4.5. The algorithm Decision-Tree-Width per-

forms O(log n) iterations of the while-loops in lines 12

and 24.

Proof. The proof applies the ideas of Cole’s speed-up
technique [9]. We only analyze the while-loop in line
12; similar argument applies to the while-loop in line
24. Each vertex (u, v, i) ∈ V (H) gets assigned a weight
W (u, v, i) that depends on the depth of node i in T and
the bound k0 for the treewidth of G. We use W (A) for
the sum of the weights over vertices (u, v, i) ∈ A, A ⊆
V (H).

We first show that in each iteration, the weight
W (A) of active relaxations decreases at least by a factor
3/4: the relaxations A′ that are carried out remove
one half of A’s weight. Each relaxation (u, v, i) ∈ A′

that is carried out may make at most |Γ+(u, v, i)| ≤ z
relaxations active. However, by the choice of weights,
the total weight of these successor relaxations is at most
half the weight of (u, v, i). Thus, W (A) is reduced to at
most

W (A)−W (A′) +
W (A′)

2
≤W (A)− W (A′)

2

≤ 3

4
·W (A).

It follows that the number of iterations is bounded
by log4/3 W0/Wmin, where W0 is the initial weight W (A)

towards Xr

Xi

Xj Xk

v1 v2 v3

v3 v4 v5 v6 v7

relaxations
in Xi

relaxations
in Xj

relaxations
in Xk

(v1, v2, i)
(v1, v3, i)

(v6, v7, k)

(v7, v6, k)

towards
relaxations
in Xr

Figure 2: The directed graph H used in the algorithm. Left: portion of the tree decomposition of G rooted at r.
Right: Portion of the graph H ; the thick edges indicate that there is a directed edge between any vertex in one
bag and any vertex in the other bag.

and Wmin is the minimum weight of a non-empty set A.
In our case, the weights are integers and Wmin ≥ 1. The
graph H has a total of O(nz) nodes, each of weight at
most (2z)h, where h = O(log n) is the height of the tree.
Thus, the number of iterations is bounded by

log4/3

W0

Wmin
≤ log4/3(O(nz)(2z)h)

= O(log n + log z + h log 2z)

= O(log n).

⊓⊔

Theorem 4.1. Let k0 be a fixed constant. For any

graph with n vertices and treewidth at most k0, we can

find an obnoxious center in O(n log n) time.

Proof. We apply parametric search to transform the de-
cision Algorithm Decision-Tree-Width into an optimiza-
tion algorithm. Consider running Algorithm Decision-

Tree-Width for the (unknown) optimal value t∗. Start-
ing with the interval [t0, t1] = [−∞,∞], we maintain an
interval [t0, t1] such that t∗ ∈ [t0, t1] and all decisions
that Algorithm Decision-Tree-Width has performed so
far are identical for any t ∈ [t0, t1]. Instead of storing
a single value d(v) for each v ∈ V (G), we keep a linear
function in t, d(v, t), which is initialized in line 4.

In lines 13 and 25, we have a set A of active
relaxations (u, v, i) that we can perform. For each
(u, v, i) ∈ A, let t(u,v,i) be the unique root of the linear
equation d(v, t) = d(u, t) + δG(u, v). We then compute,
in linear time, the weighted median t̂ of these roots, with
the weights W (u, v, i) as given by the algorithm. We use
the decision algorithm for this fixed value t̂ to decide
whether t∗ ≤ t̂ or t∗ ≥ t̂. This reduces the interval
[t0, t1] and decides a subset A′ of the relaxations A that
wait for a decision. The weight of A′ is at least half the
weight of A.

Thus, we can carry out one iteration of the loop
12–18 or the loop 24–30 for the the unknown value t∗ in
O(n) time by a single-source shortest path computation;
see Lemma 4.3. The additional overhead for computing
the median and maintaining the sets A, B, D is linear.
The number of iterations is O(log n) by Lemma 4.5.
This leads to a total of O(n log n) time for the two while-
loops.

The remaining operations can be carried out in
O(n) time: Since G has treewidth at most k0, we spend
O(n) time in line 1 because of Lemma 4.1. The distances
in line 2 can be computed in linear time by Lemma 4.2.
These operations are independent of the value t and
need to be carried out only once. ⊓⊔

5 Planar Graphs

First, we provide the background that will be used
in our deterministic algorithm. Our algorithms are
explained in Section 5.3. For the randomized algorithm,
Sections 5.1 and 5.2 are not needed.

5.1 Distances We describe results concerning dis-
tances in planar graphs that will be used, starting with
the following particular form of the results due to Klein.

Theorem 5.1. (Klein [13]) For a given embedded

plane graph G with n vertices, and k vertex pairs

(u1, v1), . . . , (uk, vk), with all vertices ui on a common

face, we can compute the distances δG(uj , vj), 1 ≤ j ≤
k, in O(n log n + k log n) time.

The previous theorem, together with the techniques
developed by Fakcharoenphol and Rao [10] imply the
following result, which is of independent interest:

Lemma 5.1. Let G be an embedded planar graph with

n vertices and let α be a Jordan curve passing through

c vertices and crossing no edge of G. We can compute

'

&

$

%

Algorithm Decision-Tree-Width

Input: A graph G with treewidth at most k0 and a value t
Output: Decides if U(t) covers A(G)
1. Construct a binary, rooted tree decomposition ({Xi | i ∈ I}, T) for G of width at most

3k0 + 2 and height O(log n);
2. for all bags Xi, compute and store δG(u, v) for all u, v ∈ Xi;
3. L← n ·maxe∈E(G) ℓ(e);
4. d(v)← 2L− t/w(v) for all v ∈ V (G);
5. Construct the directed graph H ;
6. z ← 2(3k0 + 3)(3k0 + 2); (∗ upper bound on indegree and outdegree in H ∗)
7. (∗ Start bottom-up traversal of T ∗)
8. W (u, v, i)← (2z)depth(i) for all (u, v, i) ∈ V (H);
9. A← { (u, v, i) ∈ V (H) | i a leaf in T }; (∗ Relaxations that are active ∗)
10. D ← ∅; (∗ Relaxations that are done ∗)
11. B ← V (H) \A; (∗ Relaxations that are waiting: not active, not done ∗)
12. while A 6= ∅
13. A′ ← some subset of A such that W (A′) ≥W (A)/2;
14. for (u, v, i) ∈ A′ (∗ in arbitrary order ∗)
15. d(v)← min{d(v), d(u) + δG(u, v)}; (∗ Perform relaxations ∗)
16. D ← D ∪A′;
17. Anew ← { (u, v, i) ∈ B | Γ−(u, v, i) ⊂ D };
18. A← (A \A′) ∪Anew; B ← B \Anew;
19. (∗ End bottom-up traversal of T , start top-down traversal ∗)
20. W (u, v, i)← (1/2z)depth(i) for all (u, v, i) ∈ V (H);
21. A← { (u, v, r) ∈ V (H) | r the root of T }; (∗ Relaxations that are active ∗)
22. D ← ∅; (∗ Relaxations that are done ∗)
23. B ← V (H) \A; (∗ Relaxations that are waiting: not active, not done ∗)
24. while A 6= ∅
25. A′ ← some subset of A such that W (A′) ≥W (A)/2;
26. for (u, v, i) ∈ A′ (∗ in arbitrary order ∗)
27. d(v)← min{d(v), d(u) + δG(u, v)}; (∗ Perform relaxations ∗)
28. D ← D ∪A′;
29. Anew ← { (u, v, i) ∈ B | Γ+(u, v, i) ⊂ D };
30. A← (A \A′) ∪Anew; B ← B \Anew;
31. (∗ End top-down traversal of T . Now, d(v) = δG+

(s, v) for all v ∈ V (G) ∗)
32. return

∧

uv∈E(G)(d(u) + d(v) ≤ 4L + ℓ(uv))

Figure 3: depth(i) refers to the depth of node i in T . For any set A ⊂ V (H), its weight W (A) is defined as the
sum of W (u, v, i) over all (u, v, i) ∈ A.

in O(n log n + c2 log2 c) time the distances δG(u, v) for

all u, v ∈ V (C).

Proof. Let Vα be the vertices that lie on α. The curve α
splits the graph into an interior part I and an exterior
part E; the vertices Vα belong to both parts, and they
lie on a common face in each part. By Theorem 5.1,
we compute in O(n log n + c2 log n) time the distances
δI(u, v), δE(u, v) for all u, v ∈ Vα. Henceforth, only the
vertices Vα and the distances δE , δI between them are
used.

We now describe a data structure that is used
to maintain the distances δE while running Dijkstra’s
algorithm. Assume that each vertex v ∈ Vα has a
label dE(v) ≥ 0, and we have a set of inactive vertices
SE ⊂ Vα. Fakcharoenphol and Rao [10, Section 4] give
a technique to construct a data structure DS(E) that
implicitly maintains labels dE(v), v ∈ Vα, and supports
the following operations in O(log2 c) amortized time:

• Relax(v, dv): we set dE(v) = dv and (implicitily)
update the labels of all other vertices using dE(u) =
min{dE(u), dv + δE(v, u)} for all u ∈ Vα. This
operation requires that the values δE(v, u), u ∈ Vα,
are available.

• FindMin(): returns the value d0
E =

minv∈Vα\SE
dE(v).

• ExtractMin() returns vE = argminv∈Vα\SE
dE(v)

and makes it inactive: SE = SE ∪ {vE}.

A similar data structure DS(I) can be built for the
distances δI , instead of δE .

For a fixed start vertex u ∈ Vα, we compute δG(u, v)
for all v ∈ Vα by Dijkstra’s algorithm, using the data
structures DS(I) and DS(E) in parallel. For example,
when selecting the next vertex to be processed, we call
FindMin() in both data structures DS(E) and DS(I),
and then apply ExtractMin() to the data structure that
has produced the smaller value. There are |Vα| =
c iterations in Dijkstra’s algorithm, and we spend
O(log2 c) amortized time per iterations. Therefore, for
a fixed u ∈ Vα, we can compute in O(c log2 c) time the
values δG(u, v) for all v ∈ Vα. Applying this procedure
for each u ∈ Vα, the result follows. ⊓⊔

5.2 Decompositions We use the (hierarchical) de-
composition of planar graphs as given by Fakcharoen-
phol and Rao [10]. Let G be an embedded plane graph.
We assume that G is a triangulation, since we can add
edges of infinite length without harm. A piece P is a
connected subgraph of G; we assume in P the embed-
ding inherited from G. A vertex v in P is a boundary

vertex if there is some edge uv in G with u not in P . The

boundary ∂P of P is the set of its boundary vertices. A
hole in a piece P is a facial walk of P such that, in G,
the removal of its vertices disconnects G. Note that the
boundary of a piece P is contained in its holes.

The decomposition starts with G as a single “piece”
and recursively partitions each piece P into two parts
Pl and Pr, using a Jordan curve αP that passes through
vertices but does not cross any edge of P , until pieces
consisting of a single edge are obtained. The vertices
VαP

crossed by αP go to both parts Pl and Pr. If any
part has several connected components, we treat each
separately; for simplicity we assume that both Pl, Pr

are connected. The vertices VαP
form part of a hole

in Pl, Pr. We denote the recursive decomposition by
(Π, TΠ), where Π is a collection of pieces and TΠ is a
rooted binary tree.

For a piece Pi ∈ Π, let mi be its number of vertices
and let bi be the number of its boundary vertices.
The curve α that is used to partition Pi comes from
Miller’s results [18]: given a planar graph with weights
in the vertices, it finds in O(mi) time a curve α passing
through O(

√
mi) vertices and crossing no edge such that

each side of α has at most 2/3 of the total weight.
In the hierarchical decomposition, we make rounds,
where each round consists successively of a balanced
separation of the vertices, a balanced separation of the
boundary vertices, and a balanced separation of the
holes. Therefore, in each round we decompose a piece
into 8 subpieces. This hierarchical decomposition has
the following properties.

Lemma 5.2. The hierarchical decomposition (TΠ, Π)
that we have described can be constructed in O(n log n)
time, has O(log n) levels, each piece has O(1) holes, and

∑

Pi∈Πd

mi = O(n),
∑

Pi∈Πd

b2
i = O(n),

where Πd is the set of pieces at depth d in TΠ. ⊓⊔

We apply for each piece P ∈ Π Lemma 5.1 to αP

and Theorem 5.1, once per hole, and obtain:

Lemma 5.3. Let (Π, TΠ) be a hierarchical decomposi-

tion. We can compute in O(n log3 n) time the distances

δP (u, v) between every pair of vertices u, v ∈ ∂P ∪ VαP
,

for all pieces P ∈ Π. ⊓⊔

5.3 Algorithms If G is a planar graph, then the
graph G+ defined in Section 3 is a so-called apex
graph, and it has separators of size O(

√
n): a planar

separator [14] of G plus the apex s is a separator in G+.
Moreover, since we know the apex of G+ beforehand,
a separator in G+ can be computed in linear time,
and the results by Henzinger et al. [11] imply that

Tsssp(G+) = O(n). From Lemma 3.1 and Theorem 3.1,
we conclude the following.

Theorem 5.2. For planar graphs with n vertices, we

can decide in O(n) worst-case time any covering in-

stance. Moreover, we can find an obnoxious center in

O(n log n) expected time. ⊓⊔

We next move on to our deterministic algorithm.
For this, we design another algorithm for the decision
problem that is suitable for parametric search.

Theorem 5.3. In a planar graph G with n vertices, we

can find an obnoxious center in O(n log3 n) time.

Proof. We construct a hierarchical decomposition
(Π, TΠ) of G as discussed in the previous section. For
each piece P ∈ Π, we compute and store the distances
described in Lemma 5.3.

We now design an algorithm to solve the decision
problem, that is, given a value t, we want to decide
if U(t) covers A(G) or not. Like in Section 3, we
consider the graph G+, where each edge sv has length
2L − t/w(v), and we are interested on computing the
distances δG+

(s, v) for all v ∈ V (G). For each piece
P ∈ P , let P+ be the graph obtained by adding the
edges sv, v ∈ V (P).

First, we make a bottom-up traversal of TΠ. The
objective is, for each piece P , to find the values δP+

(s, v)
for v ∈ ∂P ∪ VαP

. At the bottommost level, each piece
P has constant size, and we can compute the values
δP+

(s, v), v ∈ V (P) in O(1) time. For any piece P with
two subpieces Q, R we use that, for any v ∈ ∂P ∪ VαP

,
the value δP+

(s, v) is given by

(2) min

{

min{δQ+
(s, u) + δP (u, v) | u ∈ ∂Q)}

min{δR+
(s, u) + δP (u, v) | u ∈ ∂R)}

}

.

At the end of the traversal, we obtain the values
δG+

(s, v) for all v ∈ VαG
.

Then, we make a top-down traversal of TΠ. The
objective is, for each piece P , to find the values δG+

(s, v)
for v ∈ VαP

. At the root, we obtained this data from
the bottom-top traversal. For every piece P which is a
child of another piece Q and for any v ∈ ∂P ∪ VαP

, the
value δG+

(s, v) is given by

(3) min

{

δP+
(s, v)

min{δG+
(s, u) + δP (u, v) | u ∈ ∂P)}

}

.

The values δG+
(s, u) for u ∈ ∂P are available because

∂P ⊆ ∂Q∪VαQ
. At the end of the traversal, we have the

values δG+
(s, v) for all v ∈ V (G) because every vertex

is boundary of some piece.
This finishes the description of the decision algo-

rithm. We analyze its running time in view of applying

parametric search [16]. The hierarchical decomposition
and the use of Lemma 5.3 is done once at the begin-
ning and takes O(n log3 n) time. In a piece P , using
equation (2) or (3) for each of its O(b +

√
m) vertices

in ∂P ∪ VαP
takes O((b +

√
m)2) = O(b2 + m) time.

Therefore, for all pieces Πd ⊂ Π at depth d of TΠ we
spend

∑

Pi∈Πd
O(b2

i + mi) = O(n) time during the al-
gorithm. Moreover, note that in the bottom-up (or the
top-down) traversal, it does not matter in what order
the O(n) operations concerning the pieces Πd are made.

We have seen that after O(n log3 n) time, the deci-
sion problem can be solved with O(log n) rounds, each
round involving O(n) operations that can be made in
arbitrary order. Standard parametric search [16] leads
to an optimization algorithm making O(log n) rounds,
where each round uses O(n) time plus the time used
to solve O(log n) decision problems. The decision prob-
lem is a covering problem, and Theorem 5.2 leads to
O(n log n) time per level, for a total of O(n log2 n) time
over all levels. Note that the dominating term in the
running time comes from Lemma 5.3. ⊓⊔

References

[1] B. Ben-Moshe, B. K. Bhattacharya, and Q. Shi. Effi-
cient algorithms for the weighted 2-center problem in a
cactus graph. In Algorithms and Computation: ISAAC
2005, volume 3827 of Lecture Notes in Computer Sci-
ence, pages 693–703. Springer-Verlag, 2005.

[2] H. L. Bodlaender. A linear-time algorithm for find-
ing tree-decompositions of small treewidth. SIAM J.
Comput., 25(6):1305–1317, 1996.

[3] H. L. Bodlaender. Treewidth: Algorithmic techniques
and results. In Proceedings MFCS’97, volume 1295
of Lecture Notes in Computer Science, pages 19–36.
Springer-Verlag, 1997.

[4] H. L. Bodlaender. A partial k-arboretum of graphs
with bounded treewidth. Theor. Comput. Sci., 209:1–
45, 1998.

[5] H. L. Bodlaender and T. Hagerup. Parallel algorithms
with optimal speedup for bounded treewidth. SIAM J.
Comput., 27(6):1725–1746, 1998.

[6] R. E. Burkard, H. Dollani, Y. Lin, and G. Rote. The
obnoxious center problem on a tree. SIAM Journal on
Discrete Mathematics, 14:498–509, 2001.

[7] S. Chaudhuri and C. D. Zaroliagis. Shortest paths in
digraphs of small treewidth. Part II: Optimal parallel
algorithms. Theoretical Computer Science, 203:205–
223, 1998.

[8] S. Chaudhuri and C. D. Zaroliagis. Shortest paths
in digraphs of small treewidth. Part I: Sequential
algorithms. Algorithmica, 27:212–226, 2000.

[9] R. Cole. Slowing down sorting networks to obtain
faster sorting algorithms. J. ACM, 34(1):200–208,
1987.

[10] J. Fakcharoenphol and S. Rao. Planar graphs, negative
weight edges, shortest paths, and near linear time. J.
Comput. Syst. Sci., 72:868–889, 2006.

[11] M.R. Henzinger, P.N. Klein, S. Rao, and S. Subra-
manian. Faster shortest-path algorithms for planar
graphs. J. Comput. Syst. Sci., 55(1):3–23, 1997.

[12] M. J. Katz, K. Kedem, and M. Segal. Improved al-
gorithms for placing undesirable facilities. Computers
and Operations Research, 29:1859–1872, 2002.

[13] P. N. Klein. Multiple-source shortest paths in planar
graphs. In Proc. 16th ACM-SIAM Sympos. Disc. Alg.
(SODA), pages 146–155, 2005.

[14] R. J. Lipton and R. E. Tarjan. A separator theorem
for planar graphs. SIAM J. Appl. Math., 36:177–189,
1979.

[15] N. Megiddo. Combinatorial optimization with rational
objective functions. Math. Oper. Res, 4(4):414–424,
1979.

[16] N. Megiddo. Applying parallel computation algo-
rithms in the design of serial algorithms. J. ACM,
30(4):852–865, 1983.

[17] N. Megiddo. Linear-time algorithms for linear pro-
gramming in R

3 and related problems. SIAM J. Com-
put., 12:759–776, 1983.

[18] G. L. Miller. Finding small simple cycle separators
for 2-connected planar graphs. J. Comput. Syst. Sci.,
32:265–279, 1986.

[19] B.A. Reed. Finding approximate separators and com-
puting tree width quickly. In STOC ’92: Proceedings of
the twenty-fourth annual ACM symposium on Theory
of computing, pages 221–228, 1992.

[20] A. Tamir. Improved complexity bounds for center
location problems on networks by using dynamic data
structures. SIAM J. Discrete Math., 1:377–396, 1988.

[21] A. Tamir. Obnoxious facility location on graphs.
SIAM J. Discrete Math., 4:550–567, 1991.

[22] A. Tamir. Locating two obnoxious facilities using
the weighted maximin criterion. Operations Research
Letters, 34:97–105, 2006.

[23] B. Zmazek and J. Žerovnik. The obnoxious center
problem on weighted cactus graphs. Discrete Appl.
Math., 136:377–386, 2004.

