
OBNOXIOUS CENTERS IN GRAPHS∗

SERGIO CABELLO† AND GÜNTER ROTE‡

Abstract. We consider the problem of finding obnoxious centers in graphs. For arbitrary graphs
with n vertices and m edges, we give a randomized algorithm with O(n log2 n + m log n) expected
time. For planar graphs, we give algorithms with O(n log n) expected time and O(n log3 n) worst-
case time. For graphs with bounded treewidth, we give an algorithm taking O(n log n) worst-case
time. The algorithms make use of parametric search and several results for computing distances on
graphs of bounded treewidth and planar graphs.

Key words. graph algorithms, facility location, planar graphs, parametric search, bounded
treewidth

AMS subject classifications. 05C85, 68W05, 90B85

1. Introduction. A central problem in locational analysis deals with the place-
ment of new facilities that optimize a given objective function. In the obnoxious center
problem, there is set of sites in some metric space, each with its own weight, and we
want to place a facility that maximizes the minimum of the weighted distances from
the given sites. The problem arises naturally when considering the placement of an un-
desirable facility that will affect the environment, or, in a dual setting, when searching
for a place away from existing obnoxious facilities. Algorithmically, obnoxious facili-
ties have received much attention previously; see [1, 2, 7, 11, 15, 23, 25, 26, 27] and
references therein.

In this paper, we consider the problem of placing a single obnoxious facility in a
graph, either at its vertices or along its edges; this is often referred to as the continuous
problem, as opposed to the discrete version, where the facility has to be placed in a
vertex of G. A formal definition of the problem is given in Section 2.1. We use n, m
for the number of vertices and edges of G, respectively.

Previous results. Subquadratic algorithms are known for the obnoxious center
problem in trees and cacti. Tamir [25] gave an algorithm with O(n log2 n) worst-case
time for trees. Faster algorithms are known for some special classes of trees [7, 25]. For
cactus graphs, Zmazek and Žerovnik [27] gave an algorithm using O(cn) time, where c
is the number of different weights in the sites, and recently Ben-Moshe, Bhattacharya,
and Shi [1] showed an algorithm using O(n log3 n) time.

For general graphs, Tamir [24] showed how to solve the obnoxious center problem
in O(nm + n2 log n) time. We are not aware of other works for special classes of
graphs. However, for planar graphs, it is easy to use separators of size O(

√
n) [17] to

solve the problem in roughly O(n3/2) time.
Our results. In general, we follow an approach similar to Tamir [25], using the

close connection between the obnoxious center problem and the following covering
problem: do a set of disks cover a graph? See Section 2.2 for a formal definition. A
summary of our results is as follows:

∗To appear in SIAM J. Discrete Math. (2011). A preliminary version appeared in SODA 2007 [8].
†Department of Mathematics, IMFM, and Department of Mathematics, FMF, University of Ljubl-

jana, Slovenia, sergio.cabello@fmf.uni-lj.si. Partially supported by the European Community
Sixth Framework Programme under a Marie Curie Intra-European Fellowship, and by the Slovenian
Research Agency, project J1-7218 and program P1-0297.

‡Freie Universität Berlin, Institut für Informatik, Takustraße 9, 14195 Berlin, Germany,
rote@inf.fu-berlin.de.

1

2 S. CABELLO AND G. ROTE

• A covering problem in G can be solved constructing a shortest path tree in
an augmented graph obtained by adding an apex to G.

• For arbitrary graphs, we give a randomized algorithm to find an obnoxious
center in O(m log n + n log2 n) expected time. The best previous algorithm
used O(nm + n2 log n) worst-case time [24].

• For graphs with bounded treewidth, we give an algorithm to find an obnoxious
center in O(n logn) worst-case time. Previously, algorithms using near-linear
time were known only for trees (graphs with treewidth one), and they used
O(n log2 n) time [25].

• For planar graphs, we give two algorithms to find an obnoxious center: one
taking O(n logn) expected time and one taking O(n log3 n) worst-case time.
The best previous algorithm used roughly O(n3/2) time, as discussed above.

A main difficulty in the obnoxious center problem is that it may have many local
optima, since the objective depends on the closest neighbors of the placement. This is
in contrast to the classical center problem, where we want to minimize the maximum

weighted distance to the given sites. Thus, pruning techniques like Megiddo’s [20]
solution to the classical problem do not seem fruitful here.

Randomized algorithms have not been considered previously in the context of
obnoxious centers. Our randomized algorithm for general graphs is simple and easy
to program, since it only uses linear programs in two variables and shortest paths in
graphs, and it already improves the previous best bound by a factor of n/ log n.

Our approach for graphs of bounded treewidth is based on parametric search [18,
19]. However, an interesting point is our use of Cole’s [12] speed-up technique: in-
stead of applying it to a sorting network, as it is most common, we use it in a network
arising from a tree decomposition of the graph. To make this approach fruitful and
remove a logarithmic factor in the running time, we employ an alternative tree de-
composition with logarithmic depth, but larger width. For example, we improve the
previous running time for trees by considering a tree decomposition of width five and
logarithmic depth.

Our randomized algorithm for planar graphs uses the shortest path algorithm by
Henzinger et al. [14]. Our deterministic algorithm for planar graphs is based on the
results and techniques developed by Fakcharoenphol and Rao [13] and Klein [16] for
computing several shortest paths in planar graphs.

Organization of the paper. The rest of the paper is organized as follows. In the
next section we give a formal definition of obnoxious centers, covering problem, and
their relation, as well as a review of parametric search. In Section 3 we show how to
reduce the associated decision problem to a single source shortest path problem, and
also discuss how this easily leads to randomized algorithms. In Section 4 we study the
case of graphs with bounded treewidth, and in Section 5 we deal with planar graphs.

2. Preliminaries.

2.1. Obnoxious Centers. Let G be an undirected graph with n vertices, with
a function w : V (G) → R+ assigning positive weights to the vertices of G and a
function ℓ : E(G)→ R+ assigning lengths to the edges of G. We assume that w and ℓ
are part of the graph G. The lengths of the edges naturally define a distance function
δG : V (G)×V (G)→ R+, where δG(u, v) is the minimum length of all walks in G from
u to v.

The continuous center problem allows the center to be placed on an edge: we
regard each edge e = uv ∈ E(G) as a curve A(e) of length ℓ(e) between u and v,

OBNOXIOUS CENTERS IN GRAPHS 3

containing a point at distance λ from u (and at distance ℓ(e) − λ from v), for every
λ in the range 0 < λ < ℓ(e). We denote by A(G) the set of all points on all edges
and vertices of G. We will use the notations A(e) and A(G) in order to emphasize
that we mean the continuous set of points on the graph, as opposed to the edge e and
the graph G as a discrete object. The distance function δG can be extended from the
vertices to A(G) in the natural way. When the graph G is understood and there is
no possible confusion, we use δ instead of δG.

We can now define an objective function COST: A(G)→ R+ as

COST(a) = min
v∈V (G)

w(v) · δ(a, v),

which, for a point a, measures the weighted closest vertex from a. In this setting,
the larger the weight, the less relevant is the site. In particular, if a vertex is irrele-
vant, then its weight is +∞.1 An obnoxious center is a point a∗ ∈ A(G) such that
COST(a∗) = maxa∈A(G) COST(a).

2.2. Covering Problem and Decision Problem. Following Tamir [25], we
study the decision version of the obnoxious center problem, which can be formulated
as a covering problem.

Let D(v, r) = {a ∈ A(G) | δ(a, v) ≤ r} denote the closed disk with radius
r ≥ 0 and center v ∈ V (G). Given radii rv for all v ∈ V (G), consider the follow-
ing covering problem: does

⋃

v∈V (G) D(v, rv) cover A(G), or equivalently, is A(G) =
⋃

v∈V (G) D(v, rv)?
The decision problem associated to the obnoxious center problem asks, for a given

value t, if t ≥ COST(a∗). The decision problem corresponds to a covering problem
where the radii of the disks are a function of the value t. To make this relation
precise, we think of each disk as growing around its center v with speed 1/w(v), and
we define the union U(t) =

⋃

v∈V (G) D(v, t/w(v)) of the disks at time t. We have

U(t) = { a ∈ A(G) | COST(a) ≤ t }, and therefore we obtain the following connection
to obnoxious centers.

Lemma 1. Let a∗ be an obnoxious center of G. The optimum value of the objective

function is given by

COST(a∗) = t∗ := min{ t ∈ R+ | U(t) = A(G) }.

2.3. Parametric search. When solving optimization problems, it is common to
look first at algorithms that solve the corresponding decision problem: is the optimal
value smaller, larger, or equal, than a given value? Parametric search is a generic
technique to transform a certain type of algorithms that solve the decision problem
into an algorithm that solves the optimization problem. We explain the technique
stepwise, starting from the basic idea contained in Megiddo [18].

Consider an optimization problem whose optimal value is t∗. Assume first that
we have an algorithm Ad solving in time Td the decision problem: given a parameter
t, it decides whether t is smaller, larger, or equal to t∗. We now show how we can
apply the algorithm Ad to the (unknown) value t∗. The difficulty is to decide which

1Other authors use a different setting, namely assuming negative weights at the vertices and
defining the cost as the maximum of the weighted distances. It is easy to see that these two models
are equivalent.

4 S. CABELLO AND G. ROTE

branch the algorithm takes when it comes to a branching point. This amounts to
checking the sign of a polynomial p(t) evaluated at t = t∗. We can work around our
ignorance of t∗ by computing the roots t1, t2, . . . of the polynomial p(t) and using the
decision algorithm to locate t∗ between two consecutive roots of the polynomial p(t).
In this way, we know which branch the algorithm would follow if applied to t∗, and
the algorithm can proceed. When we know which branch the algorithm follows for
the optimal value t∗, then typically the problem is reduced to an interval where t∗

must lie, and we can solve the problem restricted to values t within that interval. For
this approach to work, two assumptions on the decision algorithm Ad are needed: the
polynomials evaluated at branching points have degree bounded by a constant, in the
input parameter t, and the solution can be computed if we know in which branch the
decision algorithm finishes. The running time of this algorithm is O(T 2

d): for each of
the O(Td) branching points we have to call the decision algorithm O(1) times.

As noted by Megiddo [19], a significant speedup can be obtained using parallel
algorithms. Assume that we have a parallel algorithm Ap for the decision problem that
makes Tp rounds (or time steps) of Tr parallel operations each. When simulating a
step of the parallel algorithm, we can compute the roots of all Tr polynomials that are
involved in one round, and make a binary search among them to find between which
two consecutive roots t∗ lies. For the binary search, we use a linear-time median-
finding algorithm to locate the median of the roots, and then call the sequential
algorithm Ad to decide in which side to recurse. Thus, in each round we can find the
correct branch of the algorithm Ap for the value t∗ in time O(Tr +Td log Tr). Looking
over all rounds, we conclude that in time O(Tp(Tr +Td log Tr)) we can find the branch
followed by Ap if applied to the optimal value t∗.

Finally, a further improvement for a special type of parallel algorithms was real-
ized by Cole [12]. This improvement can be applied when each computation of the
parallel algorithm depends on the outcome of at most a constant number of previous
computations. That is, we consider a digraph that encodes which operations have
to be performed before other operations. If this digraph has bounded in-degree (or
bounded out-degree) and the length of the longest path (which is Tp) is small, we can
use a weighting technique so that in the binary search we can consider simultaneously
roots of the polynomials from different rounds of the parallel algorithm. Thus, in
some sense, this approach interleaves the steps of collecting roots and making the
binary search across different rounds. We use and explain this technique in detail in
Section 4.

3. General Graphs. Our running times will be expressed as a function of
Tsssp(G), the time needed to solve a single source shortest path problem in graph
G with nonnegative edge lengths. It is well known that if G has n vertices and m
edges, then Tsssp(G) = O(n logn+m) time. Better results are known for some special
classes of graphs.

Consider the problem of covering the graph G by balls D(v, rv), v ∈ V (G). A
useful concept for our subsequent discussion is the coverage C(v) of a vertex v ∈ V (G),
defined as

C(v) = max{ ru − δ(u, v) | u ∈ V (G) }.

Intuitively, the coverage of v is the maximum remaining “covering capacity” when
trying to cover the graph by paths that pass through v. The relevance of coverages is

OBNOXIOUS CENTERS IN GRAPHS 5

s

G G+

Figure 1. Example showing how to obtain the graph G+ from G.

reflected in the following observation.
Lemma 2. For an e = xy ∈ E(G), the edge A(e) is covered by

⋃

v∈V (G) D(v, rv)

if and only if ℓ(e) ≤ C(x) + C(y).
Proof. We parameterize the edge A(e) by the distance λ from x (0 ≤ λ ≤ ℓ(e)).

The point a ∈ A(e) with parameter λ is covered if and only if

min{λ + δ(x, v), ℓ(e)− λ + δ(y, v)} ≤ rv for some v ∈ V (G),

which is equivalent to

0 ≥ min
v∈V (G)

min{λ + δ(x, v)− rv, ℓ(e)− λ + δ(y, v)− rv}

= min{λ + min
v∈V (G)

{δ(x, v)− rv}, ℓ(e)− λ + min
v∈V (G)

{δ(y, v)− rv}

= min{λ− C(x), ℓ(e)− λ− C(y)}.

Therefore, the edge A(e) is covered if and only if

min{λ− C(x), ℓ(e)− λ− C(y)} ≤ 0 for all 0 ≤ λ ≤ ℓ(e),

which is equivalent to the condition ℓ(e) ≤ C(x) + C(y).
For any graph G, we define the graph G+ as (V (G)∪{s}, E(G)∪{sv | v ∈ V (G)}),

that is, G+ is obtained from G by adding a new “apex” vertex s adjacent to all vertices
V (G). See Figure 1.

We will now show that all coverages C(v) can be computed by a single-source
shortest path computation in G+. We define an upper bound L = n · ℓmax on the
length of any shortest path in G, where ℓmax is the length of the longest edge in G.
Henceforth, we assume that rv ≤ L, v ∈ V (G), as otherwise it is clear that G is
covered.

Consider the graph G+ where each edge already existing in G keeps the same
length and each edge of the form sv has length 2L − rv. We have chosen the edges
adjacent to s long enough such that the distance between two vertices u, v ∈ V (G) is
the same in G and in G+, that is δG(u, v) = δG+

(u, v) for any u, v ∈ V (G).
Lemma 3. The coverages C(v) in G are related to the distances from s in G+ as

follows:

C(v) = 2L− δG+
(s, v).

6 S. CABELLO AND G. ROTE

Proof.

δG+
(s, v) = min{ ℓ(su) + δG+

(u, v) | u ∈ V (G) }
= min{ 2L− ru + δG(u, v) | u ∈ V (G) }
= 2L−max{ ru − δG(u, v) | u ∈ V (G) } = 2L− C(v).

Combining Lemmas 2 and 3, we achieve the following:
Proposition 4. We can solve an instance of the covering problem in a graph G

in O(Tsssp(G+)) time.

Proof. By the previous lemma, we can compute the coverages C(v) for all v ∈
V (G). Then, we use Lemma 2 for each edge e ∈ E(G) to decide if A(G) is covered
or not. The first step requires Tsssp(G+) time, and the second step takes O(|E(G)|)
time.

To study the relation to obnoxious centers, we need the coverage C(v, t) as a
function of t ≥ 0,

C(v, t) = max{ t/w(u)− δ(u, v) | u ∈ V (G) }.

This is an increasing piecewise linear function in t. For an edge e = uv ∈ E(G),
let te be the unique value satisfying ℓ(e) = C(u, te) + C(v, te). This is the first time
when the edge A(e) becomes covered, that is, te = min{ t ∈ R+ | A(e) ⊂ U(t) }. The
following result is straightforward.

Lemma 5. The values te, e ∈ E(G), have the following properties:

1. t∗ = max{ te | e ∈ E(G) };
2. for any two edges e, e′, we have te ≤ te′ if and only if A(e) ⊂ U(te′).

Lemma 6. For any edge e = xy ∈ E(G), we can compute te in O(Tsssp(G)) time.

Proof. We parameterize the edge A(e) by the distance λ from x (0 ≤ λ ≤ ℓ(e)).
Then the time when the point a with parameter λ is covered is given by the minimum
of the 2n linear functions

{w(v) · (δ(v, x) + λ) | v ∈ V (G) } ∪ {w(v) · (δ(v, y) + ℓ(e)− λ) | v ∈ V (G) }.

The set of distances δ(v, x) and δ(v, y) can be computed for all v by solving two
shortest path problems with sources x and y, respectively, in O(Tsssp(G)) time. The
value λ that maximizes the lower envelope of 2n linear functions can then be found
in O(n) time as a linear programming problem in two variables [20].

Theorem 7. For a graph G with n vertices, the algorithm Obnoxious-Center-

Randomized in Figure 2 finds an obnoxious center in O(Tsssp(G+) logn) expected

time.

Proof. Correctness is clear from Lemma 5: in steps 7–8, we exclude the edges e′

with te′ ≤ tei
. Thus, we compute increasing values t1, t2, . . . from { te | e ∈ E(G) },

and we maintain the invariant Ei = { e ∈ E(G) | te > ti }. Therefore, when Ei = ∅
we have t∗ = ti = max{te | e ∈ E(G)}, and it is clear that the edge ei contains an
obnoxious center. Actually, once we know t∗ we can also compute in O(Tsssp(G+))
time all obnoxious centers: we compute the coverages C(v, t∗) for all vertices v ∈ V (G)
and observe that every edge uv with ℓ(uv) = C(u, t∗)+C(v, t∗) contains an obnoxious
center at distance C(u, t∗) from u.

To bound the running time, we first show that the while-loop in lines 3–8 is iter-
ated an expected number of O(log |E(G)|) = O(log n) times. Indeed, if In denotes the

OBNOXIOUS CENTERS IN GRAPHS 7'

&

$

%

Algorithm Obnoxious-Center-Randomized

Input: A graph G
Output: Computes t∗ and finds an obnoxious center
1. i← 0;
2. E0 ← E(G);
3. while Ei 6= ∅
4. i← i + 1;
5. ei ← random edge in Ei−1;
6. compute ti := tei

by Lemma 6;
7. E′ ← {e′ ∈ E | A(e′) ⊂ U(ti)};
8. Ei ← Ei−1 \ E′;
9. find the best point a in ei; (∗ ei contains an obnoxious center ∗)
10. return ti as t∗ and a as an obnoxious center;

Figure 2. Algorithm Obnoxious-Center-Randomized

expected number of remaining iterations when |Ei| = n, then we have the recurrence

In = 1 +
1

n

n−1
∑

i=1

Ii, I1 = 1,

which solves to In ≤ (1 + lnn) by induction:

In = 1 +
1

n

n−1
∑

i=1

Ii ≤ 1 +
1

n

n−1
∑

i=1

(1 + ln i)

≤ 1 +
1

n

∫ n

1

(1 + lnx) dx = 1 +
1

n
(n lnn− 0) = 1 + lnn.

Finally, note that each iteration of the loop in lines 3–8 takes O(Tsssp(G+)) time:
lines 4, 5 and 8 take O(m) time, line 6 takes O(Tsssp(G)) time because of Lemma 6,
and line 7 takes O(Tsssp(G+) + m) = O(Tsssp(G+)) because we can compute the
coverages of each vertex using Lemma 3, and then apply Lemma 2 for each edge.

If G has n vertices and m edges, then G+ has O(n) vertices and O(n+ m) edges,
and therefore Tsssp(G+) = O(n logn+m). Using the previous lemma we conclude the
following.

Corollary 8. For graphs with n vertices and m edges, we can solve the obnox-

ious center problem by a randomized algorithm in O(n log2 n+m log n) expected time.

An approach to obtain a deterministic algorithm that finds an obnoxious center
would be to use parametric search [19], based on a parallel algorithm for the decision
problem, i. e., the covering problem. However, the parallel algorithms that are known
for single source shortest path do not provide any improvement over the current
O(nm) time bound by Tamir [24].

4. Graphs with Bounded Treewidth.

8 S. CABELLO AND G. ROTE

4.1. Tree Decompositions and Treewidth. We review some basic properties
of tree decompositions and treewidth. See [4, 5] for a more comprehensive treatment.

Definition 9. A tree decomposition of a graph G is a pair (X, T), with a

collection X = {Xi | i ∈ I} of subsets of V (G) (called bags), and a tree T = (I, F)
with node set I, such that

• V (G) =
⋃

i∈I Xi;
• For every e = uv ∈ E(G), there is some bag Xi such that u, v ∈ Xi;
• For all v ∈ V (G), the nodes {i ∈ I | v ∈ Xi} form a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ I}, T) is maxi∈I |Xi|−1. The treewidth
of G is the minimum width over all tree decompositions of G.

We will use the term vertices for the elements of V (G) and nodes for the elements
of V (T).

For graphs with bounded treewidth, Bodlaender [3] gives an algorithm to con-
struct in linear time a tree decomposition of minimum width. Furthermore, Bodlaen-
der and Hagerup [6] show that the tree can be assumed to be a binary tree of height
O(logn), at the expense of a constant factor in terms of the width:

Lemma 10. Let k0 be a fixed constant. For graphs with n vertices and treewidth

at most k0, we can construct in linear time a tree decomposition (X, T) of width at

most 3k0 +2, whose tree T is a rooted binary tree of height O(log n) with O(n) nodes.

In fact, for our solution to the obnoxious center problem, we will spend O(n logn)
time, but we only need to construct once a tree-decomposition as stated in Lemma 10.
Therefore, we could replace Bodlaender’s algorithm [3] by Reed’s algorithm [22], which
takes O(n logn) time but is simpler.

Chaudhuri and Zaroliagis [10, Lemma 3.2] have shown that all distances between
pairs of vertices in the same bag can be computed in linear time (even if negative
edges are permitted):

Lemma 11. Let (X, T) be a tree decomposition of width k for a graph G with

n vertices. Then the distances δG(u, v) for all pairs of vertices u, v that belong to a

common bag Xi, i ∈ I, can be calculated in O(k3n) time.

4.2. A Decision Algorithm and a Parametric Search Algorithm. Tamir
showed in [25] that the covering problem is solvable in O(n) time when the graph is
a tree. We will now generalize this result to graphs with bounded treewidth. Note
that if G has treewidth at most k0, then G+ has treewidth at most k0 + 1: from
a tree decomposition for G of width k0 we can obtain a tree decomposition for G+

of width k0 + 1 by adding the special vertex s to all bags. Since Chaudhuri and
Zaroliagis [10] showed that a shortest path tree in a graph with bounded treewidth
can be constructed in linear time, Proposition 4 leads to the following result.

Lemma 12. Let k0 be a fixed constant. For a graph with n vertices and treewidth

at most k0, we can solve the covering problem in O(n) time.

Theorem 7 gives a randomized algorithm with O(n logn) expected time for graphs
with bounded treewidth. We next show how to achieve the same time bound determin-
istically. The approach is to use a modification of the parallel algorithm by Chaudhuri
and Zaroliagis [9] for computing a shortest path tree in parallel. Moreover, our modifi-
cation also applies the technique of Cole [12], to obtain a speed-up when later applying
parametric search [19]. This leads to an algorithm using O(n logn) time in the worst
case. We now provide the details.

The idea of the algorithm is to utilize the structure of the tree-decomposition to
construct in G+ a shortest path tree from s. First we compute the distances between

OBNOXIOUS CENTERS IN GRAPHS 9'

&

$

%

Algorithm Decision-Tree-Width

Input: A graph G with treewidth at most k0 and a value t
Output: Decides if U(t) covers A(G)
1. Construct a binary, rooted tree decomposition ({Xi | i ∈ I}, T) for G of

width at most 3k0 + 2 and height O(log n);
2. for all bags Xi, compute and store δG(u, v) for all u, v ∈ Xi;
3. L← n ·maxe∈E(G) ℓ(e);
4. d(v)← 2L− t/w(v) for all v ∈ V (G);
5. Construct the directed graph H;
6. z ← 2(3k0 + 3)(3k0 + 2); (∗ upper bound on indegree/outdegree in H ∗)
7. (∗ Start bottom-up traversal of T ∗)
8. W (u, v, i)← (2z)depth(i) for all (u, v, i) ∈ V (H);
9. A← { (u, v, i) ∈ V (H) | i a leaf in T }; (∗ Relaxations that are active ∗)
10. D ← ∅; (∗ Relaxations that are done ∗)
11. B ← V (H) \A; (∗ Relaxations that are waiting: not active, not done ∗)
12. while A 6= ∅
13. A′ ← some subset of A such that W (A′) ≥W (A)/2;
14. for (u, v, i) ∈ A′ (∗ in arbitrary order ∗)
15. d(v)← min{d(v), d(u) + δG(u, v)}; (∗ Perform relaxations ∗)
16. D ← D ∪A′;
17. Anew ← { (u, v, i) ∈ B | Γ−(u, v, i) ⊂ D };
18. A← (A \A′) ∪Anew; B ← B \Anew;
19. (∗ End bottom-up traversal of T , start top-down traversal ∗)
20. W (u, v, i)← (1/2z)depth(i) for all (u, v, i) ∈ V (H);
21. A← { (u, v, r) ∈ V (H) | r the root of T }; (∗ Relaxations that are active ∗)
22. D ← ∅; (∗ Relaxations that are done ∗)
23. B ← V (H) \A; (∗ Relaxations that are waiting: not active, not done ∗)
24. while A 6= ∅
25. A′ ← some subset of A such that W (A′) ≥W (A)/2;
26. for (u, v, i) ∈ A′ (∗ in arbitrary order ∗)
27. d(v)← min{d(v), d(u) + δG(u, v)}; (∗ Perform relaxations ∗)
28. D ← D ∪A′;
29. Anew ← { (u, v, i) ∈ B | Γ+(u, v, i) ⊂ D };
30. A← (A \A′) ∪Anew; B ← B \Anew;
31. (∗ End top-down traversal of T . Now, d(v) = δG+

(s, v) for all v ∈ V (G). ∗)
32. return

∧

uv∈E(G)(ℓ(uv) ≤ 4L− d(u)− d(v))

Figure 3. Decision algorithm for the covering problem in graphs of treewidth at most k0.

depth(i) refers to the depth of node i in T . For any set A ⊂ V (H), its weight W (A) is defined as

the sum of W (u, v, i) over all (u, v, i) ∈ A.

all pairs of vertices in the same bag. After that, we can compute shortest paths from
s in an upward sweep along T followed by a downward sweep. We compute shortest
paths (as most algorithms do) by maintaining vertex labels d(v) and carrying out a
sequence of relaxation operations

d(v) := min{d(v), d(u) + ℓ(u, v)}.

10 S. CABELLO AND G. ROTE

towards Xr

Xi

Xj Xk

v1 v2 v3

v3 v4 v5 v6 v7

relaxations
in Xi

relaxations
in Xj

relaxations
in Xk

(v1, v2, i)
(v1, v3, i)

(v6, v7, k)

(v7, v6, k)

towards
relaxations
in Xr

Figure 4. The directed graph H used in the algorithm. Left: portion of the tree decomposition

of G rooted at r. Right: Portion of the graph H; the thick edges indicate that there is a directed

edge between any vertex in one bag and any vertex in the other bag.

Classically, ℓ(u, v) is the length of the edge uv. However, we will apply this operation
to two vertices u, v belonging to the same bag, and we will use the precomputed
distance δG(u, v) = δG+

(u, v) in G:

d(v) := min{d(v), d(u) + δG(u, v)}. (1)

Consider the algorithm Decision-Tree-Width in Figure 3. Although it is more
complicated and inefficient than our previous approach, it is more suitable for using
it in the parametric search framework, as described below. It uses a directed graph
H defined by

V (H) = { (u, v, i) | i ∈ I, u, v ∈ Xi, u 6= v },
E(H) = { ((u, v, i), (u′, v′, j)) | u, v ∈ Xi, u′, v′ ∈ Xj, j parent of i in T }.

Each vertex (u, v, i) ∈ V (H) is identified with the relaxation d(v) = min{d(v), d(u) +
δG(u, v)} (1) that has to be made when considering the bag Xi; see Figure 4. More-
over, each vertex (u, v, i) ∈ V (H) has a weight W (u, v, i) associated to it, whose value
is different for the top-down and the bottom-up parts (lines 8 and 20). The weights
are irrelevant for the correctness of the algorithm but they affect its efficiency. We
ignore the weights for the time being.

An edge ((u, v, i), (u′, v′, j)) in H indicates some order in which relaxations (u, v, i)
and (u′, v′, j) have to take place: in the bottom-up part (lines 8–18), we always
perform relaxation (u, v, i) before (u′, v′, j), and in the top-down part (lines 20–30)
we always perform relaxation (u′, v′, j) before (u, v, i). Therefore, in the bottom-
up part (lines 8–18), a relaxation (u, v, i) is performed only when the relaxations of
its predecessors Γ−(u, v, i) in H have been performed, and an analogous statement
holds for the top-down part with respect to the successors Γ+(u, v, i). The algorithm
maintains the set A of active relaxations, from which a subset A′ is selected for
execution (lines 13 and 25). When the algorithm is carried out within the framework
of parametric search, the selection of A′ is beyond the control of the algorithm. The
correctness of the algorithm does not depend on the order in which the relaxations in
lines 15 and 27 are carried out. Note that the same pair u, v can be relaxed several
times during one sweep, as part of different bags Xi. To show the correctness of
the algorithm we will use the following basic observation about tree-decompositions;
see [10, Lemma 3.1] for a similar statement:

Lemma 13. For every path from u to v in G there is a subsequence of its vertices

OBNOXIOUS CENTERS IN GRAPHS 11

u = u0, u1, . . . , ur = v and a sequence of distinct nodes X1, X2, . . . , Xr that lie on a

path in T such that ui−1, ui ∈ Xi.

Proof. Let u0 = u. Look at the subtree Tu0
of nodes containing u0 and the

subtree Tv containing v. If they overlap we are done. Otherwise let X1 be the node
of Tu0

closest to Tv, and X ′

1 /∈ Tu0
be the adjacent node on the path to Tv. The

edge (X1, X
′

1) splits the tree into two components S and S′. We select some vertex
u1 on the path that belongs both to X1 and to X ′

1. (Such vertex must exist because
X1 ∪X ′

1 is a cutset in G.) Then we have u0, u1 ∈ X1, satisfying the statement of the
lemma. We also have u1 ∈ X ′

1, and we can proceed by induction from u1.
Lemma 14. The algorithm Decision-Tree-Width correctly decides if U(t) covers

A(G).
Proof. As in Proposition 4, we only need to show that in line 31 the algorithm

computes shortest distances d(v) from s to all vertices v in the graph G+. Line 4
initializes d(v) to the length of the edges sv. Because of Lemma 13, a shortest path
from s to v has a subsequence of vertices u = u0, u1, . . . , ur = v and a sequence of
distinct nodes X1, X2, . . . , Xr that lie on a path in T such that ui−1, ui ∈ Xi. The
path in T containing X1, X2, . . . , Xr consists of a bottom-up and a top-down part,
and therefore the algorithm performs the relaxations d(ui) = min{d(ui), d(ui−1) +
δG(ui, ui−1)} in the order i = 1 . . . r. Therefore, at the end d(v) = d(ur) = δG+(s, ur).

The value L computed in line 3 is actually completely irrelevant. Changing L
amounts to adding a constant to all variables d(v), This constant is preserved in all
operations of the algorithm, and it cancels the final test in line 32. Setting L = 0
corresponds to choosing negative lengths for the arcs sv.

We now turn our attention to the efficiency of the algorithm and the role of
weights.

Lemma 15. The algorithm Decision-Tree-Width performs O(log n) iterations of

the while-loops in lines 12 and 24.

Proof. The proof applies the ideas of Cole’s speed-up technique [12]. We only
analyze the while-loop in line 12; a similar argument applies to the while-loop in line
24. We use W (A) for the sum of the weights over vertices (u, v, i) ∈ A, A ⊆ V (H).

The value z = 2(3k0 + 3)(3k0 + 2) (line 6) is an upper bound on the maximum
outdegree of H because each bag Xi has at most two descendants in T . The weight
W (u, v, i) of node (u, v, i) is set to (2z)depth(i) (line 8), where depth(i) is the depth
of node i in T . These values are chosen such that the following property holds: the
weight of the successors Γ+(u, v, i) of vertex (u, v, i) is at most half the weight of
(u, v, i), that is, W (Γ+(u, v, i)) ≤W (u, v, i)/2.

We can now show that in each iteration, the weight W (A) of active relaxations
decreases at least by a factor 3/4: the relaxations A′ that are carried out remove one
half of A’s weight. Each relaxation (u, v, i) ∈ A′ that is carried out makes a subset of
Γ+(u, v, i) active relaxations. However, the total weight of these successor relaxations
is at most W (u, v, i)/2. Thus, W (A) is reduced to at most

W (A)−W (A′) + W (A′)/2 ≤W (A)−W (A′)/2 ≤W (A) · 3
4
.

It follows that the number of iterations is bounded by log4/3 W0/Wmin, where W0

is the initial weight W (A) and Wmin is the minimum weight of a non-empty set A. In
our case, the weights are integers and Wmin ≥ 1. The graph H has a total of O(nz)
nodes, each of weight at most (2z)h, where h = O(log n) is the height of the tree.

12 S. CABELLO AND G. ROTE

Thus, the number of iterations is bounded by

log4/3

W0

Wmin
≤ log4/3(O(nz)(2z)h) = O(log n + log z + h log 2z) = O(log n).

Theorem 16. Let k0 be a fixed constant. For any graph with n vertices and

treewidth at most k0, we can find an obnoxious center in O(n logn) time.

Proof. We apply parametric search to transform the decision Algorithm Decision-

Tree-Width into an optimization algorithm. Consider running Algorithm Decision-

Tree-Width for the (unknown) optimal value t∗. Starting with the interval [t0, t1] =
[−∞,∞], we maintain an interval [t0, t1] such that t∗ ∈ [t0, t1] and all decisions that
Algorithm Decision-Tree-Width has performed so far are identical for any t ∈ [t0, t1].
Instead of storing a single value d(v) for each v ∈ V (G), we keep the coefficients of a
linear function in t, d(v, t), which is initialized in line 4.

In lines 13 and 25, we have a set A of active relaxations (u, v, i) that we can carry
out. Such a relaxation involves the comparison between d(v, t) and d(u, t) + δG(u, v),
whose outcome depends on t. For each (u, v, i) ∈ A, define the critical value tu,v,i as
the unique root of the linear equation d(v, t) = d(u, t) + δG(u, v). We then compute,
in linear time, the weighted median t̂ of these roots, with the weights W (u, v, i) as
given by the algorithm. We use the decision algorithm for this fixed value t̂ to decide
whether t∗ ≤ t̂ or t∗ ≥ t̂. This settles the comparisons for those relaxations A′ ⊆ A
whose critical value is ≥ t̂ or those whose critical value is ≤ t̂, respectively, and we
can perform these relaxations. The weight of A′ is at least half the weight of A. The
interval [t0, t1] is reduced to [t0, min{t1, t̂ }] or to [max{t0, t̂ }, t1].

Thus, we can carry out one iteration of the loop 12–18 or the loop 24–30 for the
unknown value t∗ in O(n) time by solving the decision problem for t̂; see Lemma 12.
The additional overhead for computing the median and maintaining the sets A, B, D
is linear. The number of iterations is O(log n) by Lemma 15. This leads to a total of
O(n logn) time for the two while-loops.

Line 32 involves a final comparison. Recall that we are looking for the smallest
value t which makes the algorithm return true. Thus, we simply have to compute the
smallest value t such that all conditions ℓ(uv) ≤ 4L − d(u, t) − d(v, t) are fulfilled,
i. e., we compute the optimum value t∗ as the maximum of the roots of all equations
ℓ(uv) = 4L − d(u, t) − d(v, t), uv ∈ E(G). (This value is automatically guaranteed
to lie in the current interval [t0, t1], by the correctness of the decision algorithm on
which this interval is based.) The edge uv where the maximum is achieved is the edge
on which the obnoxious center a∗ is placed. Its location can be computed from d(u)
and d(v) as the last point on the edge that remains uncovered as t approaches t∗ from
below.

The remaining operations can be carried out in O(n) time: Since G has treewidth
at most k0, we spend O(n) time in line 1 because of Lemma 10. The distances in line
2 can be computed in linear time by Lemma 11. These operations are independent of
the value t and need to be carried out only once.

5. Planar Graphs. First, we provide the background that will be used in our
deterministic algorithm. Our algorithms are explained in Section 5.3. For the ran-
domized algorithm, Sections 5.1 and 5.2 are not needed.

5.1. Distances. We describe results concerning distances in planar graphs that
will be used, starting with the following particular form of the results due to Klein.

OBNOXIOUS CENTERS IN GRAPHS 13

α

E I

Figure 5. Left: a curve α that is disjoint from the interior of the edges, and the set Vα marked

with squares. Center and right: the two subgraphs E, I defined by α.

Theorem 17 (Klein [16]). For a given embedded plane graph G with n vertices,

and k vertex pairs (u1, v1), . . . , (uk, vk), with all vertices ui on a common face, we can

compute the distances δG(uj, vj), 1 ≤ j ≤ k, in O(n logn + k log n) time.

The previous theorem, together with the techniques developed by Fakcharoenphol
and Rao [13] imply the following result, which is of independent interest; see Figure 5.

Lemma 18. Let G be an embedded planar graph with n vertices and let α be a

Jordan curve passing through a subset Vα of c vertices and disjoint from the interior

of the edges of G. We can compute in O(n logn+c2 log2 c) time the distances δG(u, v)
for all u, v ∈ Vα.

Proof. The curve α splits the graph into an interior part I and an exterior part
E; the vertices Vα belong to both parts. See Figure 5. In each of the subgraphs, the
vertices Vα lie on a face. By Theorem 17, we compute in O(n logn + c2 log n) time
the distances δI(u, v), δE(u, v) for all u, v ∈ Vα. Henceforth, only the vertices Vα and
the distances δE , δI between them are used.

We will use a modification of Dijkstra’s algorithm to compute distances from a
source u ∈ Vα to all vertices of Vα. The algorithm is based on a data structure
DS(E) whose properties we describe first. Assume that each vertex v ∈ Vα has a
label dE(v) ≥ 0, and we have a set of active vertices SE ⊂ Vα. Fakcharoenphol
and Rao [13, Section 4] give a technique to construct a data structure DS(E) that
implicitly maintains labels dE(v), v ∈ Vα, and supports the following operations in
O(log2 c) amortized time:

• Relax(v, dv): we set dE(v) = dv and (implicitly) update the labels of all
other vertices using dE(u) = min{dE(u), dv + δE(v, u)} for all u ∈ Vα. This
operation requires that the values δE(v, u), u ∈ Vα, are available.

• FindMin(): returns the value d0
E = minv∈SE

dE(v).
• ExtractMin() returns vE = arg minv∈SE

dE(v) and makes it inactive: SE =
SE \ {vE}.

A similar data structure DS(I) is built for maintaining labels dI . In this case, the
calls to Relax(v, dv) in DS(I) use the distances δI instead of δE .

Fix a vertex u ∈ Vα. We now show how to compute δG(u, v) for all v ∈ Vα

running Dijkstra’s algorithm. However, the way to choose the next vertex is slightly
more involved. We initialize data structures DS(E) and DS(I) with SE = SI = Vα,
and labels dE(u) = dI(u) = 0 and dE(v) = dI(v) = ∞ for all v ∈ Vα \ {u}. This
finishes the initialization. We now proceed like in Dijkstra’s algorithm, but for each
vertex we have to consider the minimum of the labels dE , dI , corresponding to the
shortest connection arriving from E or from I, respectively. More precisely, at each
round we call FindMin() in DS(E) and DS(I). Let us assume that d0

E ≤ d0
I ; the

other case is symmetric. We then call ExtractMin() in DS(E), return dE(vE) as the

14 S. CABELLO AND G. ROTE

value δG(u, vE), call Relax(vE , dE(vE)) in DS(E) and DS(I), and start a new round
of Dijkstra’s algorithm. The procedure finishes when SE or SI are empty. (As the
algorithm is stated, each vertex v ∈ Vα is actually extracted twice in succession: after
extracting it from DSE or DSI for the first time, it will immediately be found by
FindMin() in the other structure. One could improve the interface of DS(·) to avoid
this.)

There are |Vα| = c iterations in Dijkstra’s algorithm, and we spend O(log2 c)
amortized time per iterations. Therefore, for a fixed u ∈ Vα, we can compute in
O(c log2 c) time the values δG(u, v) for all v ∈ Vα. Applying this procedure for each
u ∈ Vα, the result follows.

5.2. Decompositions. We use the hierarchical decomposition of planar graphs
as given by Fakcharoenphol and Rao [13]. Let G be an embedded plane graph. A
piece P is a connected subgraph of G; we assume in P the embedding inherited from
G. A vertex v in P is a boundary vertex if there is some edge uv in G with uv not in
P . The boundary ∂P of P is the set of its boundary vertices. A hole in a piece P is
a facial walk of P that is not a facial walk of G. Note that the boundary of a piece P
is contained in its holes.

The decomposition starts with G as a single “piece” and recursively partitions
each piece P into two parts L and R, using a Jordan curve αP that passes through
vertices of P but does not cross any edge of P , until pieces with O(1) vertices are
obtained. The vertices VαP

crossed by αP go to both parts L and R. If any part
has several connected components, we treat each separately; for simplicity we assume
that both L, R are connected. Note that the vertices VαP

form part of a hole in L, R,
and that a boundary vertex of L or R is a boundary vertex of P or a vertex of VαP

.
We denote this recursive decomposition by (Π, TΠ), where Π is the collection of pieces
appearing through the decomposition and TΠ is a rooted binary tree with a node for
each piece P ∈ Π, with the node G as root, and with edges from piece P to pieces
L, R whenever subpieces L, R are the pieces arising from partitioning piece P .

For a piece Pi ∈ Π, let mi be its number of vertices and let bi be the number of
its boundary vertices. The curve α that is used to partition Pi comes from Miller’s
results [21]: given a piece Pi with weights in the vertices, we can find in O(mi) time
a curve α passing through O(

√
mi) vertices and crossing no edge such that each

side of α has at most 2/3 of the total weight. In the hierarchical decomposition, we
make rounds, where each round consists successively of a balanced separation of the
vertices, a balanced separation of the boundary vertices, and a balanced separation
of the holes. Therefore, in each round we decompose a piece into 8 subpieces. This
hierarchical decomposition has the following properties.

Lemma 19. The hierarchical decomposition (TΠ, Π) that we have described can

be constructed in O(n logn) time, has O(log n) levels, each piece has O(1) holes, and

∑

Pi∈Πd

mi = O(n),
∑

Pi∈Πd

(bi)
2 = O(n),

where Πd is the set of pieces at depth d in TΠ. As a consequence, the sums
∑

mi

and
∑

b2
i over the pieces Pi ∈ Π at all levels are O(n logn). This (weaker) statement

is implicit in [13], but we give a detailed proof here.
Proof. First, we argue that the total number of vertices in the curves used through

the decomposition, counted with multiplicity, is O(n). Let A(n) be the number of
vertices in all curves used through the hierarchical decomposition of a piece of size n.

OBNOXIOUS CENTERS IN GRAPHS 15

In each round we divide the piece in up to 8 pieces of size mk, k = 1 . . .8, and we
have introduced O(

√
n) new vertices. Thus, we have the recurrence A(n) = O(

√
n) +

∑8
i=k A(mk), with

∑8
k=1 mk = n + O(

√
n) and mk ≤ 2n/3 + O(

√
n), k = 1 . . .8. It

follows by induction that A(n) = O(n).
We can now see that

∑

Pi∈Πd
mi = O(n). Each vertex of V (G) is either in only

one piece of Pi ∈ Πd, or in several. Clearly, we can have at most n = |V (G)| of
the former type. Each copy of the latter type appears when a curve that is used
for partitioning passes through the vertex, and we can have at most O(n) of those
because of the previous paragraph.

In each round the number of vertices in the pieces decreases geometrically, and
therefore we have a logarithmic number of levels. In each piece Pi we spend O(mi)
time to find the curve αPi

used to decompose Pi, and the O(n log n) running time
follows. Regarding the holes per piece, in each round O(1) new holes are introduced,
but each subpiece gets at most 2/3 of the holes of its parent. It follows that each
piece has O(1) holes.

It remains to bound Bd :=
∑

Pi∈Πd
(bi)

2. Consider a level d ≡ 2 (mod 3) where
in each piece we are about to partition the number of boundary vertices. Let P0 be a
piece in Πd, and let Pk, k = 1 . . . 8 be the eight subpieces resulting from P in a round;
the nodes corresponding to Pk, k = 1 . . .8 are descendants of P0 in TΠ. Each vertex of
∂P0 goes to exactly one of ∂Pk, k = 1 . . .8, unless some splitting curve passes through
it in the round, in which case it goes to several subpiece boundaries. Therefore, we
have

∑8
k=1 bk ≤ b0 + O(

√
m0), and using that bk ≤ (2/3)b0 + O(

√
m0), k = 1 . . .8,

we obtain

8
∑

k=1

(bk)2 ≤ ((2/3)b0 + O(
√

m0))
2 + ((1/3)b0 + O(

√
m0))

2

≤ 5
9
(b0)

2 + O(m0 + b0
√

m0).

Therefore we have

Bd =
∑

Pi∈Πd

(bi)
2 ≤

∑

Pi∈Πd−3

(

5
9 (bi)

2 + O(mi + bi
√

mi)
)

= 5
9
Bd−3 + O

∑

Pi∈Πd−3

mi

+ O

∑

Pi∈Πd−3

bi
√

mi

≤ 5
9Bd−3 + O(n) + O

√

∑

Pi∈Πd−3

b2
i

√

∑

Pi∈Πd−3

mi

= 5
9Bd−3 + O(n) + O(

√

Bd−3n),

where we have used the Cauchy-Schwarz inequality in the last inequality. It follows
now by induction that Bd = O(n) for d ≡ 2 (mod 3). For any d we have Bd =
O(Bd−1) = O(Bd−2), and therefore the bound Bd = O(n) extends to all d.

Applying for each piece P ∈ Π Lemma 18 to αP and Theorem 17, once per hole,
and obtain:

Lemma 20. Let (Π, TΠ) be a hierarchical decomposition. We can compute in

O(n log3 n) time the distances δP (u, v) between every pair of vertices u, v ∈ (∂P∪VαP
),

for all pieces P ∈ Π.

16 S. CABELLO AND G. ROTE

Proof. Consider a piece P ∈ Π of size m and with b boundary vertices, and the
corresponding curve αP passing through O(

√
m) vertices VαP

. The distances we want
to find in P can be divided into two groups:

• The distances δP (u, v) where u ∈ ∂P and v ∈ (∂P ∪ VαP
). Since P has

O(1) holes, ∂P is contained in O(1) facial walks and we can compute these
distances applying O(1) times Theorem 17 in P , once for each hole. We then
spend

O(m log m + (|∂P |)(|∂P |+ |VαP
|) logm) = O(m log n + (b2 + b

√
m) log n)

= O(m log n + b2 log n)

time.
• The distances δG(u, v) where u, v ∈ VαP

. These distances can be computed
using Lemma 18, and we spend O(m log n+|VαP

|2 log2 n) = O(m log2 n) time.
Therefore, we find the relevant distances in a piece P using O(m log2 n + b2 log n)
time. Using the bounds in Lemma 19, we see that the total time we need is bounded
by

O

(

∑

Pi∈Π

(mi log2 n + (bi)
2 log n)

)

= O(n log3 n).

5.3. Algorithms. If G is a planar graph, then the graph G+ defined in Section 3
is a so-called apex graph, and it has separators of size O(

√
n): a planar separator [17]

of G plus the apex s is a separator in G+. Moreover, since we know the apex of G+

beforehand, a separator in G+ can be computed in linear time, and the results by
Henzinger et al. [14] imply that Tsssp(G+) = O(n). From Lemma 4 and Theorem 7,
we conclude the following.

Theorem 21. For planar graphs with n vertices, we can decide in O(n) worst-

case time any covering instance. Moreover, we can find an obnoxious center in

O(n logn) expected time.

We next move on to our deterministic algorithm. For this, we design another
algorithm for the decision problem that is suitable for parametric search.

Theorem 22. In a planar graph G with n vertices, we can find an obnoxious

center in O(n log3 n) time.

Proof. We construct a hierarchical decomposition (Π, TΠ) of G as discussed in
Section 5.2. For each piece P ∈ Π, we compute and store the distances described in
Lemma 20.

We now design an algorithm to solve the decision problem, that is, given a value t,
we want to decide if U(t) covers A(G) or not. Like in Section 3, we consider the graph
G+, where each edge sv has length 2L− t/w(v), and we are interested in computing
the distances δG+

(s, v) for all v ∈ V (G). For each piece P ∈ P , let P+ be the subgraph
of G+ obtained by adding to P the edges sv, v ∈ V (P).

First, we make a bottom-up traversal of TΠ. The objective is, for each piece P , to
find the values δP+

(s, v) for all v ∈ (∂P∪VαP
). Each piece P that corresponds to a leaf

of TΠ has constant size, and we can compute the values δP+
(s, v), v ∈ V (P), in O(1)

time. For a piece P with two subpieces Q, R we have that, for any v ∈ (∂P ∪ VαP
),

δP+
(s, v) = min

{

min{δQ+
(s, u) + δP (u, v) | u ∈ ∂Q)},

min{δR+
(s, u) + δP (u, v) | u ∈ ∂R)}

}

. (2)

OBNOXIOUS CENTERS IN GRAPHS 17

At the end of the traversal, we obtain the values δG+
(s, v) for all v ∈ VαG

.
Then, we make a top-down traversal of TΠ. The objective is, for each piece P , to

find the values δG+
(s, v) for v ∈ (∂P ∪ VαP

). At the root, we obtained this data from
the bottom-top traversal. For a piece P which is a child of another piece Q and for
any v ∈ (∂P ∪ VαP

) we have

δG+
(s, v) = min

{

δP+
(s, v),

min{δG+
(s, u) + δP (u, v) | u ∈ ∂P}

}

. (3)

The values δG+
(s, u) for u ∈ ∂P are available because ∂P ⊆ ∂Q ∪ VαQ

. At the end
of the traversal, we have the values δG+

(s, v) for all v ∈ ∂P , P a leaf of TΠ. The
distances δG+

(s, v) for the remaining vertices are found using (3), which holds for any
vertex v ∈ P in each piece corresponding to a leaf of TΠ.

This finishes the description of the decision algorithm. We analyze its running
time in view of applying parametric search [19]. The hierarchical decomposition and
the use of Lemma 20 is done once at the beginning and takes O(n log3 n) time. In
a piece P , using (2) or (3) for each of its O(b +

√
m) vertices in ∂P ∪ VαP

takes
O((b +

√
m)2) = O(b2 + m) time. Therefore, for all pieces Πd ⊂ Π at depth d of TΠ

we spend
∑

Pi∈Πd
O(b2

i +mi) = O(n) time during the algorithm. Moreover, note that
in the bottom-up (or the top-down) traversal, it does not matter in what order the
O(n) operations concerning the pieces Πd are made.

We have seen that after O(n log3 n) time, the decision problem can be solved in
Tp = O(log n) rounds, each round involving Tr = O(n) operations that can be made
in arbitrary order. The operations that involve the input data are just additions and
comparisons. Thus, the framework of standard parametric search [19] can be applied;
see Section 2.3. It leads to an optimization algorithm making Tp rounds, where
each round uses Tr time plus the time used to solve O(log Tr) decision problems.
The decision problem is a covering problem, and by Theorem 21 it can be solved in
Td = O(n logn) time. The overall running time for parametric search is therefore
O(Tp(Tr +Td log Tr)) = O(n log2 n). The dominating term in the running time comes
from Lemma 20.

6. Conclusions. We have proposed algorithms for finding obnoxious centers in
graphs. It is worth noting the similarity between our solution for planar graphs and
graphs with bounded treewidth. In both cases we use a decomposition of depth
O(logn), compute some distances within each piece efficiently, and use a bottom-up
and top-down pass. For planar graphs we cannot afford to deal with the whole piece
when passing information between pieces, and therfore, we only look at the boundary.

We have described how to find an obnoxious center in trees in O(n logn) time.
However, no superlinear lower bound is known for this problem. We conjecture that
our solution for trees, and more generally for graphs of bounded treewidth, is asymp-
totically optimal.

REFERENCES

[1] B. Ben-Moshe, B. K. Bhattacharya, and Q. Shi, Efficient algorithms for the weighted 2-

center problem in a cactus graph, in Algorithms and Computation: ISAAC 2005, vol. 3827
of Lecture Notes in Computer Science, Springer-Verlag, 2005, pp. 693–703.

[2] B. Ben-Moshe, M.J. Katz, and M. Segal, Obnoxious facility location: complete service with

minimal harm, International J. of Computational Geometry and Applications, 10 (2000),
pp. 581–592.

18 S. CABELLO AND G. ROTE

[3] H. L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth,
SIAM J. Comput., 25 (1996), pp. 1305–1317.

[4] , Treewidth: Algorithmic techniques and results, in Proceedings MFCS’97, vol. 1295 of
Lecture Notes in Computer Science, Springer-Verlag, 1997, pp. 19–36.

[5] , A partial k-arboretum of graphs with bounded treewidth, Theor. Comput. Sci., 209
(1998), pp. 1–45.

[6] H. L. Bodlaender and T. Hagerup, Parallel algorithms with optimal speedup for bounded

treewidth, SIAM J. Comput., 27 (1998), pp. 1725–1746.
[7] R. E. Burkard, H. Dollani, Y. Lin, and G. Rote, The obnoxious center problem on a tree,

SIAM J. Discrete Math., 14 (2001), pp. 498–509.
[8] S. Cabello and G. Rote, Obonoxious centers in graphs, in Proc. 18th ACM-SIAM Sympos.

Disc. Alg. (SODA), 2007, pp. 98–107.
[9] S. Chaudhuri and C. D. Zaroliagis, Shortest paths in digraphs of small treewidth. Part II:

Optimal parallel algorithms, Theoretical Computer Science, 203 (1998), pp. 205–223.
[10] , Shortest paths in digraphs of small treewidth. Part I: Sequential algorithms, Algorith-

mica, 27 (2000), pp. 212–226.
[11] R. L. Church and R. S. Garfinkel, Locating an obnoxious facility on a network, Transport.

Science, 12 (1978), pp. 107–118.
[12] R. Cole, Slowing down sorting networks to obtain faster sorting algorithms, J. ACM, 34 (1987),

pp. 200–208.
[13] J. Fakcharoenphol and S. Rao, Planar graphs, negative weight edges, shortest paths, and

near linear time, J. Comput. Syst. Sci., 72 (2006), pp. 868–889.
[14] M. R. Henzinger, P. N. Klein, S. Rao, and S. Subramanian, Faster shortest-path algorithms

for planar graphs, J. Comput. Syst. Sci., 55 (1997), pp. 3–23.
[15] M. J. Katz, K. Kedem, and M. Segal, Improved algorithms for placing undesirable facilities,

Computers and Operations Research, 29 (2002), pp. 1859–1872.
[16] P. N. Klein, Multiple-source shortest paths in planar graphs, in Proc. 16th ACM-SIAM Sym-

pos. Disc. Alg. (SODA), 2005, pp. 146–155.
[17] R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math.,

36 (1979), pp. 177–189.
[18] N. Megiddo, Combinatorial optimization with rational objective functions, Math. Oper. Res,

4 (1979), pp. 414–424.
[19] , Applying parallel computation algorithms in the design of serial algorithms, J. ACM,

30 (1983), pp. 852–865.
[20] , Linear-time algorithms for linear programming in R

3 and related problems, SIAM J.
Comput., 12 (1983), pp. 759–776.

[21] G. L. Miller, Finding small simple cycle separators for 2-connected planar graphs, J. Comput.
Syst. Sci., 32 (1986), pp. 265–279.

[22] B. A. Reed, Finding approximate separators and computing tree width quickly, in Proc. 24th
ACM Sympos. Theory Computing (STOC), 1992, pp. 221–228.

[23] M. Segal, Placing an obnoxious facility in geometric networks, Nordic J. of Computing, 10
(2003), pp. 224–237.

[24] A. Tamir, Improved complexity bounds for center location problems on networks by using

dynamic data structures, SIAM J. Discrete Math., 1 (1988), pp. 377–396.
[25] , Obnoxious facility location on graphs, SIAM J. Discrete Math., 4 (1991), pp. 550–567.
[26] , Locating two obnoxious facilities using the weighted maximin criterion, Operations

Research Letters, 34 (2006), pp. 97–105.
[27] B. Zmazek and J. Žerovnik, The obnoxious center problem on weighted cactus graphs, Dis-

crete Appl. Math., 136 (2004), pp. 377–386.

