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Abstract. We study non-crossing frameworks in the plane for which the classical recipro-
cal on the dual graph is also non-crossing. We give a complete description of the self-stresses
on non-crossing frameworks G whose reciprocals are non-crossing, in terms of: the types
of faces (only pseudo-triangles and pseudo-quadrangles are allowed); the sign patterns in
the stress on G; and a geometric condition on the stress vectors at some of the vertices.

As in other recent papers where the interplay of non-crossingness and rigidity of straight-
line plane graphs is studied, pseudo-triangulations show up as objects of special interest.
For example, it is known that all planar Laman circuits can be embedded as a pseudo-
triangulation with one non-pointed vertex. We show that for such pseudo-triangulation
embeddings of planar Laman circuits which are sufficiently generic, the reciprocal is non-
crossing and again a pseudo-triangulation embedding of a planar Laman circuit. For a
singular (non-generic) pseudo-triangulation embedding of a planar Laman circuit, the re-
ciprocal is still non-crossing and a pseudo-triangulation, but its underlying graph may not
be a Laman circuit. Moreover, all the pseudo-triangulations which admit a non-crossing re-
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ciprocal arise as the reciprocals of such, possibly singular, stresses on pseudo-triangulation
Laman circuits.

All self-stresses on a planar graph correspond to liftings to piecewise linear surfaces
in 3-space. We prove characteristic geometric properties of the lifts of such non-crossing
reciprocal pairs.

1. Introduction

1.1. History of Reciprocals

There is a long history of connections between the rigidity of frameworks and tech-
niques for drawing planar graphs in the plane. Tutte’s famous rubber band method [24]
uses physical forces and static equilibrium to obtain a straight line embedding of a 3-
connected graph with convex faces, a plane version of Steinitz’s theorem [22] that every
3-connected planar graph can be represented as the skeleton of a three-dimensional poly-
tope. Maxwell’s theory of reciprocal figures [16] constructs a specific geometric drawing
of the combinatorial dual of a drawn planar graph provided that every edge of the original
participates in an internal equilibrium stress. However, neither primal nor dual need be
crossing free, Fig. 1 shows an example.

One can verify the equilibrium of a set of forces at a point by placing the vectors
head-to-tail as a polygon of forces, as in Fig. 2. For a planar graph with internal forces
in equilibrium at each vertex, this yields a set of polygons, one for each vertex. For each
edge of the framework, the two forces at its endpoints are equal in size and opposite in
direction. If the two forces at the endpoints of the edge are directed toward each other,
the edge is said to be under compression. An edge is under tension if its endpoints are
pulled apart by the forces there. Edges under compression are drawn with dark lines (and
labeled by a positive number) in Fig. 3, while edges under tension are drawn using light
lines (and have negative labels).

The polygons of equilibrium forces at each vertex can be pieced together, joining edge
to parallel edge, as the faces of the dual graph, see Fig. 3. For a framework on a planar
graph with only internal forces (tension and compression in equilibrium), the creation
of a complete reciprocal diagram—a second framework on the planar dual graph from
all these patches—is equivalent to verifying the equilibrium of these forces. Each set of

5

8

8

5

3

2

3

2
1

2

8

3

2

2

4

-

-
8

3
-

3

8
-

3

8
-

2

3
-

1

4
-

1

2
-

3

2
-

-

a) b)

Fig. 1. A non-crossing framework with a crossing reciprocal.
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Fig. 2. The equilibrium forces at vertex a produce a polygon of forces A.

equilibrium forces in a planar framework generates a reciprocal framework, unique up
to translation, and each reciprocal prescribes a set of forces in equilibrium.

Reciprocal figures were first developed in the 19th century as a graphical technique
to calculate when external static forces on a plane framework reach an equilibrium at all
the vertices with resolving tensions and compressions in the members [16], [8], and were
the basis for graphical statics in civil engineering. A famous application: this technique
was used to check the Eiffel tower prior to construction [5], [9].

Classically, there are two graphic forms for the reciprocal. In the engineering work
adapted to graphical techniques at the drafting table by the mathematician and engineer
Cremona [8], the edges of the reciprocal are drawn parallel to the edges of the original.
We use this “Cremona” form of the reciprocal in most of our proofs.

In the original work of Maxwell, the edges of the reciprocal are drawn perpendicular
to the edges of the original framework. This form is adapted to viewing the framework
on a planar graph as a projection of a spatial polyhedron and the reciprocal as a drawing
of the dual polyhedron. The surprise is that this image captures an exact correspondence:
a framework with a planar graph has a self-stress if and only if it is the exact projection
of a spatial, possibly self-intersecting, spherical polyhedron, see Fig. 4, with non-zero
dihedral angles directly corresponding to the non-zero forces in the self-stress of the
projection [16], [8], [26], [6], [25]. Moreover, the reciprocal diagram is the projection
of a very specific spatial polar of the original projected polyhedron. We return to an
application of this correspondence with spatial polyhedra in Section 4. This spatial
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Fig. 4. The lift of the frameworks of Fig. 3.

polarity also reinforces the reciprocal relationship for plane frameworks, since either
framework can be viewed as the original and the other viewed as its reciprocal. It is not
difficult to check that given one presentation of the reciprocal, we can simply turn it 90◦

to create the other presentation.
Reciprocal diagrams were rediscovered as a technique to check whether a given plane

drawing is the exact projection of a spatial polyhedron or a polyhedral surface [12], [13].
Here the reciprocal diagram is also called the “gradient diagram”, since the vertices of
the reciprocal can be located as the points of intersection of normals to the faces of
the original polyhedron, with the projection plane, with all normals drawn from a fixed
center above the plane. These points are the gradients representing the slopes of the faces.
This gradient diagram is a Maxwell reciprocal with reciprocal edges perpendicular to the
edges of the original [6]. A related construction, starting with points on the paraboloid
x2+ y2−z = 0 and their convex hull, creates the Delaunay triangulation of the projected
points, with the Voronoi cells as a (Maxwell) reciprocal diagram [2].

1.2. Our Contribution

In this paper we connect planarity with the theory of reciprocals: we investigate when
both the original graph drawing, or framework, and the reciprocal diagram are crossing
free. We show in Section 2 that interior faces of both drawings must be pseudo-triangles or
pseudo-quadrangles, the outer boundary must be convex and the self-stress generating
the reciprocal must have a specific type of sign pattern. With one additional geomet-
ric condition on the self-stress at non-pointed vertices, these conditions become both
necessary and sufficient for creating a reciprocal pair of non-crossing frameworks. We
address separately the interesting cases in which the framework is a Laman circuit (an
edge-minimal graph that can sustain a self-stress in a generic embedding), a pseudo-
triangulation or has a unique non-pointed vertex.

Of particular interest are Laman circuits embedded as pseudo-triangulations, because
they possess a unique non-pointed vertex and hence combine all three properties just
mentioned, as shown in previous work [11]. In Section 3 we show that they produce non-
crossing reciprocals. For sufficiently generic embeddings the reciprocals are also Laman
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circuits realized as pseudo-triangulations with one non-pointed vertex, so the pairing
is a complete reciprocity. This result extends to Laman circuits realized as non-generic
pseudo-triangulations, with self-stresses that are zero on some edges, again showing that
the reciprocal is a pseudo-triangulation (with several non-pointed vertices, in general).
Moreover, any pseudo-triangulation with a self-stress and a non-crossing reciprocal
occurs in a pair with a possibly singular pseudo-triangulation on a Laman circuit.

Section 4 studies the characteristic features of the lifts of such non-crossing reciprocal
pairs. Essentially, they look like negatively curved surfaces with a unique singularity at
the vertex whose reciprocal is the outer face. In particular, that vertex is the unique local
maximum of the surface, the outer face is the unique local minimum and there are no
(horizontal) saddle-points.

Section 5 lists some open problems.

1.3. Preliminaries—Frameworks

An n-dimensional framework (G, ρ) is a graph G = G(V, E) with vertex set V and
edge set E , together with an embedding ρ: V → R

n , and we write ρ(i) = pi . We only
consider plane frameworks, i.e. n = 2. The edges of (G, ρ) are regarded as abstract
length constraints on the motions of the points pi . The edges are drawn as straight line
segments, which may, of course, cross. In the absence of any edge crossing, we say that
the framework is non-crossing.

Infinitesimally, length constraints form a linear system, with an equation for each
edge {i, j} ∈ E ,

(p′i − p′j ) · (pi − pj ) = 0.

This system of equations in the unknowns p′i has a coefficient matrix of size |E | × 2|V |;
we call it the rigidity matrix of the framework. The framework is called infinitesimally
rigid if its rigidity matrix has rank 2|V | − 3. When G is the complete graph the rigidity
matrix has size

(|V |
2

)×2|V | and rank 2|V |−3 (unless all the vertices lie on a single line).
The matroid on the rows of the rigidity matrix of the complete graph, called the rigidity
matroid [10], [27] of the point set ρ(V ), is interesting because its spanning subsets are
precisely the infinitesimally rigid frameworks with vertex set ρ(V ).

The rigidity matroid is the same for all generic choices of vertex positions, and is
called the generic rigidity matroid. Its spanning subgraphs are called generically rigid
graphs and the minimal ones, bases of the matroid, are called isostatic or Laman graphs,
and they are characterized by the Laman condition: G = (V, E) is isostatic if and only
if |E | = 2|V | − 3 and every subset of k ≥ 2 vertices spans at most 2k − 3 edges of E
[15]. Generically rigid graphs are those containing a spanning Laman subgraph. Every
circuit of the generic rigidity matroid which spans k vertices must consist of exactly
2k − 2 edges, and is called a Laman circuit.

In a dual analysis of this matrix, a stress on a framework (G, ρ) is an assignment
of scalars ω: E → R. A stress is resolvable or a self-stress of the framework if the
weighted sum of the displacement vectors corresponding to each vertex cycle (the star
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of each vertex) is zero;
∑

j |(i, j)∈E

ωi j (pi − pj ) = 0 for all i ∈ V .

That is to say, the self-stresses form the cokernel of the rigidity matrix. If the graph
is generically rigid and the embedding is generic, then the dimension of the space of
self-stresses is |E | − (2|V | − 3). In particular, a Laman circuit in a generic embedding
has a unique (up to a scalar multiple) self-stress, which is non-zero on every edge.

1.4. Preliminaries—Reciprocal Diagrams

A graph G is planar if it can be (topologically) embedded in the plane, with distinct points
representing the vertices and the edges corresponding to Jordan arcs, such that two Jordan
arcs may only intersect in a common endpoint. A topologically embedded planar graph
is called a plane graph. The embedding determines for each face the sequences of edges
that lie on the boundary (the face cycles) and the sequences of edges that lie around
each vertex (the vertex cycles). From a plane graph G we obtain the geometric dual G∗

by interchanging the role of vertices and faces. If G is 3-connected and planar, then
face cycles as well as the vertex cycles are uniquely determined by G, and the G∗ is
independent of the embedding of G. If the connectivity of G is less than 3, then G might
have several essentially different embeddings in the plane, each with its own collection
of face cycles and vertex cycles, yielding non-isomorphic dual graphs. If G is at least
2-connected, the face cycles are minimal closed paths and the faces are topological disks,
while the vertex cycles are actually cocycles (minimal cutsets), so the corresponding dual
edges bound a face in the dual.

Every plane graph gives rise to a framework by leaving the positions of the points
fixed and replacing the Jordan arcs representing the edges by straight line segments,
which of course may cross. Given a plane graph G and a framework (G, ρ) on G, a
second framework on the plane dual graph G∗ is reciprocal to the first if corresponding
edges are parallel.

Even if the framework (G, ρ) is already non-crossing, one may choose to use a
different plane embedding of G for computing the reciprocal. However, in this paper we
only consider the case where (G, ρ) is non-crossing and the embedding of G is given
by ρ.

We say that a reciprocal (G∗, ρ∗) is a non-crossing reciprocal of (G, ρ) if (G∗, ρ∗)
is non-crossing and its embedding is dual to the embedding of (G, ρ). Our goal is
to characterize pairs of simultaneously non-crossing reciprocal diagrams. As a first
(counter-)example, Fig. 1 shows a non-crossing framework with a crossing reciprocal.
We shall see that this is actually the “typical situation”.

Observe that, in principle, if a non-crossing graph has a non-crossing reciprocal, the
reciprocity may preserve or reverse the orientation. That is, vertex cycles of (G, ρ)may
in become face cycles in (G∗, ρ∗) in the same or the opposite directions. We will prove
that only the orientation-reversing situation occurs.

Reciprocity of frameworks is very closely related to self-stresses. We offer a simple
representation of the Cremona reciprocal for a plane graph G. We denote the set of all
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directed edges of G and their inverses by E±. The inverse of an edge e is denoted by
ē, with ¯̄e = e. Let g: E± → R

2 be an assignment of unit vectors to the edges of G
with g(ē) = −g(e), |g(e)| = 1. For simplicity we write g(e) = e. Suppose we have two
scalar functions α: E → R and β: E → R with compatibility conditions,

∑

e∈C

αee = 0,
∑

e∈C ′
βee = 0 (1)

for each face cycle C and each vertex cycle C ′.
Since the face cycles corresponding to a plane graph embedding generate the entire

cycle space of the graph, the cycle conditions in (1) are sufficient to guarantee that
the displacement vectors αee are consistent over the entire framework. Hence, they are
the displacements or edge vectors of a framework (G, ρ) on the graph G. Similarly, the
vectors βee correspond to edge displacements of a framework (G∗, ρ∗) on the dual graph
G∗. In particular, the two frameworks are reciprocal to each other. However, now the
face equalities for G∗ can be read as equilibrium conditions for the vertices of (G, ρ)
and vice versa. Hence, if all αe �= 0 then the values βe/αe are a self-stress on the
framework (G, ρ). Similarly, if βe �= 0 then the values αe/βe are a self-stress on the
framework (G∗, ρ∗).

This argument can be reversed, so a unique reciprocal framework can be constructed
starting with a self-stress on (G, ρ) [6], [7]. It follows that the self-stresses of a con-
nected framework G are in one-to-one correspondence with the reciprocals of G (up
to translation). Multiplication of the self-stress by a constant corresponds to scaling the
reciprocal. In particular, changing the sign of a self-stress will rotate the reciprocal by
180◦. Thus, if the framework G has a unique self-stress (up to scalar multiplication), we
can speak of the reciprocal framework if we are not interested in the scale.

Maxwell proved that the projection of a spherical polyhedron from 3-space gives a
plane diagram of segments and points which forms a stressed bar and joint framework.
This proof, and related constructions, were built upon an analysis of reciprocal diagrams
[16]. Crapo and Whiteley [7], [26] gave new proofs for Maxwell’s theorem as well as
its converse for planar graphs. See [6] and [7] for more details on the full vector spaces
of self-stresses, reciprocals and spatial liftings of a plane drawing.

1.5. Preliminaries—Pseudo-Triangulations

Given a non-crossing embedding ρ: V → R
2 of a planar graph, we say that the vertex i

is pointed if all adjacent points pj lie strictly on one side of some line through pi . In this
case some pair of consecutive edges in the counterclockwise order around i spans a reflex
angle or big angle, i.e. an angle larger than 180◦. A face of the non-crossing framework is
a pseudo-triangle if it is a simple planar polygon with exactly three convex vertices (called
corners). Interior angles at the corners of a pseudo-triangle are small (smaller than 180◦),
all other interior angles are big. A pseudo-triangulation is an embedding whose interior
faces are pseudo-triangles and the complement of the outer face is a convex polygon.
Figure 5 shows an example. In a pointed pseudo-triangulation all the vertices are pointed.
Pseudo-triangulations have arisen as important objects connecting rigidity and planarity
of geometric graphs. For example, pointed pseudo-triangulations were an important tool
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Fig. 5. (a) A pointed pseudo-triangulation. (b) A different embedding of the same graph which is not a
pseudo-triangulation.

in straightening the carpenter’s rule [23]. In this paper we need to extend the concept
of pseudo-triangulation to that of pseudo-quadrangulation. A pseudo-quadrangle is a
simple polygon with four convex vertices (corners) and a pseudo-quadrangulation is a
decomposition of a convex polygon into pseudo-triangles and pseudo-quadrangles.

Lemma 1. Let T be a pseudo-quadrangulation with e edges, x non-pointed vertices,
y pointed vertices, t pseudo-triangles and q pseudo-quadrangles. Then

2e = t + 3y + 4x − 4.

Proof. The pseudo-quadrangulation has 3t + 4q convex angles and y reflex angles
(one at each pointed vertex). Since the total number of angles is 2e, we get 2e =
3t+4q+ y. Euler’s formula gives e = x+ y+ t+q−1. Eliminating q gives the desired
equation.

In the case of pseudo-triangulations (q = 0) this lemma is well known and usually
stated under the equivalent form e = (2n− 3)+ x , where n = x + y is the total number
of vertices [11], [17]. Since every pseudo-triangulation is infinitesimally rigid [18], this
formula says that:

Lemma 2. The dimension d of the space of self-stresses of a pseudo-triangulation
equals its number of non-pointed vertices, that is, d = e − (2n − 3).

Moreover, it is easy to prove that every non-crossing framework can be extended, by
adding edges, to a pseudo-triangulation with exactly the same number of non-pointed
vertices [20, Theorem 6]. The next lemma follows.

Lemma 3. The dimension of the space of self-stresses of a non-crossing framework is
at most its number of non-pointed vertices.
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Fig. 6. A Laman circuit and one of its embeddings as a pseudo-triangulation with exactly one non-pointed
vertex.

A graph is planar and generically rigid if and only if it can be embedded as a
pseudo-triangulation [17]. It is planar and isostatic if and only if it can be embedded
as a pointed pseudo-triangulation [11]. These embedding results have extensions for
Laman circuits. A pseudo-triangulation circuit is a planar Laman circuit embedded as a
pseudo-triangulation. A pseudo-triangulation circuit has a single non-pointed vertex, by
Lemma 2.

See Fig. 6 for an example of a Laman circuit (a Hamiltonian polygon triangulation
with an added edge between its two vertices of degree 2) and one of its embeddings as a
pseudo-triangulation with exactly one non-pointed vertex. A basic starting point for our
analysis is the following result from [11].

Theorem 1 [11]. Every topologically embedded planar Laman circuit with a given
outer face and a specified vertex v that does not lie on the outer face has a realization
as a pseudo-triangulation where v is the single non-pointed vertex.

These pseudo-triangulation circuits are the main focus of Section 3.

1.6. Geometric versus Singular Circuits

Given a planar Laman circuit G, there is a range of realizations as frameworks in the
plane, all of which are dependent, i.e. have a non-trivial space of self-stresses. For an
open dense subset of these realizations, containing the generic realizations, the unique
(up to scalar multiplication) self-stress is non-zero on all edges. For realizations in
this set we say the graph is embedded as a geometric circuit. Figure 7(a) depicts an
example.

The remaining singular realizations are frameworks on which either the one-dimen-
sional space of self-stresses vanishes on some subset of edges, as in Fig. 7(b) in which the
dashed edges are unstressed, or for which the space of self-stresses has higher dimension,
in which case it is generated by self-stresses which vanish on some of the edges. See
Fig. 7(c). The singular self-stresses of Fig. 7(b) will cause some complications in the
reciprocal diagrams: the original edge effectively disappears as a division between faces
and the corresponding reciprocal edge has zero length, fusing the reciprocal pair of
vertices into one. We can actually track such singular frameworks ρ on the graph as
those whose vertex coordinates satisfy at least one of a set of e polynomials, Ci, j (ρ),
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Fig. 7. A geometric circuit (a), a singular realization with dropped edges (b) and a singular realization with
additional self-stresses (c).

representing the pure conditions for the independence of the subgraphs with the edge
i, j removed [25]. In general, the coefficients of the unique self-stress of a geometric
circuit on the original graph can be written using these polynomials as coefficients. An
edge has a zero coefficient in the self-stress if and only if the corresponding polynomial
is zero.

However, all realizations as pseudo-triangulations are not guaranteed to be geomet-
rical circuits, since they need not be generic embeddings. In the pseudo-triangulation of
Fig. 8, the edge C F does not participate in the self-stress when the edges AD, B F and C E
are concurrent, for projective geometric reasons. By Lemma 2, all pseudo-triangulation
realizations of this graph will have a one-dimensional space of self-stresses, but the stress
may be singular.

2. Simultaneously Non-Crossing Reciprocals

Assume we are given a non-crossing framework (G, ρ), and a particular everywhere
non-zero self-stress from which to construct the reciprocal. The goal of this section is to
determine when the framework and its reciprocal are both non-crossing. Our main result,
Theorem 4, is that for this to happen the framework must be a pseudo-quadrangulation
and the signs of the self-stress must satisfy certain necessary (and almost sufficient)
conditions to make the reciprocal non-crossing.

In order to include all degeneracies that arise in non-crossing reciprocal pairs, we do
not assume our framework to be in general position. In particular, angles of exactly π

B

F ED

C

A

Fig. 8. A Laman circuit with a singular self-stress.
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Fig. 9. We can have flat angles on both sides of a non-crossing reciprocal pair.

(to be called flat angles) can arise and, by convention, we treat them as convex (“small”)
angles. In particular, a vertex having one flat angle is necessarily non-pointed, and the
face incident to it cannot be a pseudo-triangle, see Figs. 9 and 10. We do not allow
degeneracies in which the angle is zero, as these produce overlapping, hence crossing,
edges. Also, vertices with two flat angles have degree two and produce a double edge in
the reciprocal, so we do not allow them in our frameworks.

Recall that for a reciprocal non-crossing pair (G, ρ) and (G∗, ρ∗), the face cycles in
(G, ρ)must form the vertex cycles in (G∗, ρ∗). In principle, the face cycles could become
vertex cycles with either the same or the opposite orientation, but the orientation must
be globally consistent: either all the cycles keep the orientation or all of them reverse
it. Special care needs to be taken with the exterior face, for which the orientation must
be considered “from outside”: if the orientation is chosen counterclockwise for interior
faces, it will be clockwise for the outer face.

2.1. The Reciprocal of a Single Face

We concentrate on a single face of our framework G. That is to say, let F be a simple
polygon in the plane. If F has k convex vertices we say it is a pseudo-k-gon.

Given a vertex v of F , we call the reduced internal angle of F at v the internal angle
itself if v is a convex vertex (corner) of F , and the angle minus π if it is not. In other
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Fig. 10. Locally, the reciprocal of a pseudo-quadrangle with a flat vertex as a corner is a flat vertex.
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words, we are “reducing” all angles to lie in the range 0 < θ ≤ π . Our first result
generalizes the elementary fact that the total internal angle of a k-gon is (k − 2)π .

Lemma 4. The sum of the reduced internal angles of a pseudo-k-gon is (k − 2)π .

Proof. If the polygon has n vertices, the sum of (standard) internal angles is (n− 2)π ,
and the reduction process subtracts (n − k)π .

Now let signs be given to the edges of F , intended to represent the signs of a self-stress
in the framework of which F is a face. In this section we assume no sign is zero, which is
not really a loss of generality: if a self-stress is zero on some edges then it is a self-stress
on the subframework on which it is not zero and the reciprocal depends only on that
subframework.

In the reciprocal framework, F corresponds to a vertex to which the reciprocal edges
are incident. To draw the reciprocal edges we use the following rule: Edges are oriented
counterclockwise along the face boundary to form the boundary polygon. Edges with
positive stress will produce reciprocal edges pointing in the same direction as the original,
and edges with negative stress will produce reciprocal edges pointing in the opposite
direction at the vertex dual to F . These conventions are no loss of generality; the opposite
choice would produce a reciprocal rotated by π . The length of a reciprocal edge is the
length of the original edge scaled by the absolute value of the stress on that edge.

What are the conditions for the reciprocal to be “locally” non-crossing? The reciprocal
edges must appear around the reciprocal vertex of F in the same cyclic order as they
appear in F . That is to say, if e1 and e2 are two consecutive edges of F and e∗1 and e∗2 are
the reciprocal edges, we want the angle from e∗1 to e∗2 in the reciprocal to contain no other
edge (the reciprocal angle is oriented the same as the angle between e1 and e2 along F
in the orientation-preserving case and opposite otherwise). A necessary and sufficient
condition for this to happen is that the angles between reciprocals of consecutive edges
of F add up to 2π . We are now going to translate this into a condition on the signs of
edges.

We first look at the orientation-reversing case. Let e1 and e2 be two consecutive edges
of F with common vertex v. We say that the angle at v has a face-proper signature (or that
the angle of F at v is face-proper, for short) if either v is a corner of F and the signs of e1

and e2 are opposite, or v is not a corner and the two signs are equal. When the signature
is not face-proper (a corner with no sign change or a reflex-angle with sign change) we
call it vertex-proper. The reason for this terminology is that when rotating a ray around
a vertex, the fastest (“proper”) way of going from an edge to the next one is to keep the
direction of the ray for a big angle and to change to the opposite ray (“changing signs”)
when the angle is small. Analogously, when sliding a tangent ray around a polygon, we
should change to the opposite direction at corners.

The key fact now is that the reciprocal angle (measured clockwise) of a given vertex
v of F equals the reduced internal angle at v if the signature is face-proper, and it equals
the reduced internal angle plus π if it is vertex-proper. Hence:

Lemma 5. The sum of angles (all measured clockwise) between reciprocals of consec-
utive edges of F equals the total reduced internal angles of F plus π times the number
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Fig. 11. (a) A pseudo-triangle with one vertex-proper angle, at the corner between e and f , and (b) its
reciprocal vertex. (c) A pseudo-triangle with one vertex-proper angle between a and b, not at a corner, and (d)
its reciprocal vertex. Stress signs are indicated by line weights.

of vertex-proper angles. In particular, in order for F to produce a planar reciprocal with
the orientation reversed, F must be either a pseudo-quadrangle with no vertex-proper
angle, or a pseudo-triangle with only one vertex-proper angle. If there is a flat angle π ,
it must occur in a pseudo-quadrangle with a sign change at all corners (one of which is
the flat angle).

Proof. The two cases described are the only ways of getting (k − 2)π + sπ = 2π ,
where k is the number of corners (and hence (k − 2)π is the reduced internal angle of
F) and s is the number of vertex-proper angles.

If one of the convex angles is flat, then there must be four convex angles to achieve a
non-crossing polygon. Then F is a pseudo-quadrangle with a sign change at each of the
corners.

Figure 11 and the left half of Fig. 12 illustrate the cases permitted by Lemma 5. Thick
and thin lines represent the two different signs. The case of a pseudo-triangle produces
two different pictures, depending on whether the vertex-proper angle happens at a corner
(Fig. 11(a)) of the pseudo-triangle or at a reflex vertex (Fig. 11(c)). Parts (b) and (d) show
the reciprocal vertex with its incident edges.

The conditions for the orientation-preserving case are now easy to derive, and are
illustrated in Fig. 12(c), (d).

Lemma 6. Let n be the number of vertices in F . The sum of angles (all measured
counterclockwise) between reciprocals of consecutive edges of F equals 2nπ minus the
total reduced internal angle of F and minus π times the number of vertex-proper sign
changes. In particular, in order for F to produce a planar reciprocal with the same
orientation, F must be a strictly convex polygon and all edges must have the same sign.
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Fig. 12. A pseudo-quadrangle with all angles face-proper (a) and a convex face with no sign changes (c),
with dual vertices. Line weights indicate stress signs.
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Proof. The first assertion follows from Lemma 5 and the fact that the clockwise and
counterclockwise angles between two edges add up to 2π .

For the second assertion, the equation that we now have is 2nπ − (k − 2)π − sπ =
2π , where k and s again are the number of corners and vertex-proper sign changes
respectively. This equation reduces to s + k = 2n, which implies s = k = n. So F is a
convex polygon with all signs equal, as stated.

In particular, an angle of π with no sign change will make the two reciprocal edges
overlap at the reciprocal vertex. Any angle of π with a non-crossing reciprocal must
have a sign change. This means such angles cannot occur in the reciprocal with the same
orientation. The polygon is strictly convex.

2.2. Combinatorial Conditions for a Non-Crossing Reciprocal

Observe that in the description above, F was implicitly assumed to be an interior face. As
mentioned before, orientations of the outer face have to be considered reversed, which
means that the conditions of Lemmas 5 and 6 have to be interchanged when looking at
the outer face. Hence:

Theorem 2. It is impossible for a non-crossing framework to have a non-crossing
reciprocal with the same orientation.

Proof. According to Lemma 6, all interior faces should be convex and all edges should
have the same sign. However, according to Lemma 5, the outer face must have some
sign changes: at convex hull vertices we have vertex-proper sign changes if consecutive
edges have the same sign. There are at least three convex hull vertices, but only one
vertex proper sign change is allowed.

Hence, every pair of non-crossing reciprocals will have opposite orientations. Then
Lemmas 5 and 6 imply:

Theorem 3 (Face Conditions for a Non-Crossing Reciprocal). Let (G, ρ) be a non-
crossing framework with given self-stressω. The following face conditions on the signs of
ω are necessary in order for the reciprocal framework (G∗, ρ∗) to be also non-crossing:

(1) The (complement of) the exterior face is strictly convex with no sign changes.
(2) The internal faces of (G, ρ) are either

(a) pseudo-triangles with two sign changes, both occurring at corners,
(b) pseudo-triangles with four sign changes, three occurring at corners, or
(c) pseudo-quadrangles with four sign changes, all occurring at corners.

Theorem 3 says in particular that if two reciprocal frameworks are both non-crossing,
then they are both pseudo-quadrangulations.

Of course, the conditions on faces of (G, ρ) translate into conditions on the vertices
of (G∗, ρ∗). For both frameworks to be non-crossing, both sets of conditions must
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be satisfied in each framework. In particular, the following vertex conditions must be
satisfied in (G, ρ):

Theorem 4 (Vertex Conditions for a Non-Crossing Reciprocal). Let (G, ρ) be a non-
crossing framework with given self-stress ω. Then, in order for the reciprocal framework
(G∗, ρ∗) to be also non-crossing, the following vertex conditions need to be satisfied by
the signs on its vertex cycles:

(1) There is a non-pointed vertex with no sign changes.
(2) All other vertices are of one of the following three qualities:

(a) Pointed vertices with two sign changes, none of them at the big angle.
(b) Pointed vertices with four sign changes, one of them at the big angle.
(c) Non-pointed vertices, including any vertices with a flat angle, with four sign

changes.

Moreover, vertices of (G, ρ) in each of the cases (1), (2a), (2b) and (2c) correspond
respectively to faces of (G∗, ρ∗) in the corresponding parts of Theorem 3, and vice
versa.

Proof. Each of the cases of Theorem 3, applied to a face in (G∗, ρ∗), gives the condition
stated here for the reciprocal vertex of (G, ρ). See Figs. 11 and 12.

We show below that the vertex conditions of Theorem 4 actually imply the face
conditions of Theorem 3.

Both the face and the vertex conditions admit a simple rephrasing in terms of vertex-
proper and face-proper angles. Namely:

(1) The face conditions say that there is exactly one vertex-proper angle in every
pseudo-triangle, and no vertex-proper angle in the pseudo-quadrangles and the
outer face.

(2) The vertex conditions say that there are exactly three face-proper angles at every
pointed vertex and four at every non-pointed vertex other than the one reciprocal
to the outer face, which has no face-proper angle.

Observe that a pseudo-k-gon with k even (resp., k odd) must have an even (resp.,
odd) number of vertex-proper angles, simply because it has an even number of sign
changes. Hence, the face conditions say that this number is as small as possible: zero for
pseudo-quadrangles and the outer face, one for pseudo-triangles.

Similarly, the number of face-proper angles around a non-pointed (resp., pointed)
vertex must be even (resp., odd). Again, the vertex conditions say that this number is as
small as possible for the distinguished non-pointed vertex and for all pointed vertices
(but not for other non-pointed vertices), as the following result shows:

Lemma 7. A self-stress produces at least three face-proper angles at every pointed
vertex v (unless it is zero on all edges incident to v).
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Proof. Observe that in order to meet the equilibrium condition around a vertex, no line
can separate the positive edges of the self-stress incident to that vertex from the negative
ones. In the case of a pointed vertex this rules out the possibility of having just one
face-proper angle. Indeed, if the face-proper angle is at the big angle then all signs are
equal, and a tangent line to the point does the job. If the face-proper angle is small, then
a line through that angle does it. Since the number of face-proper angles at a pointed
vertex is odd, it must be at least three.

In Theorem 10 we prove an extra condition that the signs of a self-stress must satisfy
in order to have a non-crossing reciprocal: the edges in the boundary cycle must have
opposite signs to those around the distinguished non-pointed vertex (the one whose recip-
rocal is the outer face). The proof uses the relation between self-stresses and polyhedral
liftings of frameworks.

2.3. Necessary and Sufficient Conditions

Unfortunately, the purely combinatorial conditions on the signs of the self-stress stated
in Theorems 3 and 4 are not sufficient to guarantee that the reciprocal is non-crossing.
Figure 13 depicts a framework and a self-stress satisfying these conditions, part (a), but
its reciprocal, part (b), has crossings. We note that this example is a geometric circuit;
in particular, it has a unique self-stress (up to a constant). Part (c) of the same figure
shows a slightly different embedding of the same graph, for which the reciprocal, part
(d), turns out to be non-crossing. We conclude that there can be no purely combinatorial
characterization (that would depend only on the signs of the self-stress and on which
angles are big/small) of frameworks with a non-crossing reciprocal.

It is easy to analyze what goes wrong in this example: the signs around the interior
vertex of degree five in part (a) should produce a pseudo-quadrangle, but, instead, they
produce a self-intersecting closed curve (which can be regarded as a “self-intersecting
pseudo-quadrangle”). The following statement tells us that such self-intersecting pseudo-
quadrangles are actually the only thing that can prevent a non-crossing framework with
the appropriate signs in its self-stress from having a non-crossing reciprocal:

Theorem 5. Let (G, ρ) be a non-crossing framework with a given self-stress ω. The
reciprocal is non-crossing if and only if the signs of the self-stress around every vertex
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Fig. 13. Sign conditions are not enough to guarantee a non-crossing reciprocal. The geometric circuit in
part (a) has the same signs (and big/small angles) as the one in part (c), but the former produces a crossing
reciprocal (b) while the latter produces a non-crossing one (d).
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satisfy the conditions of Theorem 4 and, in addition, the face cycles reciprocal to the
non-pointed vertices with four sign changes are themselves non-crossing (and hence,
pseudo-quadrangles).

Proof. That the reciprocal cycles of every vertex of (G, ρ) need to be non-crossing
for the reciprocal to be non-crossing is obvious. The reason why we only impose the
condition on vertices of type (2c) is that the reciprocal cycles of vertices of types (1), (2a)
and (2b) are automatically non-crossing: there are no self-intersecting convex polygons
or pseudo-triangles.

Let us see sufficiency. The conditions we now have on vertex cycles tell us that we have
a collection of simple polygons (one of them exterior to its boundary cycle, containing
all the “infinity” part of the plane) and that these polygons can locally be glued to one
another: for every edge of every polygon there is a well-defined matching edge of another
polygon. Moreover, the fact that the orientations are all consistent implies that the two
matching polygons for a given edge lie on opposite sides of that edge.

If we glue all these polygons together (which can be done for any reciprocal, non-
crossing or not) what we get is a map from the topological dual of the framework (G, ρ)
(with a point removed, in the interior of the face reciprocal to the distinguished non-
pointed vertex) to the Euclidean plane. The local argument shows that this map is a
covering map, except perhaps at vertices where in principle the map could wind-up
two or more complete turns. However, the covering map clearly covers infinity once,
hence by continuity it covers everything once. This implies that the map is actually a
homeomorphism. That is, that the reciprocal framework is non-crossing.

One can interpret the meaning of the extra condition in Theorem 5 for the values of
the self-stress more explicitly. Observe that a closed cycle is self-intersecting if and only
if it can be decomposed into two cycles. Reformulated as an assertion about a vertex v
of (G, ρ) this means that there are two edges e and e′ around v such that the self-stress
(restricted to the edges around v and the equilibrium condition at v) can be “split” into
two self-stresses, one supported on the edges on one side of e and e′ and the other on the
edges on the other side. e and e′ may be used in both self-stresses, but if so, they must
have the same sign they have in the original self-stress.

To see this equivalence, just remember how to construct the reciprocal cycle of a
given self-stressed vertex: consider all edges incident to v oriented going out of v and
then place them one after another (the end of one coinciding with the beginning of the
next one), scaling each edge by the value of the self-stress on that edge; in particular,
reversing the edge if the self-stress is negative.

It is interesting to observe that Theorem 5 does not explicitly require that the frame-
work be a pseudo-quadrangulation, that is a consequence of the hypotheses. Corollary 1
below shows that the vertex conditions alone suffice.

Lemma 8. Let (G, ρ) be a pseudo-quadrangulation with e edges, t pseudo-triangles,
q pseudo-quadrangles, y pointed vertices and x non-pointed vertices. In a self-stress of
(G, ρ), the following five properties are equivalent:

(1) The face conditions of Theorem 3.
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(2) There are exactly t vertex-proper angles.
(3) There are at most t vertex-proper angles.
(4) There are exactly 3y + 4x − 4 face-proper angles.
(5) There are at least 3y + 4x − 4 face-proper angles.

Proof. By Lemma 1, 2e = t + 3y+ 4x − 4, where 2e is the total number of angles, so
conditions (2) and (3) are equivalent to (4) and (5), respectively.

For (1)⇒ (2) observe that the face conditions can be rephrased as “there is exactly
one vertex-proper angle in each pseudo-triangle, and no vertex-proper angle in a pseudo-
quadrangle or in the outer face”. For the converse, (2)⇒ (1), recall that we always have
at least t vertex-proper angles, one at each pseudo-triangle. The face conditions are just
saying that there are no more. The same observation gives (2)⇔ (3).

Corollary 1. Let (G, ρ) be a non-crossing framework, and letω be any sign assignment
satisfying the vertex conditions of Theorem 4. Then the face conditions of Theorem 3
also hold. In particular, (G, ρ) is a pseudo-quadrangulation.

Proof. Let t denote the number of pseudo-triangles in (G, ρ), and let q be the number
of other bounded faces (it will soon follow that they have to be pseudo-quadrangles, but
we do not explicitly require this). The same counting argument of Lemma 1 yields the in-
equality 2e ≥ 3t+4q+y, with equality if and only if we have a pseudo-quadrangulation.
Together with Euler’s formula we obtain 2e ≤ t+3y+4x−4, with equality for pseudo-
quadrangulations.

Now, the vertex conditions imply 3y + 4x − 4 face-proper angles and we have at
least t vertex-proper angles (one in each pseudo-triangle). Hence, 2e ≥ t +3y+4x −4,
which means that all the inequalities mentioned so far are tight and we have a pseudo-
quadrangulation satisfying the face conditions.

2.4. Three Special Cases

Something more precise can be said if (G, ρ) is either a geometric circuit, or a pseudo-
triangulation, or if it has a unique non-pointed vertex. Observe that the first case is
self-reciprocal and the other two are reciprocal to each other.

We start with the case of a framework with a single non-pointed vertex. Recall that the
dimension of the space of self-stresses in a non-crossing framework is bounded above by
the number of non-pointed vertices. At least one non-pointed vertex is needed to sustain
a self-stress. The presence of exactly one non-pointed vertex implies the existence of a
unique self-stress. We call frameworks with only one non-pointed vertex almost pointed.
The crucial feature about this case is that the extra condition introduced in Theorem 5 is
superfluous. The reciprocal is always non-crossing.

Corollary 2. Let (G, ρ) be a non-crossing framework with a self-stress and a single
non-pointed vertex. Then the reciprocal framework is non-crossing. In particular, (G, ρ)
is a pseudo-quadrangulation. Moreover, if the self-stress is everywhere non-zero, then
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the reciprocal is a pseudo-triangulation with q + 1 non-pointed vertices, where q is the
number of pseudo-quadrangles in (G, ρ).

Assuming that the self-stress is everywhere non-zero is actually no loss of generality:
the reciprocal of a singular self-stress is just the reciprocal of the subgraph of non-zero
edges. However, we need it in the second part of the statement in order to get the correct
count of pseudo-quadrangles.

Proof. Let t be the number of pseudo-quadrangles and let q be the number of other
faces. As in the previous corollary, 2e ≤ t + 3y + 4x − 4 = t + 3y, with equality if
and only if we have a pseudo-quadrangulation. However, we do have equality, since we
have at least t vertex-proper angles (one per pseudo-triangle) and at least 3y face-proper
angles, by Lemma 7. The equality implies that the vertex conditions are satisfied, hence
the reciprocal is non-crossing.

The fact that the reciprocal is a pseudo-triangulation with q + 1 non-pointed vertices
is trivial. The reciprocals of pointed vertices are pseudo-triangles, and the reciprocals of
pseudo-quadrangles and of the outer face are non-pointed vertices.

Now we look at pseudo-triangulations. The first observation is that not all pseudo-
triangulations have self-stresses that produce non-crossing reciprocals. For example,
the ones in Fig. 14 cannot have self-stresses satisfying the vertex conditions, because
those conditions forbid more than one non-pointed vertex of degree three. It is also
interesting to observe that these pseudo-triangulations possess self-stresses satisfying
the face conditions. For example, put negative stress to all edges incident to non-pointed
vertices of degree three, and positive stress on the others.

Corollary 3. Let (G, ρ) be a pseudo-triangulation with x non-pointed vertices and a
self-stress yielding a non-crossing reciprocal. Then this reciprocal has one non-pointed
vertex, x − 1 pseudo-quadrangles and n − x pseudo-triangles.

Proof. Straightforward, from Theorem 4.

Finally, we look at geometric circuits. Again, not all have non-crossing reciprocals,
as Fig. 1 shows.

a) b)

Fig. 14. These pseudo-triangulations have a self-stress fulfilling all face conditions but do not have a good
self-stress.
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Corollary 4. Let (G, ρ) be a geometric circuit. That is, G is a Laman circuit and (G, ρ)
is a non-crossing framework with a non-singular self-stress. If a reciprocal G∗ is non-
crossing, then the numbers of pseudo-triangles, pseudo-quadrangles, pointed vertices
and non-pointed vertices are the same in G and G∗.

Proof. We use the formula 2e = t + 3y + 4x − 4 of Lemma 1. Since a Laman
circuit has e = 2n − 2 = 2x + 2y − 2 edges, we get y = t . However, t is also the
number of pointed vertices in the reciprocal and y is the number of pseudo-triangles in
it. Now, by Euler’s formula, q + t + n − 1 = e = 2n − 2, hence q + t = n − 1 and
q = n − t − 1 = n − y − 1 = x − 1. That is to say, q = x − 1 and x = q + 1. Again,
x − 1 is the number of pseudo-quadrangles in the reciprocal, and q + 1 is the number of
non-pointed vertices.

3. Laman Circuit Pseudo-Triangulations Have Non-Crossing Reciprocals

3.1. The Non-Singular Case (Geometric Circuit Pseudo-Triangulations)

We start with a geometric circuit pseudo-triangulation. That is to say, a Laman circuit
embedded as a pseudo-triangulation with one non-pointed vertex whose self-stress is
non-zero on every edge. This simultaneously satisfies the hypotheses of Corollaries 2–4.
Hence:

Theorem 6. The reciprocal of a Laman circuit pseudo-triangulation with non-singular
self-stress is non-crossing and again a Laman circuit pseudo-triangulation (Fig. 15).

Together with Theorem 1, Theorem 6 implies:

Theorem 7. Let G be a Laman circuit. The following are equivalent:

(1) G is planar.
(2) G has a planar embedding with a non-crossing reciprocal.
(3) G can be embedded as a pseudo-triangulation with one non-pointed vertex (whose

reciprocal is, in turn, a pseudo-triangulation with one non-pointed vertex if the
embedding is generic).
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Fig. 15. A reciprocal pair of Laman circuit pseudo-triangulations.
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Fig. 16. A singular self-stress on a Laman circuit pseudo-triangulation can drop an edge from the original
graph—and fuse two vertices in the reciprocal.

3.2. Singular Circuit Pseudo-Triangulations

For a given planar Laman circuit G, the embeddings ρ creating a pseudo-triangulation
(G, ρ) form an open subset of R2|V |. The non-singular pseudo-triangulations of Sec-
tion 3.1, which are geometric circuits, form an open dense subset of this subset. The
remaining singular pseudo-triangulations are “seams” between some components of this
open dense set.

Consider any singular pseudo-triangulation on a Laman circuit. The self-stress is
supported on a subgraph Gs , see Fig. 16(a). Since this framework is still infinitesimally
rigid with |E | = 2|V |−2, it has a one-dimensional space of self-stresses. This framework
(Gs, ρs) with its self-stress can be approached as a limit of geometric circuits (G, ρn)

on the whole graph, each with a planar reciprocal by Section 3.1. One can anticipate that
the limit of these reciprocals will also be non-crossing, and this is what we prove below.

For example, when an edge drops out of the self-stress, the two faces separated by
the lost edge become one face in the subgraph Gs , see Figs. 16(a), (c). For each lost
edge of the original, the corresponding edge of the reciprocal, whose length records the
coefficient in the self-stress, will shrink to zero, and the two reciprocal vertices are fused
into one vertex corresponding to the unified face of the original. See Figs. 16(b), (d).

We now prove that even in these singular situations the reciprocal is non-crossing and
a pseudo-triangulation.

Theorem 8. Let (G, ρ) be Laman circuit embedded as a (possibly singular) pseudo-
triangulation. Then it has a unique self-stress, supported on a subgraph Gs ⊆ G. Gs is
a pseudo-quadrangulation with a unique non-pointed vertex and with q = 2n − 2 − e
pseudo-quadrangles, if Gs has e edges and spans n vertices. Its reciprocal is non-
crossing, and it is a pseudo-triangulation with n − 1 pseudo-triangles and q + 1 non-
pointed vertices.

Proof. By Lemma 1 (G, ρ) has a unique non-pointed vertex. Clearly, vertices of Gs

that were pointed in (G, ρ) are pointed also in (Gs, ρ). In particular, Gs has at most one
non-pointed vertex. By Corollary 2, the reciprocal is non-crossing. The other statements
are easy to verify.

3.3. Good Self-Stresses

We have seen that all reciprocals corresponding to a (possibly singular) self-stress on
a Laman circuit are non-crossing pseudo-triangulations. We say that a self-stress on a
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non-crossing framework (G, ρ) is a good self-stress if it is non-zero on all edges and
the reciprocal for this self-stress is non-crossing. The existence of a good self-stress
is precisely equivalent to the existence of a non-crossing reciprocal with all edges of
non-zero length. Does the construction in Theorem 8 create all examples of a good stress
on a pseudo-triangulation? The answer is yes.

Theorem 9. If a pseudo-triangulation (G∗, ρ∗) has a good self-stress, then (G∗, ρ∗)
is the reciprocal of a (possibly singular) Laman circuit pseudo-triangulation (G, ρ).

Proof. Let (Gs, ρ) be the reciprocal of (G∗, ρ∗), which is non-crossing by assumption.
By Corollary 3, (Gs, ρs) is an almost pointed framework, with pseudo-triangles and
pseudo-quadrangles. If (Gs, ρs) is already a pseudo-triangulation, then both graphs are
Laman circuits, and we are finished. Otherwise there are some pseudo-quadrangles.

As is well-known, a “diagonal” edge can be added through the interior of each pseudo-
quadrangle to subdivide it into two pseudo-triangles, such that no new non-pointed vertex
is created [20, Theorem 6]. This process creates a pseudo-triangulation (G, ρs), with one
non-pointed vertex and the same vertex set as (Gs, ρs).

Such an almost-pointed pseudo-triangulation (G, ρs) has a unique self-stress, in this
case the self-stress supported on Gs . That is to say, (G∗, ρ∗) is not only the reciprocal
of (Gs, ρs), but also of the almost-pointed pseudo-triangulation (G, ρs) with singular
self-stress.

A singular self-stress can drop not only edges of the original pseudo-triangulation but
also vertices (Fig. 17). However, it is a consequence of this proof that we can choose
some alternate pseudo-triangulation in which the singular self-stress spans all vertices.
In that case, some simple counting arguments give more information on the connections
between (G, ρs) and the support (Gs, ρs) of the singular stress.

Corollary 5. Let (G, ρ) be a Laman circuit pseudo-triangulation, and let Gs be a
spanning subgraph of G supporting a self-stress. Let k be the number of edges not used
in Gs , so that |Es | = 2|Vs | − 2− k, k > 0. Then:

(1) (Gs, ρ) is a pseudo-quadrangulation with n − 1 − 2k pseudo-triangles and k
pseudo-quadrangles, each formed as the union of two pseudo-triangles of (G, ρ).
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Fig. 17. A singular stress on a Laman circuit can drop both vertices and edges.
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(2) The non-pointed vertex of (G, ρ) is still non-pointed in (Gs, ρ), and (Gs, ρ)

contains the boundary cycle of (G, ρ).
(3) The reciprocal is a pseudo-triangulation with k + 1 non-pointed vertices.

Proof. The n− 1 pointed vertices of G are still pointed in Gs . Hence, they still have at
least 3n−3 face-proper angles. Since every edge is incident to two faces, the removal of k
edges destroys at most 2k pseudo-triangles, hence we still have at least n−1−2k pseudo-
triangles, each with at least one vertex-proper angle. These (3n − 3)+ (n − 1− 2k) =
2(2n − 2− k) angles equal twice the number of edges in Gs . In particular, the number
of pseudo-triangles of G that survived in Gs is exactly n − 1− 2k, and there is no other
pseudo-triangle in Gs . Therefore, each of the k removed edges merged two pseudo-
triangles into a pseudo-quadrangle, and the 2k merged pseudo-triangles are all different.
This proves parts (1) and (2) (the latter because if the removal of an edge makes the non-
pointed vertex pointed, then this removal merges two pseudo-triangles into a pseudo-
triangle, not a pseudo-quadrangle).

4. The Spatial Liftings of Non-Crossing Reciprocal Pairs

A self-stress on a framework (G, ρ) defines a lifting of the framework into 3-space with
the property that face cycles are coplanar. Here we look at the lifting produced by a
good self-stress; that is, a self-stress on a non-crossing framework that produces a non-
crossing reciprocal. For any non-crossing framework, the lifting is a polyhedral surface
with exactly one point above each point of the plane (we emphasize that the outer face is
considered exterior to its boundary cycle; the standard Maxwell lifting would consider it
interior to the cycle, hence providing a closed, perhaps self-intersecting surface, with two
points above each point inside the convex hull of the framework). The lifting is unique
up to a choice of a first plane and of which sign corresponds to a valley or a ridge [6],
[7], [26]. Our standard choice for the starting plane places the exterior face horizontally
at height zero, and our standard choice for signs sets the edges in the boundary cycle as
valleys. The latter makes sense since in a good self-stress all boundary edges have the
same sign. We call this the standard lift (G, µ) of the good self-stress (G, ρ).

Figures 4, 20 and 21 show standard liftings of several good self-stresses. In all of
them one observes a similar “shape”: the entire surface curls upwards from the base to
a single maximum point, which is the lifting of the distinguished non-pointed vertex. In
particular, there are no local maxima other than this peak, or local minima except the
exterior face in such a surface. The main theorem in this section shows that these claims
hold for all lifts of non-crossing frameworks with non-crossing reciprocals.

For this spatial analysis it is easier to reason with the Maxwell reciprocal, in which
each reciprocal edge is perpendicular, instead of parallel, to the original edge. This
Maxwell reciprocal is obtained by rotating the Cremona reciprocal by 90◦. The reason
for the rotation is that given a spatial lifting a Maxwell reciprocal is created by choosing
one central point in 3-space—for example (0, 0, 1)—and drawing normals to each of the
faces through this point. The intersection of the normal to face F with the plane z = 0
is then the reciprocal vertex for this face [6], [7]. If we want to ensure, for visual clarity,
that the reciprocal and the original framework do not overlap, we simply translate this
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construction off to the right by picking the central point to be (t, 0, 1). This is what we
have done in our figures.

Theorem 10.

(i) Given a non-crossing framework (G, ρ) with a self-stress such that the corre-
sponding reciprocal (G∗, ρ∗) is non-crossing, the standard lifting (G, µ) has a
unique local (and global) maximum point, whose reciprocal is the boundary of
(G∗, ρ∗), and has all signs in the self-stress opposite to those on the original
boundary.

(ii) The maximum is the unique point where the lifted surface is “pointed”, meaning
that a hyperplane exists passing through it and leaving a neighborhood of it in
one if its two open half-spaces.

(iii) The boundary face is the unique local minimum of (G, µ).

Proof. In the standard lifting, the boundary is a horizontal plane and every edge is
attached to an upward sloping face. No local maximum can be on the boundary.

Take any isolated local maximum. Cut the lifted surface, just below this point, with
a horizontal plane. This cuts off a pyramid whose vertical projection is a non-crossing
wheel framework. Because of the spatial realization, this projection is a reduced non-
crossing framework (W, ρw) (Fig. 18) which has a corresponding reduced reciprocal,
also, graphically, a wheel. At this hub vertex, the pyramid and the original surface have
the same face planes and edges. Therefore, this hub has the same reciprocal polygon
in the wheel reciprocal and in the original reciprocal (G∗, ρ∗), and the same stresses
along these edges in the two projections. Moreover, the signs of the spokes in this stress
indicated the concavity or convexity of the edge in the lifting µ and the concavity or
convexity in the rim polygon at this spoke of the wheel. We can now sweep around the
maximal hub: we start with the plane of a face, then we rotate the plane about an adjacent
spoke until we reach the next face, etc. The normals to these tangent planes track the
reciprocal polygon, with a reciprocal vertex for the normal to each of the faces.

If the base of the pyramid is not a convex polygon, then there is some segment of the
convex hull between two vertices of the base polygon which does not lie in the polygon,
placing all other vertices into one half-plane (Fig. 18(b)).

Consider the plane Q formed by this segment and the hub in space. This plane will
place all of the pyramid in one half-space, touching it in at least two spokes. We claim
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Fig. 18. Possible pyramids which might be created by a cut near a maximum in the lifting of a non-crossing
framework (shown in vertical projection), with their reciprocals.
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that the normal q to this plane is a crossing point of the reciprocal polygon. As we sweep
around a spoke that lies in Q, we will encounter Q as one of the tangent planes, and
hence q will appear on the edge reciprocal to the spoke. Since this happens for at least
two spokes, the reciprocal polygon is self-intersecting at q.

Since we know that the reciprocal polygon is non-crossing (and non-touching) we
conclude that the original pyramid base must be a convex polygon. A direct analysis of
the wheel now guarantees that all the signs of the spokes of the wheel are the same—and
are opposite to the rim of the wheel, representing ridges. Since the stress, and the signs,
at the hub are the same in the larger framework, we conclude that any maximal vertex
has all signs the same, and these signs are opposite to the boundary of the framework.

By Theorem 4, we know that there is only one vertex with no sign changes in each
side of a reciprocal pair of non-crossing frameworks, and that this vertex is the reciprocal
of the boundary of the other framework in the pair. We conclude that there is a unique
local maximum—the global maximum. This global maximum corresponds to the convex
boundary polygon in the reciprocal. Thus we have proved part (i) of the theorem for a
local maximum consisting of an isolated vertex.

If we can cut off a vertex v of the lifting with a plane P which is not necessarily
horizontal, but cuts all edges between v and its neighbors, the above argument applies
without change. This section will still produce a spatial wheel which will project into a
plane wheel with the hub inside the rim. Any such vertex would have to be the reciprocal
vertex of the boundary, and since this vertex is unique, we have proved statement (ii) of
the theorem.

Let us consider the case in which a local maximum is not just a vertex but a larger
connected set M consisting of horizontal lines and horizontal faces. We can apply the
argument of the previous paragraph to any vertex of the convex hull of M .

Given any local minimum that is not on the boundary, the same argument about the
pyramid cut, and the sense of the reciprocal polygon applies. This gives a contradiction,
so the only local minimum is along the boundary face, proving part (iii).

Statement (ii) can be interpreted as saying that the maximum is the only (locally)
strictly convex vertex of the surface. However, it is possible for a vertex v to have all
adjacent vertices in a closed half-space through v. This can only happen for a pointed
vertex and the half-space bounded by the plane of the face into which it points. In
particular, all boundary vertices have this property.

We can derive the following consequences of the previous theorem:

Corollary 6. In a good self-stress, the edges incident to the distinguished non-pointed
vertex are signed opposite to the edges of the boundary cycle.

Proof. Since the distinguished vertex is the maximum of the standard lifting, some
(hence all) of its incident edges are ridges, while the boundary edges are valleys in the
standard lifting.

Corollary 7. In the lifting of a good self-stress there are no (horizontal) saddle points.
All level curves are simple closed curves, and as we increase the height the level
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curve moves monotonically from the boundary cycle to the distinguished non-pointed
vertex.

Observe, however, that the intermediate level curves need not be convex, even though
the boundary cycle and the level curves sufficiently close to the tip are convex. For
example, this happens in Fig. 20.

Proof. There cannot be any saddle points, because general Morse theory on a disk
with a horizontal boundary shows that a saddle point would require an additional local
maximum or a new local minimum. In the absence of saddle points, Morse theory also
implies that all level curves are isotopic to one another, hence they are all simple closed
curves because the boundary cycle is.

Theorem 11. For any vertex except the maximum, there is a plane through that vertex
that cuts the neighborhood into four pieces, just like a tangent plane through a saddle
point. No plane through a vertex cuts the neighborhood into more than four pieces, i.e.
there are no multiple saddles.

More precisely, for every general direction in the interior of the reciprocal figure there
is a unique vertex such that a plane with this normal through the vertex cuts the neigh-
borhood into four pieces. For planes with this normal, all other vertex neighborhoods
are cut into two pieces, with the exception of the peak, whose neighborhood lies entirely
below the plane. For all directions in the outer face of the reciprocal, a plane with that
normal will cut the neighborhood of every vertex, including the peak, into two pieces.

Proof. The neighborhood of v consists of an alternating cyclic sequence of edges
emanating from v and faces between those edges; in the face V ∗ reciprocal to v, these
correspond to vertices and edges, respectively.

We want to count how many faces incident to v meet a given plane Q through v. In
order to determine whether Q intersects a given face F between two neighboring edges
e1 and e2 emanating from v, we look at the relation between the reciprocal normal vector
q∗ and the reciprocal vertex f ∗, forming an angle of V ∗ with the incident edges e∗1 and
e∗2. It turns out that Q intersects F if and only if

• e∗1 and e∗2 have different signs and the line through q∗ and f ∗ cuts through the
boundary of V ∗ at f ∗, or
• e∗1 and e∗2 have the same sign and the line through q∗ and f ∗ is tangent to the

boundary of V ∗ at f ∗.

We know that the signs around V ∗ satisfy the face conditions. It follows that q∗ has the
above-mentioned relation to precisely four vertices of a face V ∗ if q∗ lies in V ∗, and to
precisely two vertices of V ∗ if q∗ lies outside V ∗. This holds for the interior faces of
the reciprocal (pseudo-triangles and pseudo-quadrangles), and it can be easily proved by
checking a few elementary cases and then showing that the number of “related” vertices
does not changes as one moves q∗, except when crossing the boundary of V ∗.

When v is the peak and V ∗ is the outer face, q∗ is related to precisely two vertices of
V ∗ if it lies in the outer face, and to no vertices otherwise.
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The desired statements now follow easily. (The first part of the theorem, which is only
a local statement about the neighborhood of v, can also be proved directly in the original
framework along the lines of the proof of Theorem 10 by considering the geometry and
the possible sign patterns of edges between two intersections with Q.)

The behavior exhibited in the previous corollary is analogous to what happens in
the upper half of the pseudo-sphere, a surface of constant negative curvature in 3-space
which serves as a model for (a part of) the hyperbolic plane. The pseudo-sphere is the
surface of revolution generated by a tractrix. The upper half is given in parametric form
in polar coordinates r, ϕ, z by the equations z = u− tanh u, r = sech u for u ≥ 0. When
the pseudo-sphere is viewed as the graph of a function over the unit circle, then for every
gradient direction there is a unique point with that gradient, and the mapping point←→
gradient is an orientation-reversing mapping between the pseudo-sphere and the plane.
Also the properties in Theorem 10 confirm that the lifted surface of each framework
in a non-crossing pair has the shape of a rough piecewise-linear pseudo-sphere, except
that the pseudo-sphere has the vertical axis as an asymptote, whereas our lifted surface
reaches a finite maximum. (In this sense the surface z = (r − 1)2 over the region r ≤ 1
might be a more appropriate smooth model for our lifted surface. It has a constant negative
Laplacian�z = −2.) In a visible sense, this lifted surface is as non-convex as possible.

Liftings of pseudo-triangulations have also emerged recently in the context of locally
convex piecewise-linear functions over a polygonal domain subject to certain height
restrictions [1]. There are some similarities, in particular regarding the twisted saddle
property discussed in Theorem 11, but we have not explored whether there are any deeper
connections to our present work.

5. Open Problems

Throughout this section we say that a non-crossing framework is good if it has some good
self-stress, i.e. an everywhere non-zero stress that produces a non-crossing reciprocal. In
particular, every almost pointed non-crossing framework is good. We do not require all
its self-stresses to be good, simply because every framework with at least two (linearly
independent) self-stresses has some bad self-stresses. Indeed, let ω1 and ω2 be two
independent everywhere non-zero self-stresses on a framework, and suppose they are
both good. Consider the associated standard liftings, µ1 and µ2. For c > 0 sufficiently
big (resp., sufficiently small) the lifting cµ1 lies completely above (resp., completely
below) µ2. Since cµ1 is never equal to µ2, there must be an intermediate value c0 for
which c0µ1 has some parts above and some parts below µ2. In particular, c0ω1 − ω2

cannot be a good self-stress, because its associated lifting has parts above and below the
plane of the outer face, which contradicts Theorem 10.

5.1. Good and Bad Pseudo-Triangulations

In Section 2 we saw examples of pseudo-triangulations which cannot support a good
self-stress. In Fig. 19(b) we see a different framework on the same graph as in Fig. 14,
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Fig. 19. A pseudo-triangulation with two non-pointed vertices (b) with its reciprocal (a), a singular pseudo-
triangulation.

with the same face structure, which does have a good self-stress, as demonstrated by
the non-crossing reciprocal. The difference between these examples lies in the choice of
exterior face and of the associated big and small angles. In [17] a combinatorial analog
of pseudo-triangulation is discussed in which the planar graph has a formal labeling of
“big” and “small” assigned to the angles, which may or may not correspond to the big and
small angles of any planar realization, with pseudo-triangle and pointedness described
combinatorially.

For a given graph, having a good self-stress is an open property, so if there are any
good realizations there are nearby generic realizations.

Open Problem 1. What conditions on a combinatorial pseudo-triangulation ensure
existence of a good generic realization? If there is a good generic realization of a combi-
natorial pseudo-triangulation, are all generic realizations of this combinatorial pseudo-
triangulation good? If the answer is yes, then a purely combinatorial characterization of
combinatorial pseudo-triangulations that admit good embeddings should exist. Find it.

Observe that the second question has a negative answer if posed for pseudo-quadrang-
ulations. Figures 20 and 22 show two different generic embeddings of a Laman circuit
as pseudo-quadrangulations with the same big and small angles. The unique self-stress
is good in the first embedding and bad in the second.
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Fig. 20. A reciprocal pair of pseudo-quadrangulations on a Laman circuit.
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Fig. 21. A nearby singular framework with its compressed reciprocal and lift.

5.2. Good Pseudo-Quadrangulations

Our characterization in Section 2 applies to all non-crossing reciprocal pairs based on
a graph G and its dual G∗ on the induced face structure of the embedding. In general,
these reciprocal pairs are composed of pseudo-triangles and pseudo-quadrangles, with
at least one non-pointed vertex.

Figure 20(a) contains such a pair of non-crossing reciprocals on a Laman circuit,
with the sign pattern of the corresponding self-stress, as predicted by Theorem 4, and
Fig. 20(b) shows the lifts guaranteed by Maxwell’s theorem. Figure 21(a) contains a
singular framework and its reciprocal (with two vertices fused) found as a limit from
the previous example, with the sign pattern of the corresponding self-stress, as pre-
dicted by Theorem 3, and Fig. 21(b) shows the lifts. We note that a small additional
change in location, away from the original pair across this singularity, can make this
pseudo-quadrangulation bad, as the sign pattern is altered on the singular edge, see
Fig. 22.

This illustrates that, once we leave the realm of pseudo-triangulations, the big and
small angles are not sufficient to determine whether even a generic framework on a
Laman circuit has a good self-stress.

Open Problem 2. Characterize directly by their geometric properties as embeddings,
all non-crossing frameworks on a Laman circuit G with a non-crossing reciprocal.

Like all characteristics of a self-stress, the existence of a good self-stress on a frame-
work is invariant under any external projective transformation of the plane, that is, a
projective transformation in which the line being sent to infinity does not intersect any of
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Fig. 22. The same graph and combinatorial pseudo-quadrangulation can be bad, because of an altered sign
pattern.
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the vertices or edges of the original framework. This invariance is a direct consequence
of the map on the stress-coefficients induced by such a projective transformation, which
does not change any signs and preserves all equilibria [21]. These two properties of the
map guarantee that all the necessary and sufficient conditions of Section 2 are preserved.

However, whatever projective property is required for a good self-stress, it is more
refined than the simple choice of large and small angles, or even the oriented matroid
of the vertices themselves. We do not have a firm conjecture for the geometry in the
framework which determines that there is a good self-stress. Such a good self-stress
will be singular on any refinement of the framework to a pseudo-triangulation. The pure
condition polynomials mentioned in the Introduction, which are zero for edges dropped
in a singular self-stress, are projective invariants [25]. Recall Fig. 8, where the condition
was the concurrence of three lines. It is possible that all the necessary information lies
in the geometry of singular self-stresses on a pseudo-triangulation refining the pseudo-
quadrangulation.

5.3. Refinement

It is natural to start with a non-crossing Laman circuit pseudo-triangulation and generate
denser examples by adding edges. However, the refinement process does not preserve
“goodness” in general, even when it adds no vertices.

In Fig. 23 we show an example of this. The framework on the left, without the edge cd,
is an almost-pointed pseudo-triangulation, whose unique self-stress is by our results good
(its reciprocal is on the right). We claim that if we add the edge cd then there is no good
everywhere-non-zero self-stress on the framework. To see this, let ω1 be the self-stress
of the pseudo-triangulation and let ω2 be the self-stress with support on the subgraph
induced by the vertices a, b, c, d, e and g (including the edge cd). Since this subgraph
can be lifted to a roof-like surface, ω2 has one sign, say negative, on the boundary and
the opposite sign in the interior. Without loss of generality we assume that ω1 was also
negative on the boundary. It turns out that ω1 and ω2 generate the space of self-stresses
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Fig. 23. A pseudo-quadrangulation with a good self-stress for which the added edge (dashed) makes a good
self-stress on all edges impossible.
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of the whole graph, but no linear combination αω1 + βω2 will give alternating signs to
the edges of the quadrilateral abdc: if α/β > 0 then bd and cd get the same sign; if
α/β < 0 then ac and cd do.

However, if a good pseudo-triangulation (G, ρ) is refined to another pseudo-triangu-
lation (G ′, ρ)without adding vertices, we conjecture that (G ′, ρ) is good too. Our reason
for this conjecture is that it is easy to prove that, at least, there is a self-stress in (G ′, ρ)
satisfying the vertex conditions of Theorem 4. The idea of the proof is that one can go
from (G, ρ) to (G ′, ρ) via a sequence of “elementary refinements” of one of the following
types: addition of a single edge to divide a pseudo-triangle into two, or addition of three
edges forming a triangle that separates the three corners of a pseudo-triangle, dividing
it in four pseudo-triangles. (See Lemma 3 of [20] for a formal argument that these
refinements are sufficient.) In both cases, a simple case study together with elementary
properties of self-stresses gives the required sign pattern.

This conjecture reduces to proving that the extra condition ruling out bad quadrangles
can be obtained too.

Open Problem 3. Is it true that every pseudo-triangulation refinement (with no extra
vertices) of a good pseudo-triangulation is good?

Also, if one allows something more than simply adding edges:

Open Problem 4. To what extent can non-crossing reciprocal pairs be generated from
Laman circuit pseudo-triangulations via refinement?

Solving either of these two problems could be a step toward solving Problem 1.

5.4. Lifting Questions

Liftings of pseudo-triangulations have also emerged recently in the context of “locally
convex” functions over a polygonal domain subject to certain height restrictions [1]. We
have seen here that, given a pair of frameworks whose reciprocals are both non-crossing,
the lifted surface of each framework shares some characteristic properties of a pseudo-
sphere. It would be of interest to see if this resemblance increases with the density of the
framework.

Open Problem 5. Let {(Gi , ρi )} be a sequence of Laman circuit pseudo-triangula-
tions such that each (Gi+1, ρi+1) is obtained from (Gi , ρi ) by a making a Henneberg
II move in a randomly selected face. With an appropriate normalization of the stresses,
this defines a sequence of lifted surfaces, all of which have negative discrete curvature
at every vertex except for a single maximum vertex.

Does this process converge to some limit? What can be said about the limiting surface?
Are there combinatorial conditions on the sequence of frameworks that ensure that the
limit is something like a smooth pseudo-sphere?
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One could ask the same question with a different model of generating “random”
Laman circuits. For example, the PPT-polytope of [19] is a polytope whose vertices are
in one-to-one correspondence with the pointed pseudo-triangulations on a given point
set. Choosing an extreme vertex in a random direction (for a randomly generated point
set) produced a pseudo-triangulation, to which we can add an edge to create a “random”
Laman circuit. Limit shapes like this have appeared in other contexts, for example for
random convex polygons [3], [4].

The results in Section 4 interpreted necessary conditions in Section 2 on the self-stress
at the vertices and faces of the original non-crossing framework as necessary conditions
on the lifting. It is natural to reverse this idea by starting from a piecewise-linear surface
and projecting it back to the plane.

Open Problem 6. Characterize geometrically exactly which piecewise-linear spatial
surfaces, projecting one to one onto the entire plane, project to planar frameworks with
non-crossing reciprocals.

5.5. Non-Crossing Reciprocals with Respect to Other Embeddings

If a graph admits several topologically different embeddings in the plane, one may decide
to construct the reciprocal of a non-crossing framework on that graph taking as face and
vertex cycles those of a different plane embedding from the one given by the framework.
Alternatively one may not allow this but decide to call the reciprocal non-crossing if it
is non-crossing as a geometric graph, even if its face structure is not dual to the one in
the original.

Our characterizations of non-crossing reciprocal pairs do not address these situations.
Note that this is only an issue for non-3-connected graphs, and that graphs with cut
vertices need not be considered: every self-stress can be decomposed as a sum of self-
stresses supported in 2-connected components.

There are two questions that should be addressed here.

Open Problem 7. Is there a non-crossing framework G (necessarily 2-connected but
not 3-connected) whose natural reciprocal has no crossing edges but is embedded dif-
ferently from the graph-theoretic planar dual of G?

We know that this cannot happen when G is a Laman circuit (see Theorem 7), but for
frameworks with more edges, the question is open.

Open Problem 8. Characterize pairs of non-crossing frameworks which are recipro-
cals to one another, but not necessarily with respect to the face and vertex cycles given
by their embeddings as frameworks.

5.6. What Planar Graphs Produce Non-Crossing Reciprocal Pairs?

We finish with perhaps the broadest question of all:
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Open Problem 9. Given a 2-rigid planar graph, decide (give a characterization, or at
least a reasonable algorithm) whether it has a non-crossing generic embedding with a
good self-stress.

We know for example that for all Laman circuits such an embedding exists: any
generic pseudo-triangulation embedding works. In order for a generic framework to
have a self-stress on all edges, it must be 2-rigid—remain rigid after deletion of any
one edge [14]. However, we also know that not all planar 2-rigid graphs have such an
embedding (Fig. 14).
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