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Matching Convex Shapes with Respect to
the Symmetric Difference

H. Alt,2 U. Fuchs? G. Rote® and G. Webér

Abstract. This paper deals with questions from convex geometry related to shape matching. In particular,
we consider the problem of moving one convex figure over another, minimizing the area of their symmetric
difference. We show that if we just let the two centers of gravity coincide, the resulting symmetric difference
is within a factor of%l of the optimum. This leads to efficient approximate matching algorithms for convex
figures.
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1. Introduction. A very common problem arising in application areas like computer
vision or pattern recognition is that two “figureF; andF, are given and the question
is how much these figures “look alike?; might be an image of an unknown object, and
F> might be one of several possible templates for this object. In other words, we want
to match i andF, as good as possible. The quality of a match is measured by some
“distance” functions (A, B) which assigns a number to any two sétandB.

More precisely, assume that we consider a certairf sef feasible transformations
that may be used for matching. Then we definesth@pe matching probleas follows:

Giventwo figuresF; andF,, finda transformatiot®® e 7 minimizings (Fq, t(F»))
overallt e 7.

Reasonable sets of matching transformations are, for example, translations, rigid mo-
tions (i.e., compositions of translations and rotations), similarities, arbitrary affine map-
pings, or projective transformations. (Note that for transformations that allow changes
of size, such as homotheties, it makes a difference if we exchiangedF,.)

Most of the previous work has concentrated ontfaeisdorff distancas a distance
measure [ABB], [AST], [CGH], [HKS], [AAR]. Since solving the optimization prob-
lem exactly turns out to be rather difficult, more efficiapproximation algorithmbave
been developed. These algorithms do not necessarily find the optimum but a solution
whose quality is within a constant factor of the optimal one. The simplest approach for
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getting approximation algorithms useserence pointsRoughly speaking, a reference
pointis a characteristic point with the property that if two figures are matched optimally,
their reference points lie close together. Conversely, if we restrict to matching trans-
formations that map the reference pointfef onto the the reference point &, the

best solution in this restricted set cannot be much worse than the optimal solution. The
restricted set of transformations has fewer degrees of freedom, and thus the restricted
optimization problem is easier to solve.

For example, iff is the set of translations, the restricted optimal translation is directly
available, namely, the vector between the two reference points. In the case of rigid
motions, the two reference points are matched and then the optimal positieniof
sought among rotations around this point.

Formally, we call a map that assigns to each figure in a certain class of fifuaes
point in the plane, aeference poinfor 7 (with respect to a distandeand with respect
to F) if there is a constant > 1, called theapproximation factorsuch that for any
two figuresFy, F, € F there exists € 7 mapping the reference point & onto the
reference point of; and fulfilling for allt € 7 the inequality

S(Fy, r(F)) <c-8(F, t(F).

With respect to the Hausdorff distance and rigid motions (and also more general
classes of transformations) thenter of gravityor centroid of the convex hull is not a
reference point: this is easily seen by considering a very long rectangle on the one hand
and one of the triangles obtained from the rectangle by cutting along the diagonal on the
other hand.

However, two reference points with respect to the Hausdorff distance and rigid mo-
tions have been found: the centroid of the boundary of the convex hull [ABB] and the
so-calledSteiner poinfAAR]. The Steiner point of a convex polygon is obtained as the
center of gravity when a mass proportional to the exterior angle is placed at each vertex.
For a smooth convex body, the mass has to be distributed on the boundary proportional
to the curvature.

Here we consider a different distance measure between figures, namelyeahef
the symmetric differencghich we denote by

3(F1, Fp) := aredF1 A Fp) = areaF\F,) + ared R\ Fy).

For a planar regiofr, we often just writeF instead of ared) when no confusion arises.

The symmetric differencé is one of the standard error measures considered in the
theory of convex approximation, see the surveys of Gruber [G1], [G2]. In the area of
computational geometry, has been investigated only in a few papers so far, including
[ABGW], where simplification problems are addressed, and a recent paper of de Berg
et al. [BDK'], which is also concerned with matching problems under translations.

In some applicationsj is more appropriate than the Hausdorff distance. Consider
the case wherf; is an image disturbed by noise: noise may add thin features to the
boundary, but it is unlikely to change large areas. The Hausdorff distance may change
dramatically, even if only a single point is addedRg whereas the optimal matching
for the symmetric difference will hardly change, even if the noise adds some areas that
are disconnected frorf;.
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For measurable setg, B, C with finite areas, the distance functiérsatisfies the
triangle inequality:

(1) 8(A,C) <4(A, B)+8(A,C).

This follows from the set-theoretic relation
AABC(AAC)U(BAC).

(To obtain a metric, some regularity conditions must be imposed on th& sBtsC. For
example, for bounded sets which are equal to the closure of their interior, or for compact
convex sets of positive are&js a metric.)

In this paper we restrict our attentiondonvexXigures only. For convex plane figures,
we show that the centroid is a reference point for translations, rigid motions, and some
other sets of transformations. In particular, if we translate a convex figuso that
its centroid matches the centroid of another convex figtirehe resulting symmetric
difference is at mosi3—1 times as large as the optimal one under translations. We give an
example showing that this constant is optimal. This theorem is the main geometric result
of the paper, and it is proved in Section 2.

Arelated theorem has been obtained by de Berg et al. [BDKinstead of minimizing
the area of the symmetric differenEg At (F,), wemaximize the area of the intersection
| = FLNt(F), we get of course the same result sidg¢&,, t(Fo)) = F1 + F, —
21 . However, when it comes to the relative performance of approximation algorithms,
there is a difference. De Berg et al. considered the very same heuristic as in our case,
namely, letting the centroids coincide. They showed that the area of the intersection
that is obtained in this way is at Ieafg of the maximum area that can be obtained by
translating,. We discuss the relation between this result and our result in the concluding
section.

In Section 3 we extend our result from translations to more general sets of transfor-
mations. In Section 4 we apply this result to obtain approximate matching algorithms
for various sets of transformations.

2. A Reference Point for Translations. The following is the key lemma for our main
result.

LEMMA 1. Let F ¢ R? be a bounded convex st f c F be a measurable subset
of F with positive aregand let & and s denote the centroids of these séstw be the
length of the projection of F onto a line perpendicular to the vector-ss;. Then

w-lsg —sp| < 3(F — ).

The inequality is strict if K f has positive area

PROOF  We assume without loss of generality thaands; have the same-coordinate
so thatw is the horizontal width of . We also assume thst lies belowsg . We transform
the setsf andF in five steps into more special sets (see Figure 1). Their area and the
horizontal width ofF will not change. The centroids move, but in each step the distance
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Step 2

I)

0

Fig. 1. Transformations of and f. The setf is the shaded area.

of their y-coordinates will not decrease. After the final step we are able to prove the
inequality directly. For simplicity, the sets are callécand F throughout the process.

Stepl. LetL andR be the leftmost and rightmost point Bf (If L or R is not unique,
we choose arbitrarily.) We useshearingthat preserveg-coordinates and transforms
F and f in such a way that andR have the samg-coordinate.

Step2. Forahorizontal ling we denote byH * andH ~ the upper and lower half-plane
bounded byg, respectively. Choosgin such a way thaF N H~ has the same area &s
and replacef by F N H~. Since some part of's area has been transferred from above
g to belowg, they-coordinate of; is smaller than before.

Step3. We applySteiner symmetrizatiofsee Section 9 of [BF]) to make and f
symmetric about some vertical axisThis operation can be imagined as cuttignto
infinitesimally flat horizontal slices and arranging these slices symmetrically about
The centroids; andsg may move in this step, but they-coordinates do not change.
The equalityf = F N H~ is still valid. Because of the transformation carried out in
Step 1w is unchanged.
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Now we would like to assume thdt lies below the line segmemtR. If this is not
the case, we can exchange the rolesf adnd its complementary sét := F\f: the
formulasg = (f/F)s; + (f/F)sy implies that

SF—S _ SF—Sf

F—f  F—f'

Thus, showing the upper bound of the lemma fas as good as showing it faf.

Step4. Steps 4 and 5 transforfa into a union of two isosceles triangles with base
LR. First we find a pointO on the vertical axis such that the area of the triangle
LRO below g is equal to the area of. There is a horizontal lina such thatF\LRO
lies completely abova, whereasLRO\F lies completely belowa. (This line goes
through the intersection points of the segmdr@sand RO with the boundary of-.)
Now we setf := LRONH~ andF := (FNH*") U ((LRON H™). F may now be
temporarily nonconvex, but and F have the same area as before. As in Step 2, we
may regard this transformation df as a movement of some of its mass from abave
(f1 = f\LRO) to belowa (f, = LRO\ f). Hence they-coordinate of; has decreased
by some amourt > 0. The set~ has undergone the same change (deletiofy @nd
addition of f,), but as the sef is bigger thanf, they-coordinate of: decreases only
by (f/F) - . Hence the distandss — s¢| is at least as large as before.

Step5. We find a pointP abovelLR on the vertical axis such that the total area of the
qguadrilateraLPROis equal to the area d¥. As in Step 4, we find a horizontal lirte
that separateB \LPROfrom LPRO\F. (Possibly this line goes throughandR.) We
finally setF := LPRQ, leaving f intact, and reasoning as above, we conclude that the
y-coordinate o&r increases by some nonnegative amount. Hence the dignees; |
is at least as large as before.

For the figure remaining after Step 5 we show the claim of the lemma directly. We
assume without loss of generality th@tis the origin and the height of the triandl&0O
and its widthw = LR are both 1. Let the height of the trianglebe¢, and let the height
of the triangleLRPbeh > 0. Then are@f) = ¢2/2 and areéF) = (1 + h)/2. The
y-coordinate of; is %e, and they-coordinate ofr is the same as for the centroid of the
triangleLOP, which is% - (1+ h/2). Using the inequalities > ¢(+/1+ h — h/2) and
e <1,we get

(20 w-lse—si|=31+h/2—¢) <3(1+h—e/1+h)=3(F—Ff).

If F — f > 0, we must have either< 1 orh > 0, and the inequality becomes strict.

Now we come to the proof of the main theorem. Consider convex bédiasdF, in
the plane. Le§°Pi(F,, F,) denote the minimal area of the symmetric difference between
translates of; andF,, and lets®(F, F,) denote the area of the symmetric difference
between translates & andF, whose centroids coincide.

THEOREM1. For convex plane bodies;fand F,, we have

8C(F1, Fp) < & 8%%(Fy, Fy).
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y

Fig. 2. Difference between optimal and heuristic position.

The inequality is strict unless both sides are z&toe constan§—1 in the inequality cannot
be improved

PrROOFE We first assume thdi, C Fq, S08°PY(Fq, Fo) = F1— F, = Fi A Fo. Lets;, s,
be the centroid of; and F,, respectively. Now suppose thg is translated by the
vectors; — s, from F,—the optimal position—into the positioR, wheres; ands; are
matched (see Figure 2).The symmetric differeRger F, is contained in the area that
is “swept” by the boundary oF; during the translation. By Cavalieri’s principle, this
area is bounded by twice the length of the translation vegters, times the widthw,

of the projection off, onto a line normal to this vector. So we have

8C(F1,Fp) = F1AF
< (FRAR)+(FRRAF) by (1)
< (FRAFR)+2 |5 — S| w>
< (AR +2 51— w;
< (FRIAF)+2-3-(F1—F)  bylemmal

= 5 0P(FL ),

wherew; denotes the width of the projection & onto a line normal t; — . If
F, — F1 > 0, we even get strict inequality from Lemma 1.

We now consider the general case. Assume Eiaf-, are in optimal position and
let | = F, N F,. Applying (1) to translates ofF;, F,, andl with coinciding centroids
we get

8C(F1, F2) < 8C(F1, 1) +8%(Fa, 1)
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L-

R

Fig. 3.8P(Fp, F,) andsC(Fo, F.).

< L5%FL 1)+ L 5P, 1) by the first case
= % . (SOpt(Fly F2),

which proves the inequality of the theorem. Again, we get strict inequality whenever
Fl A F2 > 0.

To see that the approximation fact@r is best possible, we construct an example
where this factor can be approached arbitrarily closely. In fact, such an example can be
found by examining the proof of Lemma 1. In order to get the ratio between the sides
of the inequality in (2) as small as possible, we must chdoaades very small. For
example, we may takie = 0, bute must be positive. So we take an isosceles triangle
Fo = LROwhose base and the corresponding height have unit lengtl.+d¥ denote
by F. the trapezoid obtained frofify by cutting off a tip of height (Figure 3). Clearly,

®3) 8PY(Fo, Fe) = £2/2.

The cut moves the centroid téez/(l + ¢) toward the base. The area of the symmetric
difference of translates dfy and F, with the same centroid is shown in Figure 3. A
straightforward computation yields

334 18 — 112
4 8C(Fp, Fy=¢2. = —— 77
( ) ( 0 5) & 18(1+ 8)2

It follows from (3) and (4) that

8C(Fo, Fe) 11
m-—-———,—= —. O
e>038%(Fo, F) 3

3. Transformations Other than Translations. In many applications, more general
matching transformations than just translations are considered. These include, for ex-
ample,

e rigid motions i.e., combinations of translations and rotations;

o rigid motions where only a restricted set of rotations is allowed;

e (positive)homothetiesi.e., mappings of the form — a + A(x — a), for some fixed
scaling facton. > 0 and some fixed centare R?; this allows scaling and translation
but no rotation;
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e similarities i.e., combinations of homotheties and rigid motions;
¢ arbitraryaffine mappings

We propose theentroid heuristicfor finding approximate solutions to the shape
matching problem for convex sets. This approach considers only those transformations in
7 that map the centroid d%, onto the centroid oF;. Lett® be an optimal transformation
of this kind, and denot&®(Fy, Fo) = 8(F1, tS(F2)) ands®Pi(Fy, Fo) = 8(F1, t°PY(Fy)).
Showing that the centroid is a reference pointfoamounts to proving that there is a
constant > 1 such that

8C(F1, Fo) < ¢ 8°'(Fy, Fo).
We denote the centroid of a sétby s¢.

THEOREM?Z2. If a set of transformationg™ has the following properties

(i) Equivariancewith respect to the centroid(sg) = r) for all convex figures F and
allt e 7.
(i) 7 is closed under compositions with translations

Then the centroid is a reference point forwith respect to the class of convex figyres
with approximation factor &= 131

PrOOF  LetFy, F, be two figures and; = tOPYFy). TranslateF, so that the resulting
figure F; has the same centroid &s. Then, by Theorem 1,

8(F1, Fy) < ¢ 8(Fy, Fp) = ¢- 8%(Fy, Fy).

We haveF; = t'(F,) for a transformatiort’ which is a composition of°" and a
translation. By condition (i)’ € 7', and by condition (i)t'(sr,) = Sr; = Sr,. Sincet®

is the optimal match of; and F, under transformations satisfying this condition, we
have

8%(F1, F2) < 8(F1,t'(Fp)) = 8(F1, Fy) < ¢ 8%PY(Fy, Fy). O

A class of transformations for which condition (i) of Theorem 2 does not hold is the
set of projective transformations. However, all sets of transformations mentioned at the
beginning of this section satisfy conditions (i) and (ii) of Theorem 2. So for all these sets
of transformations we obtain a simplified matching problem, whose optimal solution
is an approximate solution for the original problem. Since the number of degrees of
freedom in the simplified matching problem reduced by 2, this problem is hopefully
easier to solve. We consider algorithms based on this idea in the next section.

4. Algorithms. The results of the previous sections can be used to design efficient
approximate matching algorithms for convex polygons under various sets of transforma-
tions. These algorithms will produce a solution which is at most by a fact@r wbrse

than the optimal one. Throughout this section we assume that we are given two convex
polygonsF; andF; (by a sorted list of their vertices) which are to be matched nlies

the total number of vertices & andF-.
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4.1. Translations In the case ofranslationswe just have to compute the centrois

ands, and then to translatié, by the vectos; —s,. The centroids can easily be computed

in linear time, for example by triangulating each figure, determining the centroids and
areas of all triangles, and then determining the total centroid as the weighted sum of the
triangle centroids.

This gives a matching algorithm of runtin@(n). As far as asymptotic runtime is
concerned, this is not too big an improvement over the algorithm of de Berg et al {BDK
which computes theptimalmatch under translations i@ (n log n) time. However, our
algorithm may be a viable alternative in practice since it is much simpler.

Usually, after the two figures have been matched, one also wants to compute the
resulting area of the symmetric difference. This can be done in linear time in a straight-
forward way. In fact, the problem is equivalent to computing the area of the intersection
| = FiNFy, sinced(F, Fy) = F1+F,—21. The setd, F,, andl are convex polygons,
andl can be computed from the sorted lists of verticeEpandF; in linear time.

4.2. Homotheties According to Theorem 2 we get égﬁ-approximate solution by first
computing the two centroidg ands,, then translating~ by s; — s, obtainingF;, and
finally stretchingF, abouts; by a factor» minimizing the symmetric difference.

It remains to explain the last step. Suppose without loss of generalitgitigthe
origin, and denote by

q() == 8(F1, AF))

the function that we want to minimize.

LEMMA 2. Suppose that #£and F, are convex polygons with a total number of n
vertices Then the function gRT — R* is a piecewise quadratic function with at
most2n + 1 quadratic piecesWhen viewed as a function of & 22, the function
q(A) := q(v/A) is convexThe functiorg, and hence alsodas a unique local minimum
which is the global minimum

ProOF If we draw a ray from the origin through each vertexrgfandF;, we partition
the plane into at most wedges. Within a wedg®/, the boundary of each of the two
figures consists of a line segment. Now, suppose Bjas stretched by the factor
which is 0 in the beginning and is then continuously increased. We obtain the successive
configurations (a), (b), and (c) of the edgesf F;, ande, of AF; shown in Figure 4.
In each case the symmetric difference withlihis a quadratic function. The symmetric
difference within theth wedge, which we denote lay(1), is thus a piecewise quadratic
function with three quadratic pieces. The total symmetric differep(a¢ is the sum of
then functionsgq; (1). It is piecewise quadratic withri2breakpoints.

We want to show that each functigp is convex when considered as a function of
A = 2. The parameteA is proportional to the area &, and to the area d¥, inside the
wedgeW. Therefore, the first and third pieces@®f A) := q; (+/A) arelinear functions
of the form|aregF, N W) — A - aredF, N W)|. The first piece is a strictly decreasing
function, and the third piece is a strictly increasing function. These two properties hold
also for the first and third pieces gf. If the two edge®; ande, are parallel, the second
piece is missing. Otherwise, the second pieag fa quadratic function which smoothly
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(b) ©)

Fig. 4. Configurations of two edges inside a wedge.

joins the first piece, which is strictly decreasing, to the second piece, which is strictly

increasing. If follows that the second piece is strictly convex, positive, with a unique local

minimumCs inside its domain of validity. Hence, the second piecg @fan be written in

the formg; (1) = C1+Co (% —Cs)?, with positive constani8;, C,, Cs. The second piece

of Gi takes the forni (A) = i (v/A) = C1 + Co(v/A— C3)? = D1 + DA — DsV/A

with positive constant®;, D,, D3. This function is strictly convex foA > 0.
Summarizingg, as a sum of the convex functiofjs is a convex function ofA. To

prove that the minimunA* is unique, we must exclude the possibility thit occurs

at a point wherdj is linear. However, then all functiorgg must be linear aA\*. It is

impossible thatA* lies in the first part of all functions§j, because theq would be

strictly decreasing af\*. Similarly, A* cannot lie in the third part of all functiorg.

However, if A* lies in the first part of some functiogsand in the third part of some other

functionsg;, this means that in some wedgek; lies completely outsidé;, whereas

in other wedge4 F, lies completely insidé-;. Then there must be some wedges where

the boundaries df; andF; cross, and therefoi@is strictly convex. O

We remark that, as the proof shows, the functignand g are even continuously
differentiable unless some edgefefis parallel to an edge d¥..

We have thus established tlegis a very well-behaved function for optimization. The
minimizer1* of the functiong can be determined i®(n) time by the prune-and-search
technique: We search for the quadratic piece in whitties by performing a binary
search among thenZreakpoints, successively narrowing down the interkgl 11] in
which A* is known to lie. The decision whethgt is bigger or smaller than the current
decision point. depends just on the sign of the derivatiyér) at this point. When the
interval [Ao, 1] contains onlyk breakpoints, there are at mastunctionsg; for which
the definition changes inside the interval; the remaining functions are plain quadratic
functions and their sum can be accumulated in one quadratic function. This means that
g(A») and the derivative’ (L) can be evaluated i@ (k) time. The next trial value for the
binary search is the median of tkeemaining breakpoints and it can also be computed
in O(k) steps. This reducdsby a factor of 2. Thus, if©(n) time the interval in which
A* must lie is narrowed down to one quadratic piece of the fun@iorhe optimum.*
is then found by solving the linear equatiqfir*) = O.

Summarizing the results of the last two subsections, we have:
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THEOREM3. For the shape matching problem for two convex polygons with a total
number of n verticesvith respect to

1. the set of translation®or
2. the set of homotheties

an 1gl—approximate solution can be found in(® time

We remark that the technique of this subsection can also be used when the allowable
transformations/” consist only of translations in a given fixed directidnThis is an
optimization problem with one degree of freedom, just like the problem for homotheties
after the scaling center is fixed. Instead of the wedges, we consider strips formed by the
lines parallel tad through every vertex of; andF,. The translation minimizing can
be found in linear time, since, in the range where the interse¢tiomonempty,/| is
a concave function of the translation vector. Another linear-time algorithm for this task
is described in Avis et al. [ABY], where the problem is approached in a more indirect
way.

4.3. Rigid Motions As in the previous case we first perform a translation such that the
centroids ofF; and F, coincide. We assume for simplicity thet andF, already have
their common centroid at the origi@. Now we have to rotaté&, aroundO by some
angley in order to minimize the symmetric difference. We denoteFjy= t, (F>) the
rotated copy off, and byq(e) the symmetric differencé(Fy, t,(F>)) as a function

of ¢. It is possible to work out an expression fipfp) in terms ofg, but since we are
interested in the minimum, we only describe how the derivatiyg) can be computed.

LEMMA 3. The function qR — R* is continuousit is continuously differentiable
except when a vertex of, F= t,(F,) lies on an edge of for vice versaThe derivative
g’'(¢) can be computed as followlset | = F;NF,, and let R, ..., Py, (m > 0) be
a sequence of crossing points betweerafd F, in the following sensebetween R_1
and B, the boundary of | is formed by the boundary gf &nd between Pand 11
(and between B, and R), the boundary of | is formed by the boundary ef # m = 0,
then one of the sets; FF; is contained in the otherThen d(y) is the alternating sum
of squared distances of the pointg, P.., Poy, from O:

2m
) d@ =) (-1 -OR"
i=1

ProOFE Instead of the symmetric difference we may equally well consider the area of
the intersection, sinceq(¢) = F1+ F, — 21, and say' (¢) = —2- 91 /d¢p. We consider

the change of in the vicinity of a pointP, wheng changes t@ + ¢ > ¢ (Figure 5).
Assume that the part dfs boundary that is formed bk, lies to the left of P and thus
moves away from the part that is formed By. We see that, between these two parts, a
small wedge-like quadrilateral is inserted, which has area

e OB /2+ O(?).
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Fig. 5. The derivative of the minimal symmetric difference under rotations.

(The area of a circular sector of radiGs® and angle: would bes - OB /2. However,
in fact, the distance fron® to the boundary of inside the sector of interest differs
from the “ideal” radiusO P by O(e). This accounts for the error ter@(s?).) If i has
different parity, then an analogous area of the same sggbisactedrom | . Summing
up the different contributions, dividing by, and taking the limie — 0 gives (5). O

From the lemma it follows that the minimum gfy) is either one of the points where
g is not differentiable, or one of the stationary points whgg@) = 0. There are up
to O(n?) critical points of nondifferentiability: each vertex & can lie on a particular
edge ofF; for at most two values af, and vice versa. These critical points are also the
points where the point® may change: there a®(n?) intervals such that, inside an
interval, every poin® is given as the intersection of a fixed edgd-pwvith a fixed edge
of F}, and thusy(¢) has a fixed analytic expression in termspof

Summarizing, we have to che€k(n?) single points plu®(n?) intervals. For finding
the possible candidates for a minimum in each interval, we have to look for points where
the derivative is zero, i.e., for solutions g@f(¢) = 0, whereq'(¢) is given by (5). We
discuss how the equatiagi(p) can be solved. Suppose thgt is determined as the
intersection of two edgesy ande,. Then the distanc® B, can be expressed as follows.
Let s denote the angle betweepande,, and letd;, d, denote the distance from, e,
respectively, to the origi® (Figure 6). Then we have

oF? d? + d2 + 2d,d, cosyr
' sir? ¢ '

(This can be checked by observing that the quadrilateral P, A; is inscribed in a circle

with diameterO B and cente€ = (O + P,)/2. The distancé\; A, can be expressed in
terms ofdy, dp, and the angléd, O A; = = — ¢, and is can also be computed from the
isosceles trianglé; A,C with sidesA;C = A,C = OR /2 and angleA;C A, = 2y or
AC Ay = 21 — 2, as appropriate.) Whep varies andF; rotates,d; andd, remain
fixed, butyr must be substituted byo + ¢, for some fixedyy.

It is convenient to us¢ = tan(¢/2) as a parameter instead of Then sinp =
2t/(1+1?) and cogp = (1 —t2)/(1+1?), soO PR~ can be written as a rational function
with bounded degree. The expressipy) is the sum of at most such functions. Thus,
inside each intervaty’(¢) = 0 can be solved as the root of a polynomial of deddér),
andq(¢) has at mosO(n) local minima.
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Fig. 6. Computing the distanc®P;.

Altogether, this giveO(n®) candidates for the minimum. In principle, these candi-
dates can be found exactly, since only computations with algebraic numbers are required.
However, this would be very expensive. A more practical approach would be to solve
the polynomial equations numerically. This still involves highly nontrivial numerical
problems, whoses detailed investigation goes beyond the scope of this paper. For an
intensive treatment of this problem with respect to bit complexity see [S].

Even just computingj(¢) at all candidate points (assuming they are given to us)
would take O(n*) arithmetic operations. It does not make sense to spend so much
time in finding the optimal rotation in the present context, since the computed value is
only a rough approximation to the overall problem. An algorithm that computes a good
approximation to the optimal rotation within reasonable time bounds is called for.

5. Conclusion and Open Problems. As mentioned in the Introduction, de Berg et al.
[BDK *] showed that, when the centroids of two convex g&t@nd F, coincide, the
area of their intersection is at Iea% of the maximum area that can be obtained by
translating~,. As in Section 3, this result extends to more general sets of transformations.

We briefly relate the bound of Theorem 1 to this result. This bound is more powerful
than our result when the area of the intersection is relatively small and the area of the
symmetric difference is relatively large. For example, whgn< ‘7"F2, our bound is
worthlesss(Fy, t(F2)) > F, — F1 > 2F,, and if we multiply this by}, the bound on
8C(F1, F») that we get is larger than the trivial bound®f + F, that we get by placing
F, anywhere. In contrast to this situation, the bound of de Berg et al. makes a nontrivial
statement in any case. On the other hand, Theorem 1 gives the strongest statement when
the sets~; and F; have a very similar shape adds small, as in the cases of practical
interest for pattern matching. One may check that Theorem 1 gives a stronger bound
precisely if§P'(Fy, F) < 2 (F1 + Fo).

It is not known whether the fractioﬁS in the mentioned bound is best possible. The
correct number should probably ée(There is an example showing that the factor cannot
be improved beyon@.) The proof of thezg—5 bound uses an ingenious representation of
the centroid. This technique also yields results in all higher dimensions.

The extension of Theorem 1 to higher dimensions has not been considered so far. A
directgeneralization of the proof of Lemma 1 to three dimensions is not possible, because
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there is no way to ensure that the analogous operation to Steiner symmetrization leaves
the “width” w, i.e., the area of the vertical projection, unchanged. By taking into account
the loss that occurs in this operation, we can show that the centroid has an approximation
factor of at most 33/3/(8r) in three dimensions, but this bound is not tight.

Our heuristic is guaranteed to find a translation which reduces the symmetric dif-
ference between two given convex figures to within a facto%lotbf the optimum. It
would be nice to have a simple method for getting a solution with a better approximation
guarantee, using the heuristic solution as a starting point. Techniques which have proved
to be useful in similar situations include (a) testing all vectors in a sufficiently fine grid
around the starting point and (b) applying the ellipsoid method for convex optimization
problems. (Recall that, in the range where the interset¢tiononempty,/| is a concave
function of the translation vector.) However, one needs some a priori knowledge about
the region in which the optimal solution can lie in order to apply these methods. This
question is open to further research.

As discussed in the last section, the approximate shape matching problem under rigid
motions is not solved in a satisfactory way. If a good approximation algorithm for shape
matching under rotations were available, it could be combined with the technique of
superimposing centroids to give an approximate algorithm for rigid motions.
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