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Matching Convex Shapes with Respect to
the Symmetric Difference1

H. Alt,2 U. Fuchs,2 G. Rote,3 and G. Weber2

Abstract. This paper deals with questions from convex geometry related to shape matching. In particular,
we consider the problem of moving one convex figure over another, minimizing the area of their symmetric
difference. We show that if we just let the two centers of gravity coincide, the resulting symmetric difference
is within a factor of11

3 of the optimum. This leads to efficient approximate matching algorithms for convex
figures.
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1. Introduction. A very common problem arising in application areas like computer
vision or pattern recognition is that two “figures”F1 andF2 are given and the question
is how much these figures “look alike.”F1 might be an image of an unknown object, and
F2 might be one of several possible templates for this object. In other words, we want
to match F1 and F2 as good as possible. The quality of a match is measured by some
“distance” functionδ(A, B) which assigns a number to any two setsA andB.

More precisely, assume that we consider a certain setT of feasible transformations
that may be used for matching. Then we define theshape matching problemas follows:

Giventwo figuresF1 andF2,finda transformationtopt ∈ T minimizingδ(F1, t (F2))

over allt ∈ T .

Reasonable sets of matching transformations are, for example, translations, rigid mo-
tions (i.e., compositions of translations and rotations), similarities, arbitrary affine map-
pings, or projective transformations. (Note that for transformations that allow changes
of size, such as homotheties, it makes a difference if we exchangeF1 andF2.)

Most of the previous work has concentrated on theHausdorff distanceas a distance
measure [ABB], [AST], [CGH+], [HKS], [AAR]. Since solving the optimization prob-
lem exactly turns out to be rather difficult, more efficientapproximation algorithmshave
been developed. These algorithms do not necessarily find the optimum but a solution
whose quality is within a constant factor of the optimal one. The simplest approach for
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getting approximation algorithms usesreference points. Roughly speaking, a reference
point is a characteristic point with the property that if two figures are matched optimally,
their reference points lie close together. Conversely, if we restrict to matching trans-
formations that map the reference point ofF2 onto the the reference point ofF1, the
best solution in this restricted set cannot be much worse than the optimal solution. The
restricted set of transformations has fewer degrees of freedom, and thus the restricted
optimization problem is easier to solve.

For example, ifT is the set of translations, the restricted optimal translation is directly
available, namely, the vector between the two reference points. In the case of rigid
motions, the two reference points are matched and then the optimal position ofF2 is
sought among rotations around this point.

Formally, we call a map that assigns to each figure in a certain class of figuresF a
point in the plane, areference pointfor T (with respect to a distanceδ and with respect
to F ) if there is a constantc ≥ 1, called theapproximation factor, such that for any
two figuresF1, F2 ∈ F there existsr ∈ T mapping the reference point ofF2 onto the
reference point ofF1 and fulfilling for all t ∈ T the inequality

δ(F1, r (F2)) ≤ c · δ(F1, t (F2)).

With respect to the Hausdorff distance and rigid motions (and also more general
classes of transformations) thecenter of gravityor centroidof the convex hull is not a
reference point: this is easily seen by considering a very long rectangle on the one hand
and one of the triangles obtained from the rectangle by cutting along the diagonal on the
other hand.

However, two reference points with respect to the Hausdorff distance and rigid mo-
tions have been found: the centroid of the boundary of the convex hull [ABB] and the
so-calledSteiner point[AAR]. The Steiner point of a convex polygon is obtained as the
center of gravity when a mass proportional to the exterior angle is placed at each vertex.
For a smooth convex body, the mass has to be distributed on the boundary proportional
to the curvature.

Here we consider a different distance measure between figures, namely, thearea of
the symmetric differencewhich we denote by

δ(F1, F2) := area(F14 F2) = area(F1\F2)+ area(F2\F1).

For a planar regionF , we often just writeF instead of area(F)when no confusion arises.
The symmetric differenceδ is one of the standard error measures considered in the

theory of convex approximation, see the surveys of Gruber [G1], [G2]. In the area of
computational geometry,δ has been investigated only in a few papers so far, including
[ABGW], where simplification problems are addressed, and a recent paper of de Berg
et al. [BDK+], which is also concerned with matching problems under translations.

In some applications,δ is more appropriate than the Hausdorff distance. Consider
the case whenF1 is an image disturbed by noise: noise may add thin features to the
boundary, but it is unlikely to change large areas. The Hausdorff distance may change
dramatically, even if only a single point is added toF1, whereas the optimal matching
for the symmetric difference will hardly change, even if the noise adds some areas that
are disconnected fromF1.
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For measurable setsA, B,C with finite areas, the distance functionδ satisfies the
triangle inequality:

δ(A,C) ≤ δ(A, B)+ δ(A,C).(1)

This follows from the set-theoretic relation

A4 B ⊆ (A4 C) ∪ (B4 C).

(To obtain a metric, some regularity conditions must be imposed on the setsA, B,C. For
example, for bounded sets which are equal to the closure of their interior, or for compact
convex sets of positive area,δ is a metric.)

In this paper we restrict our attention toconvexfigures only. For convex plane figures,
we show that the centroid is a reference point for translations, rigid motions, and some
other sets of transformations. In particular, if we translate a convex figureF2 so that
its centroid matches the centroid of another convex figureF1, the resulting symmetric
difference is at most11

3 times as large as the optimal one under translations. We give an
example showing that this constant is optimal. This theorem is the main geometric result
of the paper, and it is proved in Section 2.

A related theorem has been obtained by de Berg et al. [BDK+]. If instead of minimizing
the area of the symmetric differenceF14 t (F2), wemaximize the area of the intersection
I = F1 ∩ t (F2), we get of course the same result sinceδ(F1, t (F2)) = F1 + F2 −
2I . However, when it comes to the relative performance of approximation algorithms,
there is a difference. De Berg et al. considered the very same heuristic as in our case,
namely, letting the centroids coincide. They showed that the area of the intersection
that is obtained in this way is at least9

25 of the maximum area that can be obtained by
translatingF2. We discuss the relation between this result and our result in the concluding
section.

In Section 3 we extend our result from translations to more general sets of transfor-
mations. In Section 4 we apply this result to obtain approximate matching algorithms
for various sets of transformations.

2. A Reference Point for Translations. The following is the key lemma for our main
result.

LEMMA 1. Let F ⊂ R2 be a bounded convex set, let f ⊂ F be a measurable subset
of F with positive area, and let sF and sf denote the centroids of these sets. Letw be the
length of the projection of F onto a line perpendicular to the vector sF − sf . Then

w · |sF − sf | ≤ 4
3(F − f ).

The inequality is strict if F\ f has positive area.

PROOF. We assume without loss of generality thatsF andsf have the samex-coordinate
so thatw is the horizontal width ofF . We also assume thatsf lies belowsF . We transform
the setsf andF in five steps into more special sets (see Figure 1). Their area and the
horizontal width ofF will not change. The centroids move, but in each step the distance
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Fig. 1.Transformations ofF and f . The setf is the shaded area.

of their y-coordinates will not decrease. After the final step we are able to prove the
inequality directly. For simplicity, the sets are calledf andF throughout the process.

Step1. Let L andR be the leftmost and rightmost point ofF . (If L or R is not unique,
we choose arbitrarily.) We use ashearingthat preservesx-coordinates and transforms
F and f in such a way thatL andR have the samey-coordinate.

Step2. For a horizontal lineg we denote byH+ andH− the upper and lower half-plane
bounded byg, respectively. Chooseg in such a way thatF ∩ H− has the same area asf
and replacef by F ∩ H−. Since some part off ’s area has been transferred from above
g to belowg, they-coordinate ofsf is smaller than before.

Step3. We applySteiner symmetrization(see Section 9 of [BF]) to makeF and f
symmetric about some vertical axiss. This operation can be imagined as cuttingF into
infinitesimally flat horizontal slices and arranging these slices symmetrically abouts.
The centroidssf andsF may move in this step, but theiry-coordinates do not change.
The equality f = F ∩ H− is still valid. Because of the transformation carried out in
Step 1,w is unchanged.
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Now we would like to assume thatf lies below the line segmentLR. If this is not
the case, we can exchange the roles off and its complementary setf := F\ f : the
formulasF = ( f/F)sf + ( f̄ /F)sf̄ implies that

sF − sf

F − f
= −sF − sf̄

F − f̄
.

Thus, showing the upper bound of the lemma forf̄ is as good as showing it forf .

Step4. Steps 4 and 5 transformF into a union of two isosceles triangles with base
LR. First we find a pointO on the vertical axiss such that the area of the triangle
LRO below g is equal to the area off . There is a horizontal linea such thatF\LRO
lies completely abovea, whereasLRO\F lies completely belowa. (This line goes
through the intersection points of the segmentsLO andRO with the boundary ofF .)
Now we set f := LRO∩ H− and F := (F ∩ H+) ∪ (LRO∩ H−). F may now be
temporarily nonconvex, butf and F have the same area as before. As in Step 2, we
may regard this transformation off as a movement of some of its mass from abovea
( f1 = f \LRO) to belowa ( f2 = LRO\ f ). Hence they-coordinate ofsf has decreased
by some amountε ≥ 0. The setF has undergone the same change (deletion off1 and
addition of f2), but as the setF is bigger thanf , they-coordinate ofsF decreases only
by ( f/F) · ε. Hence the distance|sF − sf | is at least as large as before.

Step5. We find a pointP aboveLRon the vertical axiss such that the total area of the
quadrilateralLPRO is equal to the area ofF . As in Step 4, we find a horizontal lineb
that separatesF\LPROfrom LPRO\F . (Possibly this line goes throughL andR.) We
finally setF := LPRO, leaving f intact, and reasoning as above, we conclude that the
y-coordinate ofsF increases by some nonnegative amount. Hence the distance|sF − sf |
is at least as large as before.

For the figure remaining after Step 5 we show the claim of the lemma directly. We
assume without loss of generality thatO is the origin and the height of the triangleLRO
and its widthw = LRare both 1. Let the height of the trianglef beε, and let the height
of the triangleLRP be h ≥ 0. Then area( f ) = ε2/2 and area(F) = (1+ h)/2. The
y-coordinate ofsf is 2

3ε, and they-coordinate ofsF is the same as for the centroid of the
triangleLOP, which is 2

3 · (1+ h/2). Using the inequalitiesε ≥ ε(√1+ h− h/2) and
ε ≤ 1, we get

w · |sF − sf | = 2
3(1+ h/2− ε) ≤ 2

3(1+ h− ε√1+ h) = 4
3(F −

√
F f ).(2)

If F − f > 0, we must have eitherε < 1 orh > 0, and the inequality becomes strict.

Now we come to the proof of the main theorem. Consider convex bodiesF1 andF2 in
the plane. Letδopt(F1, F2) denote the minimal area of the symmetric difference between
translates ofF1 andF2, and letδC(F1, F2) denote the area of the symmetric difference
between translates ofF1 andF2 whose centroids coincide.

THEOREM1. For convex plane bodies F1 and F2, we have

δC(F1, F2) ≤ 11
3 · δopt(F1, F2).
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Fig. 2.Difference between optimal and heuristic position.

The inequality is strict unless both sides are zero. The constant11
3 in the inequality cannot

be improved.

PROOF. We first assume thatF2 ⊆ F1, soδopt(F1, F2) = F1− F2 = F14 F2. Lets1, s2

be the centroid ofF1 and F2, respectively. Now suppose thatF2 is translated by the
vectors1 − s2 from F2—the optimal position—into the positionF ′2 wheres1 ands2 are
matched (see Figure 2).The symmetric differenceF ′2 4 F2 is contained in the area that
is “swept” by the boundary ofF2 during the translation. By Cavalieri’s principle, this
area is bounded by twice the length of the translation vectors1− s2 times the widthw2

of the projection ofF2 onto a line normal to this vector. So we have

δC(F1, F2) = F14 F ′2
≤ (F14 F2)+ (F24 F ′2) by (1)

≤ (F14 F2)+ 2 · |s1− s2| · w2

≤ (F14 F2)+ 2 · |s1− s2| · w1

≤ (F14 F2)+ 2 · 4
3 · (F1− F2) by Lemma 1

= 11
3 · δopt(F1, F2),

wherew1 denotes the width of the projection ofF1 onto a line normal tos1 − s2. If
F2− F1 > 0, we even get strict inequality from Lemma 1.

We now consider the general case. Assume thatF1, F2 are in optimal position and
let I = F1 ∩ F2. Applying (1) to translates ofF1, F2, and I with coinciding centroids
we get

δC(F1, F2) ≤ δC(F1, I )+ δC(F2, I )
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Fig. 3. δopt(F0, Fε) andδC(F0, Fε).

≤ 11
3 · δopt(F1, I )+ 11

3 · δopt(F2, I ) by the first case

= 11
3 · δopt(F1, F2),

which proves the inequality of the theorem. Again, we get strict inequality whenever
F14 F2 > 0.

To see that the approximation factor11
3 is best possible, we construct an example

where this factor can be approached arbitrarily closely. In fact, such an example can be
found by examining the proof of Lemma 1. In order to get the ratio between the sides
of the inequality in (2) as small as possible, we must chooseh andε very small. For
example, we may takeh = 0, butε must be positive. So we take an isosceles triangle
F0 = L ROwhose base and the corresponding height have unit length. Forε > 0 denote
by Fε the trapezoid obtained fromF0 by cutting off a tip of heightε (Figure 3). Clearly,

δopt(F0, Fε) = ε2/2.(3)

The cut moves the centroid by23ε
2/(1+ ε) toward the base. The area of the symmetric

difference of translates ofF0 and Fε with the same centroid is shown in Figure 3. A
straightforward computation yields

δC(F0, Fε) = ε2 · 33+ 18ε − 11ε2

18(1+ ε)2 .(4)

It follows from (3) and (4) that

lim
ε→0

δC(F0, Fε)

δopt(F0, Fε)
= 11

3
.

3. Transformations Other than Translations. In many applications, more general
matching transformations than just translations are considered. These include, for ex-
ample,

• rigid motions, i.e., combinations of translations and rotations;
• rigid motions where only a restricted set of rotations is allowed;
• (positive)homotheties, i.e., mappings of the formx 7→ a+ λ(x − a), for some fixed

scaling factorλ ≥ 0 and some fixed centera ∈ R2; this allows scaling and translation
but no rotation;
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• similarities, i.e., combinations of homotheties and rigid motions;
• arbitraryaffine mappings.

We propose thecentroid heuristicfor finding approximate solutions to the shape
matching problem for convex sets. This approach considers only those transformations in
T that map the centroid ofF2 onto the centroid ofF1. Let tC be an optimal transformation
of this kind, and denoteδC(F1, F2) = δ(F1, tC(F2)) andδopt(F1, F2) = δ(F1, topt(F2)).
Showing that the centroid is a reference point forT amounts to proving that there is a
constantc ≥ 1 such that

δC(F1, F2) ≤ c · δopt(F1, F2).

We denote the centroid of a setF by sF .

THEOREM2. If a set of transformationsT has the following properties:

(i) Equivariancewith respect to the centroid: t (sF ) = st (F) for all convex figures F and
all t ∈ T .

(ii) T is closed under compositions with translations.

Then the centroid is a reference point forT with respect to the class of convex figures,
with approximation factor c= 11

3 .

PROOF. Let F1, F2 be two figures andF ′2 := topt(F2). TranslateF ′2 so that the resulting
figure F ′′2 has the same centroid asF1. Then, by Theorem 1,

δ(F1, F ′′2 ) ≤ c · δ(F1, F ′2) = c · δopt(F1, F2).

We haveF ′′2 = t ′(F2) for a transformationt ′ which is a composition oftopt and a
translation. By condition (ii),t ′ ∈ T , and by condition (i),t ′(sF2) = sF ′′2 = sF1. SincetC

is the optimal match ofF1 and F2 under transformations satisfying this condition, we
have

δC(F1, F2) ≤ δ(F1, t
′(F2)) = δ(F1, F ′′2 ) ≤ c · δopt(F1, F2).

A class of transformations for which condition (i) of Theorem 2 does not hold is the
set of projective transformations. However, all sets of transformations mentioned at the
beginning of this section satisfy conditions (i) and (ii) of Theorem 2. So for all these sets
of transformations we obtain a simplified matching problem, whose optimal solution
is an approximate solution for the original problem. Since the number of degrees of
freedom in the simplified matching problem reduced by 2, this problem is hopefully
easier to solve. We consider algorithms based on this idea in the next section.

4. Algorithms. The results of the previous sections can be used to design efficient
approximate matching algorithms for convex polygons under various sets of transforma-
tions. These algorithms will produce a solution which is at most by a factor of11

3 worse
than the optimal one. Throughout this section we assume that we are given two convex
polygonsF1 andF2 (by a sorted list of their vertices) which are to be matched. Letn be
the total number of vertices ofF1 andF2.
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4.1. Translations. In the case oftranslationswe just have to compute the centroidss1

ands2 and then to translateF2 by the vectors1−s2. The centroids can easily be computed
in linear time, for example by triangulating each figure, determining the centroids and
areas of all triangles, and then determining the total centroid as the weighted sum of the
triangle centroids.

This gives a matching algorithm of runtimeO(n). As far as asymptotic runtime is
concerned, this is not too big an improvement over the algorithm of de Berg et al. [BDK+]
which computes theoptimalmatch under translations inO(n logn) time. However, our
algorithm may be a viable alternative in practice since it is much simpler.

Usually, after the two figures have been matched, one also wants to compute the
resulting area of the symmetric difference. This can be done in linear time in a straight-
forward way. In fact, the problem is equivalent to computing the area of the intersection
I = F1∩F2, sinceδ(F1, F2) = F1+F2−2I . The setsF1, F2, andI are convex polygons,
and I can be computed from the sorted lists of vertices ofF1 andF2 in linear time.

4.2. Homotheties. According to Theorem 2 we get an11
3 -approximate solution by first

computing the two centroidss1 ands2, then translatingF2 by s1 − s2 obtainingF ′2, and
finally stretchingF ′2 abouts1 by a factorλ minimizing the symmetric difference.

It remains to explain the last step. Suppose without loss of generality thats1 is the
origin, and denote by

q(λ) := δ(F1, λF ′2)

the function that we want to minimize.

LEMMA 2. Suppose that F1 and F2 are convex polygons with a total number of n
vertices. Then the function q: R+ → R+ is a piecewise quadratic function with at
most2n + 1 quadratic pieces. When viewed as a function of A= λ2, the function
q̄(A) := q(

√
A) is convex.The function̄q,and hence also q,has a unique local minimum,

which is the global minimum.

PROOF. If we draw a ray from the origin through each vertex ofF1 andF ′2, we partition
the plane into at mostn wedges. Within a wedgeW, the boundary of each of the two
figures consists of a line segment. Now, suppose thatF ′2 is stretched by the factorλ
which is 0 in the beginning and is then continuously increased. We obtain the successive
configurations (a), (b), and (c) of the edgese1 of F1 ande2 of λF ′2 shown in Figure 4.
In each case the symmetric difference withinW is a quadratic function. The symmetric
difference within thei th wedge, which we denote byqi (λ), is thus a piecewise quadratic
function with three quadratic pieces. The total symmetric differenceq(λ) is the sum of
then functionsqi (λ). It is piecewise quadratic with 2n breakpoints.

We want to show that each functionqi is convex when considered as a function of
A = λ2. The parameterA is proportional to the area ofF ′2 and to the area ofF ′2 inside the
wedgeW. Therefore, the first and third pieces ofq̄i (A) := qi (

√
A) arelinear functions

of the form|area(F1 ∩W) − A · area(F ′2 ∩W)|. The first piece is a strictly decreasing
function, and the third piece is a strictly increasing function. These two properties hold
also for the first and third pieces ofqi . If the two edgese1 ande2 are parallel, the second
piece is missing. Otherwise, the second piece ofqi is a quadratic function which smoothly
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Fig. 4.Configurations of two edges inside a wedge.

joins the first piece, which is strictly decreasing, to the second piece, which is strictly
increasing. If follows that the second piece is strictly convex, positive, with a unique local
minimumC3 inside its domain of validity. Hence, the second piece ofqi can be written in
the formqi (λ) = C1+C2(λ−C3)

2, with positive constantsC1,C2,C3. The second piece
of q̄i takes the form̄qi (A) = qi (

√
A) = C1 + C2(

√
A− C3)

2 = D1 + D2A− D3

√
A

with positive constantsD1, D2, D3. This function is strictly convex forA ≥ 0.
Summarizing,̄q, as a sum of the convex functionsq̄i , is a convex function ofA. To

prove that the minimumA∗ is unique, we must exclude the possibility thatA∗ occurs
at a point wherēq is linear. However, then all functions̄qi must be linear atA∗. It is
impossible thatA∗ lies in the first part of all functions̄qi , because then̄q would be
strictly decreasing atA∗. Similarly, A∗ cannot lie in the third part of all functions̄qi .
However, ifA∗ lies in the first part of some functionsq̄i and in the third part of some other
functionsq̄i , this means that in some wedgesλF2 lies completely outsideF1, whereas
in other wedgesλF2 lies completely insideF1. Then there must be some wedges where
the boundaries ofF1 andF2 cross, and thereforēq is strictly convex.

We remark that, as the proof shows, the functionsq and q̄ are even continuously
differentiable unless some edge ofF1 is parallel to an edge ofF2.

We have thus established thatq is a very well-behaved function for optimization. The
minimizerλ∗ of the functionq can be determined inO(n) time by the prune-and-search
technique: We search for the quadratic piece in whichλ∗ lies by performing a binary
search among the 2n breakpoints, successively narrowing down the interval [λ0, λ1] in
whichλ∗ is known to lie. The decision whetherλ∗ is bigger or smaller than the current
decision pointλ depends just on the sign of the derivativeq′(λ) at this point. When the
interval [λ0, λ1] contains onlyk breakpoints, there are at mostk functionsqi for which
the definition changes inside the interval; the remaining functions are plain quadratic
functions and their sum can be accumulated in one quadratic function. This means that
q(λ) and the derivativeq′(λ) can be evaluated inO(k) time. The next trial value for the
binary search is the median of thek remaining breakpoints and it can also be computed
in O(k) steps. This reducesk by a factor of 2. Thus, inO(n) time the interval in which
λ∗ must lie is narrowed down to one quadratic piece of the functionq. The optimumλ∗

is then found by solving the linear equationq′(λ∗) = 0.
Summarizing the results of the last two subsections, we have:
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THEOREM3. For the shape matching problem for two convex polygons with a total
number of n vertices, with respect to

1. the set of translations, or
2. the set of homotheties,

an 11
3 -approximate solution can be found in O(n) time.

We remark that the technique of this subsection can also be used when the allowable
transformationsT consist only of translations in a given fixed directiond. This is an
optimization problem with one degree of freedom, just like the problem for homotheties
after the scaling center is fixed. Instead of the wedges, we consider strips formed by the
lines parallel tod through every vertex ofF1 andF2. The translation minimizingδ can
be found in linear time, since, in the range where the intersectionI is nonempty,

√
I is

a concave function of the translation vector. Another linear-time algorithm for this task
is described in Avis et al. [ABS+], where the problem is approached in a more indirect
way.

4.3. Rigid Motions. As in the previous case we first perform a translation such that the
centroids ofF1 andF2 coincide. We assume for simplicity thatF1 andF2 already have
their common centroid at the originO. Now we have to rotateF2 aroundO by some
angleϕ in order to minimize the symmetric difference. We denote byF ′2 = tϕ(F2) the
rotated copy ofF2, and byq(ϕ) the symmetric differenceδ(F1, tϕ(F2)) as a function
of ϕ. It is possible to work out an expression forq(ϕ) in terms ofϕ, but since we are
interested in the minimum, we only describe how the derivativeq′(ϕ) can be computed.

LEMMA 3. The function q: R → R+ is continuous; it is continuously differentiable
except when a vertex of F′2 := tϕ(F2) lies on an edge of F1 or vice versa. The derivative
q′(ϕ) can be computed as follows. Let I = F1 ∩ F ′2, and let P1, . . . , P2m (m ≥ 0) be
a sequence of crossing points between F1 and F′2 in the following sense: between P2i−1

and P2i , the boundary of I is formed by the boundary of F′2; and between P2i and P2i+1

(and between P2m and P1), the boundary of I is formed by the boundary of F1. (If m = 0,
then one of the sets F1, F ′2 is contained in the other.) Then q′(ϕ) is the alternating sum
of squared distances of the points P1, . . . , P2m from O:

q′(ϕ) =
2m∑
i=1

(−1)i · O Pi
2
.(5)

PROOF. Instead of the symmetric difference we may equally well consider the area of
the intersectionI , sinceq(ϕ) = F1+ F2−2I , and soq′(ϕ) = −2 · ∂ I /∂ϕ. We consider
the change ofI in the vicinity of a pointPi whenϕ changes toϕ + ε > ϕ (Figure 5).
Assume that the part ofI ’s boundary that is formed byF ′2 lies to the left ofPi and thus
moves away from the part that is formed byF1. We see that, between these two parts, a
small wedge-like quadrilateral is inserted, which has area

ε · O Pi
2
/2+ O(ε2).
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Fig. 5.The derivative of the minimal symmetric difference under rotations.

(The area of a circular sector of radiusO Pi and angleε would beε · O Pi
2
/2. However,

in fact, the distance fromO to the boundary ofI inside the sector of interest differs
from the “ideal” radiusO Pi by O(ε). This accounts for the error termO(ε2).) If i has
different parity, then an analogous area of the same size issubtractedfrom I . Summing
up the different contributions, dividing byε, and taking the limitε→ 0 gives (5).

From the lemma it follows that the minimum ofq(ϕ) is either one of the points where
q is not differentiable, or one of the stationary points whereq′(ϕ) = 0. There are up
to O(n2) critical points of nondifferentiability: each vertex ofF1 can lie on a particular
edge ofF ′2 for at most two values ofϕ, and vice versa. These critical points are also the
points where the pointsPi may change: there areO(n2) intervals such that, inside an
interval, every pointPi is given as the intersection of a fixed edge ofF1 with a fixed edge
of F ′2, and thusq(ϕ) has a fixed analytic expression in terms ofϕ.

Summarizing, we have to checkO(n2) single points plusO(n2) intervals. For finding
the possible candidates for a minimum in each interval, we have to look for points where
the derivative is zero, i.e., for solutions ofq′(ϕ) = 0, whereq′(ϕ) is given by (5). We
discuss how the equationq′(ϕ) can be solved. Suppose thatPi is determined as the
intersection of two edgese1 ande2. Then the distanceO Pi can be expressed as follows.
Letψ denote the angle betweene1 ande2, and letd1, d2 denote the distance frome1, e2,
respectively, to the originO (Figure 6). Then we have

O Pi
2 = d2

1 + d2
2 + 2d1d2 cosψ

sin2ψ
.

(This can be checked by observing that the quadrilateralO A2Pi A1 is inscribed in a circle
with diameterO Pi and centerC = (O+ Pi )/2. The distanceA1A2 can be expressed in
terms ofd1, d2, and the angleA2O A1 = π − ψ , and is can also be computed from the
isosceles triangleA1A2C with sidesA1C = A2C = O Pi /2 and angleA1C A2 = 2ψ or
A1C A2 = 2π − 2ψ , as appropriate.) Whenϕ varies andF ′2 rotates,d1 andd2 remain
fixed, butψ must be substituted byψ0± ϕ, for some fixedψ0.

It is convenient to uset = tan(ϕ/2) as a parameter instead ofϕ. Then sinϕ =
2t/(1+ t2) and cosϕ = (1− t2)/(1+ t2), soO Pi

2
can be written as a rational function

with bounded degree. The expressionq′(ϕ) is the sum of at mostn such functions. Thus,
inside each interval,q′(ϕ) = 0 can be solved as the root of a polynomial of degreeO(n),
andq(ϕ) has at mostO(n) local minima.
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Fig. 6.Computing the distanceOPi .

Altogether, this givesO(n3) candidates for the minimum. In principle, these candi-
dates can be found exactly, since only computations with algebraic numbers are required.
However, this would be very expensive. A more practical approach would be to solve
the polynomial equations numerically. This still involves highly nontrivial numerical
problems, whoses detailed investigation goes beyond the scope of this paper. For an
intensive treatment of this problem with respect to bit complexity see [S].

Even just computingq(ϕ) at all candidate points (assuming they are given to us)
would takeO(n4) arithmetic operations. It does not make sense to spend so much
time in finding the optimal rotation in the present context, since the computed value is
only a rough approximation to the overall problem. An algorithm that computes a good
approximation to the optimal rotation within reasonable time bounds is called for.

5. Conclusion and Open Problems. As mentioned in the Introduction, de Berg et al.
[BDK+] showed that, when the centroids of two convex setsF1 and F2 coincide, the
area of their intersection is at least9

25 of the maximum area that can be obtained by
translatingF2. As in Section 3, this result extends to more general sets of transformations.

We briefly relate the bound of Theorem 1 to this result. This bound is more powerful
than our result when the area of the intersection is relatively small and the area of the
symmetric difference is relatively large. For example, whenF1 ≤ 4

7 F2, our bound is
worthless:δ(F1, t (F2)) ≥ F2 − F1 ≥ 3

7 F2, and if we multiply this by11
3 , the bound on

δC(F1, F2) that we get is larger than the trivial bound ofF1+ F2 that we get by placing
F2 anywhere. In contrast to this situation, the bound of de Berg et al. makes a nontrivial
statement in any case. On the other hand, Theorem 1 gives the strongest statement when
the setsF1 andF2 have a very similar shape andδ is small, as in the cases of practical
interest for pattern matching. One may check that Theorem 1 gives a stronger bound
precisely ifδopt(F1, F2) <

6
31(F1+ F2).

It is not known whether the fraction925 in the mentioned bound is best possible. The
correct number should probably be4

9. (There is an example showing that the factor cannot
be improved beyond49.) The proof of the9

25 bound uses an ingenious representation of
the centroid. This technique also yields results in all higher dimensions.

The extension of Theorem 1 to higher dimensions has not been considered so far. A
direct generalization of the proof of Lemma 1 to three dimensions is not possible, because
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there is no way to ensure that the analogous operation to Steiner symmetrization leaves
the “width”w, i.e., the area of the vertical projection, unchanged. By taking into account
the loss that occurs in this operation, we can show that the centroid has an approximation
factor of at most 33

√
3/(8π) in three dimensions, but this bound is not tight.

Our heuristic is guaranteed to find a translation which reduces the symmetric dif-
ference between two given convex figures to within a factor of11

3 of the optimum. It
would be nice to have a simple method for getting a solution with a better approximation
guarantee, using the heuristic solution as a starting point. Techniques which have proved
to be useful in similar situations include (a) testing all vectors in a sufficiently fine grid
around the starting point and (b) applying the ellipsoid method for convex optimization
problems. (Recall that, in the range where the intersectionI is nonempty,

√
I is a concave

function of the translation vector.) However, one needs some a priori knowledge about
the region in which the optimal solution can lie in order to apply these methods. This
question is open to further research.

As discussed in the last section, the approximate shape matching problem under rigid
motions is not solved in a satisfactory way. If a good approximation algorithm for shape
matching under rotations were available, it could be combined with the technique of
superimposing centroids to give an approximate algorithm for rigid motions.
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