
Matrix Scaling by Network Flow

Günter Rote∗ Martin Zachariasen†

July 5, 2006

Abstract

A given nonnegative n × n matrix A = (aij) is to be scaled, by
multiplying its rows and columns by unknown positive multipliers λi

and µj , such that the resulting matrix (aijλiµj) has specified row and
column sums ri and sj.

We give an algorithm that achieves the desired row and column
sums with a maximum absolute error ε in O(n4(log n + log h

ε
)) steps,

where h is the overall total of the result matrix.
Our algorithm is a scaling algorithm. It solves a sequence of more

and more refined discretizations. The discretizations are minimum-
cost network flow problems with convex piecewise linear costs. These
discretizations are interesting in their own right because they arise in
proportional elections.

1 Introduction

The Matrix Scaling Problem. The input of the (real-valued) matrix
scaling problem is a non-negative n × n matrix A = (aij), and two positive
n-vectors r = (ri) and s = (sj). The problem is to find positive multipliers
λi for scaling the rows and µj for scaling the columns, such that the resulting
matrix (aijλiµj) has the specified values ri and sj as row and column sums:

n∑
j=1

aijλiµj = ri,
n∑

i=1

aijλiµj = sj (1)

Of course, we must have
∑n

i=1 ri =
∑n

j=1 sj. We denote this common value
by h, the total sum of the desired matrix.

∗Freie Universität Berlin, Institut für Informatik, Takustraße 9, 14195 Berlin, Germany,
rote@inf.fu-berlin.de.

†University of Copenhagen, Department of Computer Science, Universitetsparken 1,
DK-2100 Copenhagen Ø, Denmark, martinz@diku.dk.

1

G. Rote, M. Zachariasen: Matrix Scaling by Network Flow 2

A special case is when all ri and sj are 1. This is the doubly stochastic
scaling problem. The problem also makes sense for rectangular matrices,
but for simplicity, we restrict our attention to the square case.

The problem (1) is a non-linear system of equations, and there is no hope
to solve it exactly in reasonable time. Thus we settle for an ε-approximate
solution: ∣∣∣∣∣

n∑
j=1

aijλiµj − ri

∣∣∣∣∣ ≤ ε, and

∣∣∣∣∣
n∑

i=1

aijλiµj − sj

∣∣∣∣∣ ≤ ε (2)

Applications. There is an abundance of literature about the problem,
see for example [8] and the references given there. Linial, Samorodnitsky,
and Wigderson [7] mention such diverse applications as statistics and image
reconstruction. In numerical analysis, matrix scaling is used as a simple
preconditioning operation to improve the numerical stability for solving lin-
ear equations. Linial et al. [7] have used doubly stochastic matrix scaling
as a tool for approximating the permanent of a nonnegative matrix with a
multiplicative error of en.

A fast parallel algorithm for doubly stochastic matrix scaling (with ε =
1/n) could be used for the bipartite matching problem, which is a major
open problem in parallel complexity, see [7, Section 5.1] or [4].

Previous Results. The problem (1) has a solution if and only if the
system

n∑
j=1

xij = ri,

n∑
i=1

xij = sj (3)

has a solution (xij) with the same sign structure as A: xij > 0 if aij > 0 and
xij = 0 otherwise. This condition can be tested in polynomial time because
it is just a network flow problem.

If a solution exists, the values aijλiµj are unique. Obviously, one has
the freedom of shifting a common factor between the λi’s and the µj ’s.

There are several different formulations of the matrix scaling problem as
a nonlinear optimization problem.

Algorithms. The original paper by Sinkhorn [9] introduced the simple
algorithm of alternatively scaling the rows and columns to the desired sums,
and he proved (originally only for the case of doubly stochastic scaling and
for a positive matrix A) that the process converges to the solution. Rela-
tively little work has been done on the complexity of computing a solution.
Most of this research concentrated on investigating the convergence of the
Sinkhorn scaling approach. If a solution exists, convergence to the correct

G. Rote, M. Zachariasen: Matrix Scaling by Network Flow 3

solution is linear (i. e., the error decreases geometrically), but the rate of con-
vergence deteriorates when entries of the scaled matrix approach zero [10].

For doubly stochastic scaling, an algorithm of Kalantari and Khachian [6]
uses the ellipsoid method and takes O(log L(A) · n4 log n

ε) arithmetic opera-
tions, where L(A) is the ratio between the largest and the smallest positive
entry in the matrix. The only strongly polynomial running time so far is
achieved by Linial et al. [7]. It takes O(n7 log h

ε) operations.1 For the case
of doubly stochastic scaling, they have a different algorithm which takes
O(n3 log n/ε2) operations.2

The Integer Matrix Scaling Problem. In the integer version of the
matrix scaling problem, the resulting values are rounded to integers:

n∑
j=1

[aijλiµj] = ri,
n∑

i=1

[aijλiµj] = sj (4)

Here, [·] denotes the rounding-down operation: x = [u] denotes an integer
value with

u − 1 ≤ x ≤ u, (5)

i. e., x = buc if u is not integral. If u is integral, there is a tie: x = u or
x = u − 1.3

This problem arises in biproportional voting systems, where the allocated
seats are classified by two independent categories: the total number of seats
sj in each district j is specified in advance, according to the population; and
the total number of seats ri for each party i is calculated in proportion to the
total vote for that party. Moreover, the seats should be proportional both
in rows and columns. Such a model (with a different rounding function) was
recently used for electing the 125 members of the municipal council of the
city of Zurich on February 12, 2006.4

Previous Results on the Integer Matrix Scaling Problem. The
biproportional scaling problem with rounding was first investigated by Balin-
ski and Demange [1]. The conditions for the existence of a solution of the

1The running time claimed in [7] has an extra factor of log n which comes from Theo-
rem 4.3. We don’t see how this factor arises in the proof.

2This result does not appear explicitly in [7]. A different definition of the error is used
there: the squared L2 norm ε′ of the discrepancies in the row and column sums. The time
bound is O(n3 log n/ε′), and it is stated only for ε′ = 1/(n log n). An O(n5 log n) additive
term for preprocessing in the algorithm can be reduced to O(n3).

3Other rounding functions, like rounding to the nearest integer, can be handled as well,
but we stick to this simple rounding function in order to simplify the discussion.

4See http://daten.wahlen.stzh.ch/.

G. Rote, M. Zachariasen: Matrix Scaling by Network Flow 4

system (4) are the same as for the real version (1). The solution values
xij = [aijλiµj] are unique except for the presence of ties.5 (The multipliers
λi and µj can of course vary in a certain range where they don’t modify the
rounded values xij .)

Balinski and Demange [1] have given an algorithm that computes a so-
lution in O(n3h) time (see also [2]).6

Gaffke and Pukelsheim [5] have investigated the relation between the
primal and dual version of these problems, (6–9) and (4), respectively, (with
generalized rounding functions) which is expressed in Theorem 1 below.

Our Contribution. We observe that the formulation (6–9) for the integer
matrix scaling problem can in fact be modeled as a standard minimum-
cost network flow problem. This opens the way to use any of numerous
alternative methods for network flow problems, leading to better runtimes
(Theorems 2 and 3 in Sections 2 and 3).

We then apply our result as an approximation algorithm for the real-
number matrix scaling problem in a straightforward way, leading to a simpler
and faster algorithm (Theorem 4 in Section 4).

2 A Network Flow Model for Matrix Scaling

The following constraints (7–9) define a network flow problem on the bi-
partite graph G(A) with n source vertices Ri and n sink vertices Sj , see
Figure 1a.

minimize
n∑

i=1

n∑
j=1

xij∑
t=1

log
t

aij
(6)

subject to
n∑

j=1

xij = ri for i = 1, . . . , n (7)

n∑
i=1

xij = sj for j = 1, . . . , n (8)

xij ≥ 0, xij integer, xij = 0 if aij = 0 (9)

5Some occasional ambiguity as in (5) is inherent in the model, for otherwise there might
be no solution: Consider the 2×2 problem where all entries of A are identical, and the row

and column sums are 1. The two possible solutions are X =

„
1 0
0 1

«
and X =

„
0 1
1 0

«
,

but no “consistent” way of rounding fractions will produce these matrices, whatever the
choice of λi and µj might be.

6With hindsight, this algorithm can be interpreted as a special instance of a standard
primal-dual algorithm for our network flow model (6–9).

G. Rote, M. Zachariasen: Matrix Scaling by Network Flow 5

The variable xij is the flow value in arc (Ri, Sj). If aij = 0, there is no arc
(Ri, Sj). The cost function for an arc

fij(x) :=
x∑

t=1

log
t

aij

is piecewise linear and convex, as illustrated in Figure 1b.

fij(x)

x
1 2 3

R1

R2

Rn

xij

...

S1

S2

Sn

...

(a) (b)

log 3
aij

log 2
aij

log 1
aij

Figure 1: (a) The graph G(A). (Only a few arcs are shown.) (b) The
piecewise linear cost function fij(x). Between successive breakpoints, the
function makes vertical steps of size log t

aij
, for t = 1, 2, 3,

A piecewise linear convex cost function can be modeled by linear cost
functions on a sequence of parallel arcs: between Ai and Bj, we introduce
parallel arcs with capacity 1 and cost coefficients ct

ij = log t
aij

, for t =
1, 2, Clearly, a flow of some integral value x from Ri to Sj will fill the x
cheapest arcs, and hence the total cost equals fij(x).

This is then a classical minimum-cost network flow problem, and the
standard theory can be applied. In particular, we know that there is an
integral optimum solution if there is a solution at all.

The following connection to the matrix scaling problem was proved in
[5, Theorem 8.1], in a more general setting.

Theorem 1. An optimum solution X = (xij) of the flow problem (6–9) is
a solution xij = [aijλiµj] of the integer matrix scaling problem (4).

Proof. For an optimum solution (xij), there are dual variables αi, βj for
which all reduced costs ct

ij − αi − βj of arcs in the residual network are

G. Rote, M. Zachariasen: Matrix Scaling by Network Flow 6

nonnegative. In particular, looking at the forward arcs (Ri, Sj), this means
that

log
t

aij
− αi − βj ≥ 0, for all t ≥ xij + 1,

which is equivalent to

log
xij + 1

aij
− αi − βj ≥ 0

or
xij + 1 ≥ aij · eαieβj .

Similarly, from the backward arcs (Sj , Ri), we have −ct
ij + αi + βj ≥ 0, or

xij ≤ aij · eαieβj .

With λi := eαi and νj := eβj this means that xij is the correctly rounded
value of aijλiµj :

aijλiµj − 1 ≤ xij ≤ aijλiµj (10)

Thus, we can solve the integer matrix scaling problem by solving a
minimum-cost network flow problem with any of the standard algorithms.
A simple algorithm is the least-cost augmenting path method, cf. [3, Sec-
tion 4.3]: start with the zero flow and successively augment the flow along
minimum-cost augmenting paths, using the labels from the shortest path
computation to update dual variables αi and βj .

In order not to distract from the algorithm, we assume in this section
that all calculations (including logarithms and exponentials) are computed
exactly. We will analyze the necessary precision in Section 5.

For the row sums and column sums of a matrix X = (xij) we use the
notations xi. :=

∑n
j=1 xij and x.j :=

∑n
i=1 xij . We define

∆(X) :=
n∑

i=1

|xi. − ri| +
n∑

j=1

|x.j − sj|

as the total discrepancy from the desired row and column sums.

Lemma 1. Suppose we have a set of values αi, βj and a set of integer values
xij with

log aij + αi + βj − 1 ≤ log xij ≤ log aij + αi + βj (11)

and ∆(X) > 0. Then, in O(n2) time, we can find a new solution where ∆
is decreased by 2, or we establish that no such solution exists, by solving a
single-source shortest path problem. With the new solution, we also find new
values αi, βj such that (11) is maintained.

G. Rote, M. Zachariasen: Matrix Scaling by Network Flow 7

Proof. (cf. [3, Lemma 4.16]) Suppose w.l.o.g. that there is a row i in which
xi. < ri holds. (The case xi. > ri is similar.) We compute a shortest path
in the residual network, starting from the row vertex Ri and ending at any
column vertex Sj whose in-flow is smaller than the demand sj, using the
non-negative reduced costs c̄t

ij = ct
ij −αi −βj and c̄t

ji = −ct
ij +αi +βj . Such

a shortest path can be computed in O(n2) time by Dijkstra’s algorithm.
The shortest distance labels can be used to update the dual variables αi, βj

such that (11) is maintained. If no path is found, it means that there is no
possibility to increase xi., and therefore the problem is infeasible.

The total desired flow is h. Incrementing the flow in steps of 1 unit leads
to h shortest path computations. Thus we get:

Theorem 2. The integer matrix scaling problem can be solved in O(n2h)
steps.

3 Scaling the Data

The pseudo-polynomial complexity of Theorem 2 can be improved to a poly-
nomial complexity, by solving a sequence of more and more refined dis-
cretizations. For an integer k ≥ 0 we define the modified problem P k with
r̂i := bri/2kc and ŝj := bcj/2kc. Since

∑
r̂i =

∑
ŝj is no longer guaranteed,

we have to modify the concept of a solution for such a problem instance.7

A solution xij with xij = [aijλiµj] must satisfy

n∑
j=1

xij ≤ ri and
n∑

i=1

xij ≤ sj , (12)

while achieving the maximum value of
∑n

i=1

∑n
j=1 xij (i.e., the minimum

discrepancy) under the constraints (12).

Lemma 2. Suppose that the original problem P 0 is feasible. Let λi, µj and
xij = [aijλiµj] be a solution to a problem instance P k (k ≥ 1). Then the
values x′

ij := [2aijλiµj] satisfy the row and column sum requirements for the
problem instance P k−1 with a discrepancy ∆(X ′) ≤ 6n2.

Proof. First we show that ∆(X) ≤ 2n2. Let (x0
ij) be a solution to the

original problem. Then x̂ij := bx0
ij/2kc satisfies (12) for problem P k, and

an easy calculation shows that ∆(X̂) ≤ 2n2. Therefore, the solution X has
∆(X) ≤ 2n2.

7Even if
P

r̂i =
P

ŝj , a solution of P k in the sense of (3) might not exist, if A contains
zeros.

G. Rote, M. Zachariasen: Matrix Scaling by Network Flow 8

It is easy to check that x′
ij = 2xij or x′

ij = 2xij + 1. (If there is a tie, we
can choose xij appropriately.) The new row sum requirements are r̂′i = 2r̂i

or r̂′i = 2r̂i + 1, and similarly for the column sums. Thus, the discrepancy
in each row is twice the old discrepancy plus at most n. For all rows and
columns, this adds up to ∆(X ′) ≤ 2∆(X) + 2n2 ≤ 6n2.

We thus solve the sequence P k, P k−1, . . . of more and more refined
problems until the original problem P 0 is solved. We multiply the input
matrix A by a scalar such that the largest entry is 1

2 , without changing
the problem. Then, for k := 1 + dlog2 he, we have r̂i = ŝj = 0, and with
λi = µj = 1 (or αi = βj = 0), we already have xij = 0 as a valid solution
for P k8 Going from P k to P k−1 incurs O(n2) shortest path computations,
by Lemma 2: We first have to ensure that no row or column sum exceeds the
desired value (12). This might involve at most 6n2 flow changes according
to Lemma 1, and increment the discrepancy to 18n2. Then with at most 9n2

additional applications of Lemma 1, ∆(X) is decreased to the minimum. (If
this minimum is bigger than 2n2, we can abort since, as proved in the proof
of Lemma 2, there is no feasible solution for the original problem.) Thus,
the transition from P k to P k−1 takes O(n4) time, and we have:

Theorem 3. The integer matrix scaling problem can be solved in O(n4 log h)
steps.

4 Scaling of Real Matrices

The application to the approximate scaling of real matrices (2) is straightfor-
ward. We multiply all row and column sums ri and sj by the constant F := n

ε
and round them down to integers r̂i and ŝj , respectively. We get the total
sum H ≤ hn/ε. We solve the integer scaling problem for these data, using
Theorem 2 or 3, in O(n2H) or O(n4 log H) time, respectively. In the end, we
have to use a modification of Lemma 1 to get a solution in the sense of (12)
in which the maximum discrepancy ∆max(X) := maxi,j{ r̂i − xi., ŝj − x.j }
is as small as possible. Taking the real-valued solution of (1), scaling it
by F , and rounding everything down, we see that an integer solution with
∆max ≤ n − 1 exists. Let us now estimate the error in (1), looking for
example at row i:
n∑

j=1

aijλiµj −Fri =
(n∑

j=1

[aijλiµj]− r̂i

)
+

n∑
j=1

(
aijλiµj − [aijλiµj]

)
+(r̂i−Fri)

8We could have defined the scaled problems by rounding upward: r̂i := dri/2ke, etc.
Then the first problem P 1+dlog2 he has all row and column sums r̂i and ŝj equal to 1.
Incidentally, this problem is precisely equivalent to the problem that is solved as the
preprocessing step in the first algorithm of Linial et al. [7, Theorem 3.1].

G. Rote, M. Zachariasen: Matrix Scaling by Network Flow 9

The first term in parentheses is between −n + 1 and 0, by the bound on
∆max for the solution xij = [aijλiµj]; the second sum is between 0 and n,
and the last term is between −1 and 0. This accumulates to a total error
between −n and +n in each row sum, and similarly in each column sum. In
terms of the original (unscaled) data, this is an absolute error of at most ε.

Theorem 4. The (real-valued) matrix scaling problem can be solved to an
accuracy ε in O(n3 h

ε) or in O(n4(log n + log h
ε)) time.

The algorithms are simple, and they beat the best previous algorithms
of Linial et al. [7] by several orders of magnitude.9 Only for the special case
of doubly stochastic scaling (where h = n) and for moderate error bounds
ε, the O(n3 log n/ε2) algorithm in [7], which is just Sinkhorn scaling with a
special preprocessing step, is faster. It might be interesting to investigate
hybrid algorithms that combine different approaches in various phases.

5 Numerical Accuracy

For the quantities related to the costs, we use fixed-point arithmetic with
fixed precision, i. e. all numbers log aij , log xij , αi and βj are approximately
represented as integer multiples of some small value δ, with an absolute error
of O(δ). This means that, after approximating the “input data”, shortest
paths are computed exactly, as they involve only additions and comparisons.

A nice feature of the flow problem (6–9) is that we can use Theorem 1
without propagating errors. We can take arbitrary values αi and βj and
define xij by xij := baij · eαieβjc or more precisely, by the relation (11),
These values can be used as a starting solution for Lemma 1.

Let us analyze what happens if (11) is only satisfied approximately. It
is better to rewrite (11) as

log xij ≤ log aij + αi + βj ≤ log(xij + 1) (13)

to make it clear that log(xij + 1) is a different (approximate) calculation
from log xij (but all computations of the same number log x yield the same
approximate result). Conceptually we locate the value log aij +αi+βj in the
sorted list of approximate values log 1, log 2, log 3, To be specific, let
us use natural logarithms in this section unless otherwise stated. Suppose
that all values xij that occur in the computation are bounded by some
bound M . Then, if we calculate log xij with an absolute error ≤ 0.1/M we

9It must be conceded, however, that Linial et al. [7] were apparently satisfied with
achieving, for the first time, a strongly polynomial running time for the problem, and did
not make a great effort to optimize the running times for their algorithms.

G. Rote, M. Zachariasen: Matrix Scaling by Network Flow 10

may incur an error of approximately ±0.1 in terms of xij . In other words,
(11) holds for some approximation x̃ij instead of the integer value xij , with
|x̃ij −xij | ≤ e0.1 < 0.11. This has the effect that, in the “optimum” solution
that we compute, (11) will hold with an additional error term of ±0.11 on
both sides. If log aij is also computed with an error of at most ±0.1, we get
that (10) is satisfied with an error term of ±0.23 on both sides. This is good
enough for achieving an ε-approximation of the real-valued matrix scaling
problem. The scaling factor F in the proof of Theorem 4 must be adjusted
a little, but the asymptotic runtime is unaffected.

In Lemma 2, the discrepancy after using the solution of P k as the initial
solution for P k−1 may be larger than 6n2 but it is still O(n2). Again, this
does not affect the asymptotic running time.

The values xij that occur during the course of the computation are
bounded by M := H + O(n2) = hn/ε + O(n2). We set δ = 0.1/M , and
this means that we need log2

h
ε + 2 log2 n + O(1) bits for the fraction.

To estimate the maximum size of the numbers, one has to observe that,
during the algorithm, the new values of αi and βj are always determined by
setting some of the inequalities (13) to equations (corresponding to arcs of
zero reduced cost in the residual network). Each value αi or βj is connected
to a “free” value αi or βj by such a chain of equations, going over at most
2n arcs. If we take care that the “free” value is the initial value of 0, we
can ensure that the maximum absolute value of the numbers αi and βj is
bounded by 2n · (logM + log maxai,j 6=0 | log aij |). As in the proof leading to
Theorem 3, we can scale the input matrix A such that the largest entry is
1
2 . Thus we need at most 1 + log2 n + log2 log M + log2 log(2L(A)) bits to
represent the integer part of the numbers αi and βj , where L(A) is the ratio
between the largest and the smallest positive entry in A. Thus, we have:

Theorem 5. For achieving Theorem 4, arithmetic operations on numbers
with O(logn+log log L(A)+log h

ε) bits are sufficient, where L(A) is the ratio
between the largest and the smallest positive entry in the input matrix.

For example, if L(A) ≤ 1010, ε = 10−6h, and n ≤ 1000, the algorithm
can work with IEEE double-precision floating point numbers.10

An obvious alternative is to eliminate the logarithms altogether, to use
directly the exponentiated variables λi and µj instead of αi and βj , and to
work with a multiplicative version of Dijkstra’s algorithm. However, this
would incur a propagation of errors in the shortest path calculations, which
needs to be analyzed.

10The reader may wonder why only O(log log L(A)) bits are needed when one must, of
course, look at the log L(A) bits of the input numbers aij in the first place. But since
we are interested in an approximate solution, excessive trailing bits of very long input
numbers can be ignored.

G. Rote, M. Zachariasen: Matrix Scaling by Network Flow 11

The approximate calculations discussed in this section are of course not
appropriate for carrying out an election (Theorems 2 and 3), where the
tiniest fraction can be important to decide about one seat. We are planning
to investigate the necessary precision to compute an exact result in a future
work.

References

[1] Michel Balinski and Gabrielle Demange. Algorithms for proportional
matrices in reals and integers. Math. Programming, 45:193–210, 1989.

[2] Michel Balinski and Svetlozar T. Rachev. Rounding proportions: meth-
ods of rounding. Math. Scientist, 22:1–26, 1997.

[3] William R. Cook, William H. Cunningham, William R. Pulleyblank,
and Alexander Schrijver. Combinatorial Optimization. Wiley, 1998.

[4] Martin Fürer. Quadratic convergence for scaling of matrices. In
Lars Arge, Giuseppe F. Italiano, and Robert Sedgewick, editors, Proc.
ALENEX/ANALC 2004, 6th Workshop on Algorithm Engineering and
Experiments and 1st Workshop on Analytic Algorithmics and Combi-
natorics, New Orleans, pages 216–223. SIAM, January 2004.

[5] Norbert Gaffke and Friedrich Pukelsheim. Divisor methods for propor-
tional representation systems: an optimization approach to vector and
matrix problems. Technical Report Preprint 06-18, Universität Magde-
burg, Fakultät für Mathematik, March 2006. http://www.math.uni-
magdeburg.de/preprints/shadows/06-18report.html.

[6] B. Kalantari and L. Khachian. On the complexity of nonnegative matrix
scaling. Linear Algebra Appl., 240:87–104, 1996.

[7] Nathan Linial, Alex Samorodnitsky, and Avi Wigderson. A determin-
istic strongly polynomial algorithm for matrix scaling and approximate
permanents. Combinatorica, 20(4):545–568, 2000.

[8] U. Rothblum and H. Schneider. Scaling of matrices which have pre-
specified row sums and column sums via optimization. Linear Algebra
Appl., 114–115:737–764, 1989.

[9] Richard Sinkhorn. A relationship between arbitrary positive matrices
and doubly stochastic matrices. Ann. Math. Statist., 35:876–879, 1964.

[10] George W. Soules. The rate of convergence of Sinkhorn balancing.
Linear Algebra Appl., 150:3–40, 1991.

