
Matrix Scaling by Network Flow

Günter Rote∗ Martin Zachariasen†

Abstract
A given nonnegative n × n matrix A = (aij) is to be
scaled, by multiplying its rows and columns by unknown
positive multipliers λi and µj , such that the resulting matrix
(aijλiµj) has specified row and column sums ri and sj .

We give an algorithm that achieves the desired row
and column sums with a maximum absolute error ε in
O(n4(log n + log h

ε
)) steps, where h is the overall total of

the result matrix.
Our algorithm is a scaling algorithm. It solves a

sequence of more and more refined discretizations. The
discretizations are minimum-cost network flow problems
with convex piecewise linear costs. These discretizations
are interesting in their own right because they arise in
proportional elections.

1 Introduction

The Matrix Scaling Problem. The input of the
(real-valued) matrix scaling problem is a non-negative
n × n matrix A = (aij), and two positive n-vectors
r = (ri) and s = (sj). The problem is to find positive
multipliers λi for scaling the rows and µj for scaling the
columns, such that the resulting matrix (aijλiµj) has
the specified values ri and sj as row and column sums:

(1)
n∑

j=1

aijλiµj = ri,

n∑
i=1

aijλiµj = sj

Of course, we must have
∑n

i=1 ri =
∑n

j=1 sj . We denote
this common value by h, the total sum of the desired
matrix.

A special case is when all ri and sj are 1. This is
the doubly stochastic scaling problem. The problem also
makes sense for rectangular matrices, but for simplicity,
we restrict our attention to the square case.

The problem (1) is a non-linear system of equations,
and there is no hope to solve it exactly in reasonable
time. Thus we settle for an ε-approximate solution:

(2)

∣∣∣∣∣
n∑

j=1

aijλiµj − ri

∣∣∣∣∣ ≤ ε, and

∣∣∣∣∣
n∑

i=1

aijλiµj − sj

∣∣∣∣∣ ≤ ε

∗Freie Universität Berlin, Institut für Informatik, Takustraße
9, 14195 Berlin, Germany, rote@inf.fu-berlin.de.

†University of Copenhagen, Department of Computer Sci-
ence, Universitetsparken 1, DK-2100 Copenhagen Ø, Denmark,
martinz@diku.dk.

Applications. There is an abundance of literature
about the problem, see for example Bacharach [1] or
Rothblum and Schneider [11] and the references given
there. Linial, Samorodnitsky, and Wigderson [10] men-
tion such diverse applications as statistics and image
reconstruction. In numerical analysis, matrix scaling
is used as a simple preconditioning operation to im-
prove the numerical stability for solving linear equa-
tions. Linial et al. [10] have used doubly stochastic ma-
trix scaling as a tool for approximating the permanent of
a nonnegative matrix with a multiplicative error of en.

A fast parallel algorithm for doubly stochastic ma-
trix scaling (with ε = 1/n) could be used for the bipar-
tite matching problem, which is a major open problem
in parallel complexity, see [10, Section 5.1] or [5].

Previous Results. The problem (1) has a solution
if and only if the system

(3)
n∑

j=1

xij = ri,
n∑

i=1

xij = sj

has a solution (xij) with the same sign structure as A:
xij > 0 if aij > 0 and xij = 0 otherwise. This condition
can be tested in polynomial time because it is just a
network flow problem, see [11].

If a solution exists, the values aijλiµj are unique.
Obviously, one has the freedom of shifting a common
factor between the λi’s and the µj ’s.

There are several different well-known formulations
of the matrix scaling problem as a nonlinear optimiza-
tion problem: the minimum of

(4)
∑

i,j:aij>0

xij

(
log

xij

aij
− 1

)
under the constraints (3) yields the solution xij =
aijλiµj of the continuous matrix scaling problem (1).
The dual problem is an unconstrained convex optimiza-
tion problem.

minimize
∑

i,j:aij>0

aij · eαi+βj −
∑

i

riαi −
∑

j

sjβj

It yields the correct multipliers by the relations λi :=
eαi and µj := eβj .



2 Günter Rote, Martin Zachariasen: Matrix Scaling by Network Flow

Algorithms. The original paper by Sinkhorn [12]
introduced the simple algorithm of alternatively scaling
the rows and columns to the desired sums, and he
proved (originally only for the case of doubly stochastic
scaling and for a positive matrix A) that the process
converges to the solution. Relatively little work has
been done on the complexity of computing a solution.
Most of this research concentrated on investigating the
convergence of the Sinkhorn scaling approach. If a
solution exists, convergence to the correct solution is
linear (i. e., the error decreases geometrically), but the
rate of convergence deteriorates when entries of the
scaled matrix approach zero [14].

For doubly stochastic scaling, an algorithm of
Kalantari and Khachian [8] uses the ellipsoid method
and takes O(log R(A) · n4 log n

ε ) arithmetic operations,
where R(A) is the ratio between the largest and the
smallest positive entry in the matrix. The only strongly
polynomial running time so far is achieved by Linial et
al. [10]. It takes O(n7 log h

ε ) operations.1 For the case
of doubly stochastic scaling, they have a different algo-
rithm which takes O(n3 log n/ε2) operations.2

The Integer Matrix Scaling Problem. In the
integer version of the matrix scaling problem, the re-
sulting values are rounded to integers:

(5)
n∑

j=1

[aijλiµj ] = ri,

n∑
i=1

[aijλiµj ] = sj

Here, [·] denotes the rounding-down operation: x = [u]
denotes an integer value with

(6) u− 1 ≤ x ≤ u,

i. e., x = buc if u is not integral. If u is integral, there
is a tie: x = u or x = u− 1. Other rounding functions,
like rounding to the nearest integer, can be handled as
well, but we stick to this simple rounding function in
order to simplify the discussion.

This problem arises in biproportional voting sys-
tems, where the allocated seats are classified by two
independent categories: the total number of seats sj in
each district j is specified in advance, according to the
population; and the total number of seats ri for each
party i is calculated in proportion to the total vote for

1The running time claimed in [10] has an extra factor of log n

which comes from their Theorem 4.3. We don’t see how this factor
arises in the proof.

2This result does not appear explicitly in [10]. A different

definition of the error is used there: the squared L2 norm ε′ of
the discrepancies in the row and column sums. The time bound
is O(n3 log n/ε′), and it is stated only for ε′ = 1/(n log n). An

O(n5 log n) additive term for preprocessing in the algorithm can
be reduced to O(n3), see footnote 5.

that party. Moreover, the seats should be proportional
both in rows (parties) and columns (districts). Such
a model (with a different rounding function: rounding
to the nearest integer) was recently used for electing
the 125 members of the municipal council of the city of
Zurich on February 12, 2006.3

Previous Results on the Integer Matrix Scal-
ing Problem. The biproportional scaling problem
with rounding was first investigated by Balinski and De-
mange [2]. The conditions for the existence of a solution
of the system (5) are the same as for the real version (1).
The solution values xij = [aijλiµj ] are unique except for
the presence of ties.4 (The multipliers λi and µj can of
course vary in a certain range where they don’t modify
the rounded values xij .)

Balinski and Demange [2] have given an algorithm
that computes a solution in O(n3h) time (see also [3]).
With hindsight, this algorithm can be interpreted as a
special instance of a standard primal-dual algorithm for
our network flow model in Section 2.

Gaffke and Pukelsheim [6] have investigated the
relation between the primal and dual version of these
problems (with generalized rounding functions) which
is expressed in Theorem 1 below.

Our Contribution. We observe that the formula-
tion (7–11) for the integer matrix scaling problem can
in fact be modeled as a standard minimum-cost net-
work flow problem. This opens the way to use any of
numerous alternative methods for network flow prob-
lems, leading to better runtimes (Theorems 2 and 3 in
Sections 2 and 3).

We then apply our result as an approximation
algorithm for the real-number matrix scaling problem
in a straightforward way, leading to a simpler and faster
algorithm (Theorem 4 in Section 4).

By applying the algorithm of Karzanov and Mc-
Cormick [9] for convex-cost flows, we can solve the real-
number scaling problem with integral row and column
sums in O(n3 log n · (log h

ε + log n + log log R(A)) time,
where R(A) is the ratio between the largest and the
smallest positive entry in the matrix A (Theorem 6 in
Section 6).

3See http://daten.wahlen.stzh.ch/
4Some occasional ambiguity as in (6) is inherent in the model,

for otherwise there might be no solution: Consider the 2 × 2

problem where all entries of A are identical, and the row and

column sums are 1. The two possible solutions are X =

„
1 0
0 1

«
and X =

„
0 1
1 0

«
, but no “consistent” way of rounding fractions

will produce these matrices, whatever the choice of λi and µj

might be.



Günter Rote, Martin Zachariasen: Matrix Scaling by Network Flow 3

fij(x)

x
1 2 3

R1

R2

Rn

xij...

S1

S2

Sn

...

(a) (b)

log 3
aij

log 2
aij

log 1
aij

Figure 1: (a) The graph G(A). (Only a few arcs are shown.) (b) A schematic example of the piecewise linear cost
function fij(x). Between successive breakpoints, the function makes vertical steps of size log t

aij
, for t = 1, 2, 3, . . .

2 A Network Flow Model for Matrix Scaling

The optimization formulation presented in this section
has been suggested by Gaffke and Pukelsheim [6].

The following constraints (8–11) define a network
flow problem on the bipartite graph G(A) with n source
vertices Ri and n sink vertices Sj , see Figure 1a.

minimize
n∑

i=1

n∑
j=1

xij∑
t=1

log
t

aij
(7)

subject to
n∑

j=1

xij = ri for i = 1, . . . , n(8)

n∑
i=1

xij = sj for j = 1, . . . , n(9)

xij ≥ 0, xij integer(10)
xij = 0 if aij = 0(11)

The variable xij is the flow value in arc (Ri, Sj). If
aij = 0, there is no arc (Ri, Sj). The cost function for
an arc with aij > 0,

fij(x) :=
x∑

t=1

log
t

aij

is piecewise linear and convex, as illustrated in Fig-
ure 1b.

A piecewise linear convex cost function can be
modeled by linear cost functions on a sequence of
parallel arcs: between Ai and Bj , we introduce parallel
arcs with capacity 1 and cost coefficients ct

ij = log t
aij

,
for t = 1, 2, . . .. Clearly, a flow of some integral value
x from Ri to Sj will fill the x cheapest arcs, and hence
the total cost equals fij(x).

This is then a classical minimum-cost network flow
problem, and the standard theory can be applied. In
particular, we know that there is an integral optimum
solution if there is a solution at all.

The following connection to the matrix scaling
problem was proved in [6, Theorem 8.1], for more gen-
eral rounding functions, without exploiting the connec-
tion to network flows, however.

Theorem 1. An optimum solution X = (xij) of the
flow problem (7–11) is a solution xij = [aijλiµj ] of the
integer matrix scaling problem (5).

Proof. For an optimum solution (xij), there are dual
variables αi, βj for which all reduced costs of arcs in the
residual network are nonnegative. In particular, looking
at the forward arcs (Ri, Sj), we have the reduced costs

ct
ij −αi−βj = log

t

aij
−αi−βj ≥ 0, for all t ≥ xij + 1,

which is equivalent to

log
xij + 1

aij
− αi − βj ≥ 0

or
xij + 1 ≥ aij · eαieβj .

Similarly, from the backward arcs (Sj , Ri), we have
−ct

ij + αi + βj ≥ 0 for t ≤ xij , or

xij ≤ aij · eαieβj .

With λi := eαi and µj := eβj this means that xij is the
correctly rounded value of aijλiµj :

(12) aijλiµj − 1 ≤ xij ≤ aijλiµj



4 Günter Rote, Martin Zachariasen: Matrix Scaling by Network Flow

Thus, we can solve the integer matrix scaling prob-
lem by solving a minimum-cost network flow prob-
lem with any of the standard algorithms. A simple
algorithm is the least-cost augmenting path method,
cf. [4, Section 4.3]: start with the zero flow and succes-
sively augment the flow along minimum-cost augment-
ing paths, using the labels from the shortest path com-
putation to update dual variables αi and βj .

In order not to distract from the algorithm, we
assume in this section that all calculations (including
logarithms and exponentials) are computed exactly. We
will analyze the necessary precision in Section 5.

For the row sums and column sums of a matrix
X = (xij) we use the notations xi. :=

∑n
j=1 xij and

x.j :=
∑n

i=1 xij . We define

∆(X) :=
n∑

i=1

|xi. − ri|+
n∑

j=1

|x.j − sj |

as the total discrepancy from the desired row and
column sums.

Lemma 1. Suppose we have a set of values αi, βj and
a set of integer values xij with

(13) log xij ≤ log aij + αi + βj ≤ log(xij + 1)

and ∆(X) > 0. Then, in O(n2) time, we can find a new
solution where ∆ is decreased by 2, or we establish that
no solution with smaller ∆ exists, by solving a single-
source shortest path problem. With the new solution, we
also find new values αi, βj such that (13) is maintained.

Proof. (cf. [4, Lemma 4.16]) Suppose w.l.o.g. that there
is a row i in which xi. < ri holds. (The case xi. > ri

is similar.) We compute a shortest path in the residual
network, starting from the row vertex Ri and ending
at any column vertex Sj whose in-flow is smaller than
the demand sj , using the non-negative reduced costs
c̄t
ij = ct

ij − αi − βj and c̄t
ji = −ct

ij + αi + βj . Such
a shortest path can be computed in O(n2) time by
Dijkstra’s algorithm. The shortest distance labels can
be used to update the dual variables αi, βj such that
(13) is maintained. If no path is found, it means
that there is no possibility to increase xi.. Dijkstra’s
algorithm only considers at most one forward and one
backward arc for each pair of nodes, and not all parallel
arcs. To achieve the claimed running time, we have to
start the shortest path computation simultaneously at
all rows with xi. < ri. Then, if no path is found, the
discrepancy cannot be decreased.

The total desired flow is h. Incrementing the flow
in steps of 1 unit leads to h shortest path computations.
Thus we get:

Theorem 2. The integer matrix scaling problem can be
solved in O(n2h) steps.

3 Scaling the Data

The pseudo-polynomial complexity of Theorem 2 can
be improved to a polynomial complexity by a standard
scaling approach. (Here, the term scaling is used in a
different sense than in the name of the problem, matrix
scaling.) For the general problem of convex minimum-
cost flows, a similar scaling algorithm with the same
running time is sketched in Hochbaum [7, Chapter 4].

We solve a sequence of more and more refined
discretizations. For an integer k ≥ 0 we define the
modified problem P k with r̂i := bri/2kc and ŝj :=
bsj/2kc. Since

∑
r̂i =

∑
ŝj is no longer guaranteed,

we have to modify the concept of a solution for such
a problem instance. (Even if

∑
r̂i =

∑
ŝj , a solution

of P k in the sense of (3) might not exist, due to the
presence of zeros in A.) A solution xij with xij =
[aijλiµj ] must satisfy

(14)
n∑

j=1

xij ≤ ri and
n∑

i=1

xij ≤ sj ,

while achieving the maximum value of
∑n

i=1

∑n
j=1 xij

(i.e., the minimum discrepancy) under the constraints
(14).

We measure the violation of (14) by the positive
discrepancy

∆+(X) :=
n∑

i=1

max{xi. − ri, 0}+
n∑

j=1

max{x.j − sj , 0}

The following lemma deals with the reduction of
∆+(X), in analogy with Lemma 1.

Lemma 2. Suppose we have a set of values αi, βj and a
set of integer values xij fulfilling (13), with ∆+(X) > 0.
Then, in O(n2) time, we can find a new solution where
∆+ is decreased by 1 or 2, or we establish that no
solution with smaller ∆+ exists, by solving a single-
source shortest path problem. With the new solution, we
also find new values αi, βj such that (13) is maintained.
The discrepancy ∆ is not increased in this process.

Lemma 3. Suppose that the original problem P 0 is
feasible.

1. Then the problem P k has a solution X with
∆(X) ≤ 2n2.

2. Let λi, µj and xij = [aijλiµj ] be a solution to a
problem instance P k (k ≥ 1). Then the values



Günter Rote, Martin Zachariasen: Matrix Scaling by Network Flow 5

x′ij := [2aijλiµj ] satisfy the row and column sum
requirements for the problem instance P k−1 with a
discrepancy ∆(X ′) ≤ 6n2.

Proof. 1. Let (x0
ij) be a solution to the original problem.

Then x̂ij := bx0
ij/2kc satisfies (14) for problem P k, and

an easy calculation shows that ∆(X̂) ≤ 2n2.
2. By part 1, the solution X has ∆(X) ≤ 2n2. It

is easy to check that x′ij = 2xij or x′ij = 2xij + 1. (If
there is a tie in defining x′ij , we can make an appropriate
choice.) The new row sum requirements are r̂′i = 2r̂i or
r̂′i = 2r̂i + 1, and similarly for the column sums. Thus,
the discrepancy in each row is twice the old discrepancy
plus at most n. For all rows and columns, this adds up
to ∆(X ′) ≤ 2∆(X) + 2n · n ≤ 6n2.

We thus solve the sequence P k, P k−1, . . . of more
and more refined problems until the original problem P 0

is solved. We multiply the input matrix A by a scalar
such that the largest entry is 1

2 , without changing the
problem. Then, for k := 1+ dlog2 he, we have r̂i = ŝj =
0, and with λi = µj = 1 (or αi = βj = 0), we already
have xij = 0 as a valid solution for P k.5 Going from P k

to P k−1 incurs O(n2) shortest path computations, by
Lemma 3: We first have to ensure that no row or column
sum exceeds the desired value (14). This might involve
at most 6n2 flow changes according to Lemma 2, and
and does not increase the discrepancy above 6n2. Then
with at most 3n2 additional applications of Lemma 1,
∆(X) is decreased to the minimum. (If this minimum
is bigger than 2n2, we can abort since, by Lemma 3.1,
there can then be no feasible solution for the original
problem.) Thus, the transition from P k to P k−1 takes
O(n4) time, and we have:

Theorem 3. The integer matrix scaling problem can be
solved in O(n4 log h) steps.

4 Scaling of Real Matrices

The application to the approximate scaling of real
matrices (2) is straightforward. To get a starting
solution, we multiply all row and column sums ri and
sj by the constant F := n

ε and round them down
to integers r̂i and ŝj , respectively. We get the total
sum H ≤ hn/ε. We solve the integer scaling problem
for these data, using Theorem 2 or 3, in O(n2H) or

5We could have defined the scaled problems by rounding

upward: r̂i := dri/2ke, etc. Then the first problem P 1+dlog2 he

has all row and column sums r̂i and ŝj equal to 1: This is an
assignment problem with cost matrix log aij . Incidentally, this

problem is precisely equivalent to the problem that is solved as

the preprocessing step in the first algorithm of Linial et al. [10,
Theorem 3.1].

O(n4 log H) time, respectively. In the end, we have
to use a modification of Lemma 1 to get a solution in
the sense of (14) in which the maximum discrepancy
∆max(X) := maxi,j{ r̂i − xi., ŝj − x.j } is as small as
possible. Taking the real-valued solution of (1), scaling
it by F , and rounding everything down, we see that an
integer solution with ∆max ≤ n − 1 exists. Let us now
estimate the error in (1), looking for example at row i:

(15)
n∑

j=1

aijλiµj − Fri =
( n∑

j=1

[aijλiµj ]− r̂i

)

+
n∑

j=1

(
aijλiµj − [aijλiµj ]

)
+ (r̂i − Fri)

The first term in parentheses is between −n + 1 and 0,
by the bound on ∆max for the solution xij = [aijλiµj ];
the second sum is between 0 and n, and the last term
is between −1 and 0. This accumulates to a total error
between −n and +n in each row sum, and similarly in
each column sum. In terms of the original (unscaled)
data, this is an absolute error of at most ε.

Theorem 4. The (real-valued) matrix scaling prob-
lem can be solved to an accuracy ε in O(n3 h

ε ) or in
O(n4(log n + log h

ε )) time.

The algorithms are simple, and they beat the best
previous algorithms of Linial et al. [10] by several orders
of magnitude. Only for the special case of doubly
stochastic scaling (where h = n) and for moderate error
bounds ε, the O(n3 log n/ε2) algorithm in [10], which is
just Sinkhorn scaling with a special preprocessing step,
is faster. It might be interesting to investigate hybrid
algorithms that combine different approaches in various
phases.

5 Numerical Accuracy

For the quantities related to the costs, we use fixed-point
arithmetic with fixed precision, i. e. all numbers log aij ,
log xij , αi and βj are approximately represented as
integer multiples of some small value δ, with an absolute
error of O(δ). This means that, after approximating the
“input data”, shortest paths are computed exactly, as
they involve only additions and comparisons.

A nice feature of the flow problem (7–11) is that
we can use Lemma 1 without propagating errors. We
can take arbitrary values αi and βj and define xij by
xij := baij · eαieβjc or more precisely, by the relation
(13), These values can be used as a starting solution for
Lemma 1.

Let us analyze what happens if (13) is only satisfied
approximately:

(16) log xij ≤ log aij + αi + βj ≤ log(xij + 1)



6 Günter Rote, Martin Zachariasen: Matrix Scaling by Network Flow

where log x is an approximation of log x. Note that
log(xij +1) is a different (approximate) calculation from
log xij , but all computations of the same number log x
must yield the same approximate result. Conceptually
we locate the value log aij + αi + βj in the sorted list
of approximate values log 1, log 2, log 3, . . . . To be
specific, let us use natural logarithms in this section
unless otherwise stated. Suppose that all values xij

that occur in the computation are bounded by some
bound M . Then, if we calculate log xij with an absolute
error ≤ 0.1/M we may incur an error of approximately
±0.1 in terms of xij . In other words, (13) holds for
some approximation x̃ij instead of the integer value xij ,
with |x̃ij − xij | ≤ e0.1 < 0.11. This has the effect that,
in the “optimum” solution that we compute, (12) will
hold with an additional error term of ±0.11 on both
sides. If log aij is also computed with an error of at
most ±0.1/M , we get that (12) is satisfied with an error
term of ±0.23 on both sides. This is good enough for
achieving an ε-approximation of the real-valued matrix
scaling problem. The scaling factor F in the proof of
Theorem 4 must be adjusted a little, but the asymptotic
runtime is unaffected.

In Lemma 3, the discrepancy after using the solu-
tion of P k as the initial solution for P k−1 may be larger
than 6n2 but it is still O(n2). Again, this does not affect
the asymptotic running time.

We analyze the fractional and the integer part that
is necessary for the variables xij , αi, βj . The flow values
xij that occur during the course of the computation
are bounded by M := H + O(n2) = hn/ε + O(n2).
We set δ = 0.1/M , and this means that we need
log2

h
ε + 2 log2 n + O(1) bits for the fractions. of xij ,

log aij , αi, and βj .
To estimate the maximum size of the numbers, one

has to observe that, during the algorithm, the new
values of αi and βj are always determined by setting
some of the inequalities (16) to equations, corresponding
to arcs of zero reduced cost in the residual network.
These equations form a forest. The values αi and βj

are connected to other values αi and βj by chains of
equations. We can select one “free” value from every
component that is formed in this way, and we can take
care that the “free” value is the initial value of 0. Then,
each value αi or βj is connected to a the free value αi or
βj by a chain of equations, going over at most 2n arcs.
Thus, it is an alternating sum of at most 2n terms of the
form log xij − log aij or log(xij + 1)− log aij . Thus, the
maximum absolute value of the numbers αi and βj is
bounded by 2n · (log M + log maxai,j 6=0 | log aij |). As in
the proof leading to Theorem 3, we can scale the input
matrix A such that the largest entry is 1

2 . Thus we
need at most 1 + log2 n + log2 log M + log2 log(2R(A))

bits to represent the integer part of the numbers αi and
βj , where R(A) is the ratio between the largest and the
smallest positive entry in A. Thus, we have:

Theorem 5. For achieving Theorem 4, arithmetic op-
erations on numbers with O(log n+log log R(A)+log h

ε )
bits are sufficient, where R(A) is the ratio between the
largest and the smallest positive entry in the input ma-
trix.

For example, if R(A) ≤ 1010, ε = 10−6h, and n ≤ 1000,
the algorithm can work with IEEE double-precision
floating point numbers.

The reader may wonder why only O(log log R(A))
bits are needed when one must, of course, look at the
log2 R(A) bits of the input numbers aij in the first place.
But since we are interested in an approximate solution,
excessive trailing bits of very long input numbers can
be ignored.

An obvious alternative is to eliminate the loga-
rithms altogether, to use directly the exponentiated
variables λi and µj instead of αi and βj , and to work
with a multiplicative version of Dijkstra’s algorithm.
However, this would incur a propagation of errors in the
shortest path calculations, which needs to be analyzed.

The approximate calculations discussed in this sec-
tion are of course not appropriate for carrying out an
election (Theorems 2 and 3), where the tiniest fraction
can be important to decide about one seat. We are plan-
ning to investigate the necessary precision to compute
an exact result in a future work.

6 Faster Scaling of Real Matrices

Shortly before preparing the final version of this paper,
we became aware of algorithms that solve the minimum-
cost flow problem with convex costs directly (without
scaling).

If one goes to the limit ε → 0, the objective
function (7), with appropriate rescaling, converges to
(4). The convex cost function for an arc with aij > 0
is fij(xij) = xij(log xij

aij
− 1), with derivative f ′ij(xij) =

log xij − log aij .
Karzanov and McCormick [9] have given fast algo-

rithms for directly solving minimum-cost flow problems
with convex costs. The algorithms always maintain a
feasible flow satisfying (8–9), and they measure progress
by the quantity

δ := max
i,j

|f ′ij(xij)− αi − βj |

(In [9], this parameter is denoted by λ.) To achieve a
reduced value of δ, starting from some initial value δ0,
the Cancel-and-Tighten algorithm of Karzanov and



Günter Rote, Martin Zachariasen: Matrix Scaling by Network Flow 7

McCormick [9, entry 1c of Table 1, lower part] needs

O
(
log

δ0

δ
·mn log n

)
steps, in a graph with n vertices and m edges. Since
f ′ij(xij) = log xij − log aij , an analysis similar to the
one the leads to Theorem 4 shows that

δ :=
ε

nh

is sufficient to guarantee an ε-approximate solution in
the sense of (2).

It remains to find an initial solution with small
δ0 := maxi,j | log xij − αi − βj − log aij |. If the row
and column sums ri and sj are integral, we can define
a starting solution as follows. Since the problem is
feasible, we know that there is a flow in which all flow
values xij with aij > 0 are positive. For each arc ij with
aij > 0, there exists therefore some (integer) flow with
xij ≥ 1. Taking the average of these flows (one flow for
every arc) leads to a flow in which xij ≥ 1/n2 for all arcs
ij with aij > 0. This starting flow can be computed
by putting a lower flow bound of 1/n2 on every arc,
and solving the feasible flow problem, in O(n3) time.
Setting αi = βj = 0 yields a starting solution with
δ0 ≤ log n2 + log R(A).

Theorem 6. The (real-valued) matrix scaling problem
with integer row and column sums ri and sj can be
solved to an accuracy ε in

O
(
n3 log n · log

hn log R(A)
ε

)
time, where R(A) is the ratio between the largest and
the smallest positive entry in A.

To achieve the cubic complexity in the dominating term,
the algorithm has to use the dynamic tree data structure
of Sleator and Tarjan [13]. Thus, in contrast to the
algorithms in the previous sections, this algorithm is
not easy to implement.

If the row and column sums ri and sj are not
integral, it seems difficult to find a starting solution with
a good bound on δ0. The quality of the solution may
depend very much on the numbers ri and sj and on the
zero pattern of the matrix aij . Of course, if the row
and column sums are rational, one can compute their
greatest common divisor, scale them to integers, and
then apply the above theorem.

If the matrix aij is positive, however, a starting so-
lution can always be found by the proportional solution
xij := risj/h, αi = log ri, βj := log(sj/h), which yields
log xij − αi − βj = 0, and δ0 = log R(A). In this case,
the initial overhead reduces from O(n3) to O(n2).

Acknowledgements. We thank Dorit Hochbaum
for helpful remarks, in particular for pointing out the
work of Karzanov and McCormick [9].

References

[1] M. Bacharach. Biproportional Matrices and Input-
Output Change. Cambridge University Press, 1970.

[2] Michel Balinski and Gabrielle Demange. Algorithms
for proportional matrices in reals and integers. Math.
Programming, 45:193–210, 1989.

[3] Michel Balinski and Svetlozar T. Rachev. Rounding
proportions: methods of rounding. Math. Scientist,
22:1–26, 1997.

[4] William R. Cook, William H. Cunningham, William R.
Pulleyblank, and Alexander Schrijver. Combinatorial
Optimization. Wiley, 1998.

[5] Martin Fürer. Quadratic convergence for scaling of ma-
trices. In Lars Arge, Giuseppe F. Italiano, and Robert
Sedgewick, editors, Proc. ALENEX/ANALC 2004, 6th
Workshop on Algorithm Engineering and Experiments
and 1st Workshop on Analytic Algorithmics and Com-
binatorics, New Orleans, pages 216–223. SIAM, Jan-
uary 2004.

[6] Norbert Gaffke and Friedrich Pukelsheim. Di-
visor methods for proportional representation sys-
tems: an optimization approach to vector and ma-
trix problems. Technical Report (Preprint) 06-18,
Universität Magdeburg, Fakultät für Mathematik,
March 2006. http://www.math.uni-magdeburg.de/

preprints/shadows/06-18report.html.
[7] Dorit Hochbaum. Complexity and algorithms for con-

vex network optimization and other nonlinear prob-
lems. 4OR, 3(3):171–216, 2005.

[8] Bahman Kalantari and Leonid Khachiyan. On the
complexity of nonnegative-matrix scaling. Linear Al-
gebra Appl., 240:87–104, 1996.

[9] Alexander V. Karzanov and S. Thomas McCormick.
Polynomial methods for separable convex optimization
in unimodular linear spaces with applications. SIAM
J. Comput., 26(4):1245–1275, 1997.

[10] Nathan Linial, Alex Samorodnitsky, and Avi Wigder-
son. A deterministic strongly polynomial algorithm for
matrix scaling and approximate permanents. Combi-
natorica, 20(4):545–568, 2000.

[11] U. Rothblum and H. Schneider. Scaling of matrices
which have prespecified row sums and column sums via
optimization. Linear Algebra Appl., 114–115:737–764,
1989.

[12] Richard Sinkhorn. A relationship between arbitrary
positive matrices and doubly stochastic matrices. Ann.
Math. Statist., 35:876–879, 1964.

[13] D. D. Sleator and R. E. Tarjan. A data structure for
dynamic trees. J. Comput. Syst. Sci., 26(3):362–381,
1983.

[14] George W. Soules. The rate of convergence of Sinkhorn
balancing. Linear Algebra Appl., 150:3–40, 1991.


