
EWCG 2005, Eindhoven, March 9–11, 2005

Matching Point Sets with respect to the Earth Mover’s Distance
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Abstract

Let A and B be two sets of m resp. n weighted points
in the plane, with m ≤ n. We present (1 + ε) and
(2+ε)-approximation algorithms for the minimum Eu-
clidean Earth Mover’s Distance between A and B un-
der translations and rigid motions respectively. In the
general case where the sets have unequal total weights
the algorithms run in O((n3m/ε4) log2(n/ε)) time
for translations and O((n4m2/ε4) log2(n/ε)) time for
rigid motions. When the sets have equal total
weights, the respective running times decrease to
O((n2/ε4) log2(n/ε)) and O((n3m/ε4) log2(n/ε)). We
also show how to compute a (1 + ε) and (2 + ε)-
approximation of the minimum cost Euclidean bipar-
tite matching under translations and rigid motions in
O((n3/2/ε7/2) log5 n) and O((n/ε)7/2 log5 n) time re-
spectively.

1 Introduction

Let A = {a1, . . . , am} and B = {b1, . . . , bn} be two
planar weighted point sets with m ≤ n. A weighted
point ai ∈ A is defined as ai = {(xai , yai), wi}, i =
1, ..,m, where (xai , yai) ∈ R2 and wi ∈ R+ ∪ {0}
is its weight. A weighted point bj ∈ B is defined
similarly as bj = {(xbj , ybj ), uj}, j = 1, .., n. Let W =∑m

i=1 wi and U =
∑n

j=1 uj be the total weight, or
simply weight, of A and B respectively.
The Earth Mover’s Distance (EMD) is a similar-

ity measure for weighted point sets with applications
in colour-based image retrieval [7], shape matching
[7, 2, 1] and music score matching [9]. In a typi-
cal scenario, a pattern is reduced to a set of feature
weighted points; the larger the weight, the more im-
portant the point for the whole pattern. Informally,
a weighted point ai can be seen as an amount (sup-
ply) of earth or mass, equal to wi units, positioned at
(xai , yai); alternatively it can be taken as an empty
hole (demand) of wi units of earth capacity. We as-
sign arbitrarily the role of the supplier to A and that
of the receiver/demander to B, setting, in this way, a

∗IMFM, Department of Mathematics, Jadranska 19, SI-
1000 Ljubljana, Slovenia, sergio.cabello@imfm.uni-lj.si;
partially supported by the European Community Sixth Frame-
work Programme under a Marie Curie Intra-European Fellow-
ship.

†Institut für Informatik, Freie Universität Berlin,
Takusstraße 9, D-14195 Berlin, Germany, {panos, knauer,

rote}@inf.fu-berlin.de

direction of earth transportation. The Earth Mover’s
Distance (EMD) of A to B measures the minimum
amount of work needed to fill the holes with earth. A
formal definition of the EMD will be given shortly.
In order to measure the similarity of two sets A

and B independently of transformations, one wants
to find a transformed version of, say, A that attains
the minimum possible distance to B. In this paper
we are interested in transformations that change only
the position of the points, not their weights; in par-
ticular, we focus on translations and rigid motions –
sometimes referred to as isometries. We consider B
to be fixed, while A can be translated and/or rotated
relative to B. We assume some initial positions for
both sets, denoted simply by A and B. Let I be
the set of all possible rigid motions in the plane. We
denote by Rθ a rotation about the origin by some
angle θ ∈ [0, 2π) and by T:t a translation by some
Nt ∈ R2. Any rigid motion I ∈ I can be uniquely de-
fined as a translation followed by a rotation, that is,
I = I:t,θ = Rθ ◦ T:t, for some θ ∈ [0, 2π) and Nt ∈ R2.
In general, transformed versions of A are denoted by
A(Nt, θ) = {a1(Nt, θ), . . . , am(Nt, θ)} for some I:t,θ ∈ I.
For simplicity, translated only versions of A are de-
noted by A(Nt) = {a1(Nt), . . . , am(Nt)}.
The EMD between A(Nt, θ) and B, is a function

EMD : I → R+ ∪ {0} defined as

EMD(Nt, θ) = min
F∈F(A,B)

∑m
i=1

∑n
j=1 fijdij(Nt, θ)

min{W,U} ,

where dij(Nt, θ) is the distance of ai(Nt, θ) to bj , and
F = {fij} ∈ F(A,B) with F(A,B) being the set
of all feasible flows between A and B defined by
the constraints: (i)fij ≥ 0, i = 1, ...,m, j = 1, ..., n,
(ii)

∑n
j=1 fij ≤ wi, i = 1, ...,m, (iii)

∑m
i=1 fij ≤ uj , j =

1, ..., n, and (iv)
∑m

i=1

∑n
j=1 fij = min{W,U}. In case

that Nt or θ or both are constant, we simply write
EMD(θ), EMD(Nt) and EMD respectively. The EMD
is a metric when dij is a metric and W = U [7].
When W %= U the EMD inherently performs partial
matching since a portion of the weight of the ‘heavier’
set remains unmatched. We deal with the Euclidean
EMD where dij is given by the L2-norm. For sim-
plicity, and without loss of generality, we assume that
min{W,U} = 1. We study the following problem:
Given two weighted point sets A,B compute a rigid

motion I:topt,θopt
that minimizes EMD(Nt, θ).

This problem was first studied by Cohen [7] who
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presented a Flow–Transformation iteration which al-
ternates between finding the optimum flow for a given
transformation, and the optimum transformation for
a given flow. They showed that this iterative pro-
cedure converges, but not neccessarily to the global
optimum. Computing the EMD for a given trans-
formation is actually the transportation problem, a
special minimum cost network flow problem for the
solution of which there is a variety of polynomial time
algorithms [3, 4]. However, as we discuss later on, the
task of finding the optimal transformation for a given
flow is not trivial. Cohen also gave simple algorithms
that compute the optimum translation for the special
case where W = U and dij is the squared Euclidean
distance. This case is quite restrictive since, in gen-
eral, the sets need not have the same weight, and the
use of squared Euclidean distance is statistically less
robust than Euclidean distance [5]. Currently, no al-
gorithm that computes the optimal translation and/or
rotation is known for the Euclidean EMD.
Observe that the objective function is not linear in

Nt and θ but it is still linear in F . Thus, the minimum
EMD occurs at some vertex of the convex polytope
F(A,B). This suggests the following straightforward
algorithm: for every vertex F = {fij} of F(A,B)
compute the optimal rigid motion, i.e., the one that
minimizes

∑m
i=1

∑n
j=1 fijdij(Nt, θ). For translations,

the latter problem reduces to the Fermat − Weber
problem where one wants to find a point that mini-
mizes the sum of weighted distances to a set of given
points. No exact solution to this problem is known
even in the real RAM model of computation [5]. How-
ever, Bose et al. [5] gave a O(n log n)-time (1 + ε)-
approximation algorithm for any fixed dimension. Us-
ing their algorithm for every vertex of F(A,B) gives
only a (1 + ε)-approximation of the minimum EMD
under translations in exponential time.
In this paper, we give simple polynomial-time algo-

rithms that achieve a (1+ε) and (2+ε)-approximation
for translations and rigid motions respectively.

2 Lower bounds and approximations of the EMD

First, we give two simple lower bounds on the EMD
that are vital for the approximation algorithms given
in the next sections. In these algorithms we need to
compute the EMD for a given transformation. Com-
puting the EMD exactly is expensive, and unecessary
since we opt for approximations of the minimum EMD
under transformations. We show how to get a (1+ ε)-
approximation of the EMD in almost quadratic time.
The following lower bound comes directly from the

definition of the EMD.

Observation 1 Given two weighted point sets A and
B, EMD ≥ mini,j dij .

The next lower bound is due to Cohen [7]. The
center of mass C(A) of a planar weighted point set
A = {(xai , yai), wi}, i = 1, . . . ,m is defined as C(A) =(∑m

i=1 wi(xai , yai)
)
/
∑m

i=1 wi.

Theorem 1 [7, Theorem 6] Let A and B be two
weighted point sets with equal weights. Then EMD ≥
|C(A)− C(B)|.

Currently, the fastest strongly polynomial-time al-
gorithm for the minimum cost flow problem on a
graph G(V,E) is due to Orlin [3], and runs in
O((|E| log |V |)(|E| + |V | log |V |)) time. Using the al-
gorithm of Callahan and Kosaraju [6], we can con-
struct, in O(n log n + (n/ε2) log 1/ε) time, a linear
size (1 + ε)-spanner Gs, i.e., a graph Gs(V,E′) with
|E′| = O(n/ε) such that the shortest path between
any two points in Gs is at most (1 + ε) times the
Euclidean distance of the points. Running the algo-
rithm of Orlin on Gs produces an approximate value
EMDs such that EMD ≤ EMDs ≤ (1 + ε)EMD in
O((n2/ε2) log2(n/ε)) time; we refer to this procedure
as ApxEMD(A,B, ε).

Lemma 2 For any given ε > 0, a value EMDs with
EMD ≤ EMDs ≤ (1 + ε)EMD can be computed in
O((n2/ε2) log2(n/ε)) time.

Next, consider the case where |A| = |B| = n and wi =
uj = 1, i = 1, ..., n, j = 1, ..., n. The integer solutions
property of the minimum cost flow problem and the
fact that 0 ≤ fij ≤ 1 imply that there is a minimum
cost flow on G that results in a (perfect) matching
between A and B. Hence, we can restrict ourselves to
finding a minimum cost matching–usually called the
assignment problem. Varadarajan and Agarwal [8]
presented an algorithm that finds a matching with
cost at most (1+ε) times that of an optimal matching
in O((n/ε)3/2 log5 n) time; we refer to this algorithm
as ApxMATCH(A,B, ε).

3 Approximation algorithms for translations

We denote by Nti→j the translation which matches ai

and bj ; we call such a translation a point-to-point
translation. Observation 1 implies that the point-
to-point translation that is closest to Ntopt gives a 2-
approximation of EMD(Ntopt). Hence, we have the fol-
lowing:

Lemma 3 Given two weighted point sets A and B,
EMD(Ntopt) ≤ mini,j EMD(Nti→j) ≤ 2EMD(Ntopt).

According to Observation 1, the point-to-point
translation which is closest to Ntopt can be at most
EMD(Ntopt) away from Ntopt. This bound is crucial
for the (1 + ε)-approximation algorithm given in Fig-
ure 1. Using a uniform square grid of suitable size
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we compute the EMD for a limited number of grid
translations within a small neighborhood – of size
EMD(Ntopt) – of every point-to-point translation. Note
that we do not know EMD(Ntopt) but we can compute
mini,j EMD(Nti→j) which, according to Lemma 3, ap-
proximates EMD(Ntopt) well-enough. In order to save
time, rather than computing EMD exactly, we will
approximate it using the procedure ApxEMD.

Translation(A, B, ε):

1. Let α = mini,jApxEMD(A(ti→j), B, 1) and let G
be a uniform square grid of spacing cεα, where
c = 1/

√
72.

2. For each pair of points ai ∈ A and bj ∈ B do:

(a) Place a disk D of radius α around ti→j .

(b) For every grid point tg ∈ D ∩ G compute a

value ẼMD(tg) = ApxEMD(A(tg), B, ε/3).

3. Report the grid point tapx that minimizes

ẼMD(tg).

Figure 1: Algorithm Translation(A,B, ε).

Theorem 4 For any given ε > 0, a translation Ntapx

such that EMD(Ntapx) ≤ (1+ε)EMD(Ntopt) can be com-
puted in O((n3m/ε4) log2(n/ε)) time.

Next, consider the case of equal weight sets. Let
NtC(A)→C(B) be the translation that matches the cen-
ters of mass C(A) and C(B). Theorem 1 sug-
gests the following trivial 2-approximation algorithm:
compute EMD(NtC(A)→C(B)). According to Theo-
rem 1, Ntopt is at most EMD(Ntopt) far away from
NtC(A)→C(B). Hence, we need to search for Ntopt

only within a small neighborhood of NtC(A)→C(B).
We modify algorithm Translation(A,B, ε) as
follows: First we compute C(A) and C(B).
Then, we run ApxEMD(A(NtC(A)→C(B)), B, 1) and
set α to the value returned. Next, we run
ApxEMD(A(Ntg), B, ε/3) for all the grid points Ntg
which are at most α away from NtC(A)→C(B). The min-
imum over all these approximations gives the desired
approximation bound. Hence, we have managed to
save an nm term from the time bound of Theorem 4.

Theorem 5 If A and B have equal total weights
then, for any given ε > 0, a translation Ntapx such that
EMD(Ntapx) ≤ (1 + ε)EMD(Ntopt) can be computed in
O((n2/ε4) log2(n/ε)) time.

For the assigment problem under translations, we can
use the above algorithm for equal weight sets , running
ApxMATCH instead of ApxEMD. This reduces the
running time further.

Theorem 6 For any given ε > 0, a (1 + ε)-
approximation of the minimum cost assignment under
translations can be computed in O((n3/2/ε7/2) log5 n)
time.

Note that, the latter algorithm can be also applied to
equal weight sets with bounded integer point weights
by replacing each point by as many points as its
weight.

4 Approximation algorithms for rigid motions

We first give a (2+ε)-approximation algorithm for ro-
tations. Then, we combine this (2+ ε)-approximation
algorithm with the (1 + ε)-approximation algorithms
for translations to get (2 + ε)-approximation algo-
rithms for rigid motions.

Rotations. Let aiô bj be the angle between the seg-
ments oai and obj such that 0 ≤ aiô bj ≤ π. Also,
let θi→j be the rotation of ai by aiô bj that aligns the
origin o and points ai and bj such that both ai and
bj are on the same side of o. Note that this is the ro-
tation that minimizes dij(θ); we call such a rotation
an alignment rotation. We have the following simple
lemma.

Lemma 7 Let ai and bj be two points in the plane
with aiô bj = φ. If ai is rotated by an angle θ ≤ φ,
then dij(θ) < 2dij .

Similarly to Lemma 3, and using Lemma 7, we can
prove that the alignment rotation that is closest to
θopt gives a 2-approximation of EMD(θopt). Hence,
we have the following:

Lemma 8 Given two weighted point sets A and B,
EMD(θopt) ≤ mini,j EMD(θi→j) ≤ 2EMD(θopt).

By approximating EMD(θi→j) with Apx-

EMD or ApxMATCH we can get a (2 + ε)-
approximation of EMD(θopt). We call this algorithm
Rotation(A,B, ε); from the context it will be always
clear whether ApxEMD or ApxMATCH is used.
Apart from the cost value, Rotation returns the
corresponing rotation θi→j as well.

Lemma 9 For any given ε > 0, a rotation θapx such
that EMD(θapx) ≤ (2+ε)EMD(θopt) can be computed
in O((n3m/ε2) log2(n/ε)) time. For the minimum
cost assignment problem under rotations the same ap-
proximation can be computed in O((n7/2/ε3/2) log5 n)
time.

Rigid Motions. We can combine the algorithms im-
plied by Lemma 3 and Lemma 9 to get a (4 + ε)-
approximation of the minimum EMD under rigid mo-
tions in the following way: for each point-to-point

59



21st European Workshop on Computational Geometry, 2005

translation Nti→j , compute a (2 + ε)-approximation
of the optimum EMD between A(Nti→j) and B un-
der rotations about bj . The minimum over all these
approximations gives a 2(2 + ε)-approximation of
EMD(Ntopt, θopt).

Lemma 10 For any given ε > 0, a (4 + ε)-
approximation of the minimum EMD under rigid
motions can be computed in O((n4m2/ε2) log2(n/ε))
time.

The (2 + ε)-approximation algorithm for rigid mo-
tions is based on similar ideas. Accoring to Obser-
vation 1, there exist two points ai, bj whose distance
at I:topt,θopt is at most EMD(Ntopt, θopt). We place a
grid of suitable size around each Nti→j . For each grid
point Ntg that is at most EMD(Ntopt, θopt) away from
Nti→j we compute a (2 + ε)-approximation of the op-
timum EMD betwenn A(Ntg) and B under rotations
about bj . The minimum over all these approximations
is within a factor of (2 + ε) of EMD(Ntopt, θopt). Since
we do not know EMD(Ntopt, θopt), we first compute a
(4+ε)-approximation of it as shown above. Algorithm
RigidMotion(A,B, ε) is shown in Figure 2.

RigidMotion(A, B, ε):

1. For each pair of points ai ∈ A and bj ∈ B do:

(a) Set the center of rotation, i.e. the origin, to
be bj by translating B appropriately.

(b) Run Rotation(A(ti→j), B, 1) and let αij

the cost value returned.

Let α = minij αij .

2. Let G be a uniform grid of spacing cαε, where c is
a suitable constant. For each pair of points ai ∈ A
and bj ∈ B do:

(a) Set the center of rotation, i.e. the origin, to
be bj by translating B appropriately.

(b) Place a disk D of radius α around ti→j .

(c) For every grid point tg ∈ D ∩ G run

Rotation(A(tg), B, ε/3) Let ẼMD(tg) and
θg
apx be the cost value and angle returned

respectively.

3. Report the grid point tapx that minimizes

ẼMD(tg), and the corresponding angle θapx.

Figure 2: Algorithm RigidMotion(A,B, ε).

Theorem 11 For any given ε > 0, a rigid
motion I:tapx,θapx

such that EMD(Ntapx, θapx) ≤
(2 + ε)EMD(Ntopt, θopt) can be computed in
O((n4m2/ε4) log2(n/ε)) time.

As in the case of translations, for equal weight sets
we need to search for the optimal translation only
around NtC(A)→C(B). We set the center of rota-
tion to be C(B). Computing the 6-approximation
of EMD(Ntopt, θopt) can be done simply by running
Rotation(A(NtC(A)→C(B)), B, 1). Similarly, we need
to run Rotation(A(Ntg), B, ε/3) only for grid points
Ntg that are close to NtC(A)→C(B).

Theorem 12 If A and B have equal total weights,
then, for any given ε > 0, a rigid motion I:tapx,θapx

such that EMD(Ntapx, θapx) ≤ (2 + ε)EMD(Ntopt, θopt)
can be computed in O((n3m/ε4) log2(n/ε)) time. For
the minimum cost assignment problem under rigid
motions the same approximation can be computed in
O((n/ε)7/2 log5 n) time.
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