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Abstract

The subject of this paper are algorithms for measuring the similarity of patterns of line
segments in the plane, a standard problem in, e.g. computer vision, geographic information
systems, etc. More precisely, we de�ne feasible distance measures that re
ect how close
a given pattern H is to some part of a larger pattern G. These distance measures are
generalizations of the well known Fr�echet distance for curves. We �rst give an eÆcient
algorithm for the case that H is a polygonal curve and G is a geometric graph. Then,
slightly relaxing the de�nition of distance measure we give an algorithm for the general
case where both, H and G, are geometric graphs.

1 Introduction

Patterns consisting of line segments occur in many applications of a geometric nature, like
computer vision, geographic information systems, CAGD, etc. In many cases the problem
occurs to determine whether some given pattern H is equal to or similar to some part of a
larger pattern G. Here, for the case of patterns consisting of straight line segments, we will
give feasible distance measures re
ecting this similarity and being compatible to paths on the
pattern. Also, we will give eÆcient algorithms for computing these distances.

As a �rst task we consider a given polygonal curve, and an embedded graph with line
segment edges, and we wish to �nd a path in the graph (which then corresponds to a polygonal
curve) such that the Fr�echet distance between the curve and the path is minimized. This
is a partial matching variant. The problem in this form already has many applications.
The following one, for example, looked particularly appealing to us: The Global Positioning
System (GPS) is a collection of satellites that provides worldwide positioning information. A
speci�c position can be determined by using a GPS receiver. Now consider a given roadmap,
and a person travelling on some of the roads, while recording its positioning information
using a GPS receiver. The roadmap can be modelled by a planar embedded graph, and the
path the person travelled is represented by a sequence of GPS positions recorded by the GPS
receiver, which we connect by straight line segments to form a polygonal curve. Since the GPS
receiver usually introduces noise, the captured curve will not exactly lie on the roadmap. The
task is to identify those roads which have actually been travelled. This is a prerequisite for
incrementally constructing roadmaps from such GPS curves, which is especially interesting
for roads such as hiking trails in a forest which are not visible on aerial pictures. We present
an algorithm solving this problem in Section 2. It has been implemented, and even without
speci�c optimizations it runs surprisingly fast. In Section 3 we consider the case of two
geometric graphs.

Our distance measures are based on the Fr�echet distance for curves which has been inves-
tigated before in [2].
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De�nition 1 (Fr�echet distance) Let f : I = [lI ; rI ] ! R
2 , g : J = [lJ ; rJ ] ! R

2 be two

planar curves, and let k � k denote the Euclidean norm. Then the Fr�echet distance ÆF(f; g) is
de�ned as

ÆF(f; g) := inf
� : [0;1]!I

� : [0;1]!J

max
t2[0;1]

kf(�(t))� g(�(t))k:

where � and � range over continuous and non-decreasing reparametrizations with �(0) = lI ,
�(1) = rI , �(0) = lJ , �(1) = rJ .

If we drop the requirement on � and � to be non-decreasing, we obtain a distance measure

that is called the weak Fr�echet distance between f and g.

A popular illustration of the Fr�echet distance is the following: Suppose a person is walking
a dog, the person is walking on the one curve and the dog on the other, and the person is
holding the dog at a leash. Both are allowed to control their speeds but they are not allowed
to go backwards. Then the Fr�echet distance of the curves is the minimal length of a leash
that is necessary for both to walk the curves from beginning to end.

2 Matching a Curve in a Graph

Let G = (V;E) be an undirected connected planar graph with a given straight-line embedding
in R2 , jV j = q, jEj = O(q), such that V = f1; : : : ; qg corresponds to points fv1; : : : ; vqg � R

2 .
We assume, although G is an undirected graph, that each undirected edge between vertices
i; j 2 V is represented by the two directed edges (i; j); (j; i) 2 E. Thus E consists of directed
edges, but still represents an undirected graph. Each edge (i; j) 2 E is embedded as an
oriented straight line segment si;j from vi to vj . sj;i is obtained from si;j by reversing the
orientation. Furthermore let � : [0; p] ! R

2 be a polygonal curve in R
2 , which consists of p

line segments �i := �j[i;i+1] for i 2 f0; 1; : : : ; p� 1g. We consider each line segment �i to be
parameterized by its natural parametrization, i.e., �(i + �) = (1 � �)�(i) + ��(i + 1) for all
� 2 [0; 1]. For a vertex i 2 V we denote by Adj(i) � V the set of vertices adjacent to i. We
identify a path � in G with the polygonal curve that is formed by its edges. Given � and G
we wish to �nd a path � in G which minimizes ÆF(�; �). Note that this de�nition allows a
path � in G to travel the same edges in G multiple times.

We attack this minimization problem by �rst solving the decision problem for which we
�x " > 0 and wish to �nd a path (if it exists) in G such that the Fr�echet distance is at most
". Afterwards we apply parametric search, in a manner similar to that of [2], to �nally solve
the minimization problem. As a subproblem we consider the task of only deciding whether
there exists a path in G with the desired properties. The algorithm for the decision problem
then can be used to design one for the computation of such a path.

2.1 Basic Concepts and Algorithm Outline

If not stated otherwise let " > 0 be given. We employ the notion of the free space F" and the
free space diagram FD" of two curves, which was introduced in [2]:

De�nition 2 ([2]) Let f : I ! R
2 , g : J ! R

2 be two curves; I; J � R. The set F"(f; g) :=
f (s; t) 2 I � J j kf(s) � g(t)k � " g denotes the free space of f and g. We call the partition

of I � J into regions belonging or not belonging to F"(f; g) the free space diagram FD"(f; g).

We call points in F" white or feasible and points in FD" n F" black or infeasible. See Figure 1
for an illustration.

In [2] it has been shown that ÆF(f; g) � " if and only if there exists a curve within F"(f; g)
from the lower left corner to the upper right corner, which is monotone in both coordinates.
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We call a curve within F"(f; g) feasible. We thus concentrate on �nding a monotone feasible
path in certain free space diagrams. Figure 1 shows polygonal curves f; g, a distance ", and
the corresponding free space diagram with the free space F". Observe that the monotone
curve in F"(f; g) from the lower left corner to the upper right corner as a continuous mapping
from [0; 1] to I � J directly gives continuous increasing reparametrizations � and �.

g

f

"

g

f

Figure 1: Free space diagram for two polygonal curves f and g. A monotone curve from the lower
left corner to the upper right corner is drawn in the free space. This illustration is taken from [2].

For all (i; j) 2 E let si;j be continuously parameterized by values in [0; 1] according to
its natural parametrization, thus si;j : [0; 1] ! R

2 . For every edge (i; j) 2 E consider the
free space Fi;j := F"(�; si;j) � [0; p] � [0; 1]. The free space diagram FDi;j := FD"(�; si;j)
is the subdivision of [0; p] � [0; 1] into the white points of Fi;j and into the black points of
[0; p]� [0; 1] n Fi;j. See Figure 2 for an illustration.

α
si,j

"
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vj

α

si,jsi,j
FDj

FDi

1

0 1 2 pp − 1
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Figure 2:
Free space diagram FDi;j for a segment si;j and �.

As shown in [2], FDi;j consists of a row of p cells. Each such cell corresponds to a line
segment of �, and the free space in each cell is the intersection of an elliptical disk with that
cell. For a vertex j 2 V let FDj := FD"(�; vj), which is a one-dimensional free space diagram
consisting of at most 2p+1 black or white intervals. Let Fj := F"(�; vj) be the corresponding
one-dimensional free space, which consists of a collection of white intervals. Furthermore, let
Lj be the left endpoint and Rj be the right endpoint of FDj .

For each i 2 V the free space diagrams FDi;j and FDj;i for all j 2 Adj(i) have the one-
dimensional free space diagram FDi in common|as the bottom of FDi;j and as the top of
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FDj;i. Thus we can glue together the two-dimensional free space diagrams along the one-
dimensional free space they have in common, according to the adjacency information of G.
In this manner we obtain a topological structure which we call the free space surface of G
and �; see Figure 3 for an example.
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Figure 3: Example of a free space surface: Free space diagrams glued together according to the
adjacency information of G. An example path � in the free space surface is highlighted in grey.

The algorithm in [2] computes a monotone feasible path in the free space diagram of two
polygonal curves in a dynamic programming fashion. We apply a related approach to our
more general setting: We search for a feasible path in the free space surface. This path has
to start at some white left corner Lk and has to end at some white right corner Rj, for two
vertices j; k 2 V , since the corresponding path � in G has to start and end in a vertex of G.
Any path � in G selects a sequence of free space diagrams in the free space surface, whose
concatenation yields FD"(�; �). Thus let us consider the following reachability information:

For every vertex j 2 V let R(j) be the set of all points u 2 Fj for which there exists a
k 2 V and a path � from k to j in G such that there is a monotone feasible path from Lk to u
in F"(�; �). We call points in R(j) reachable. We call an interval of points in R(j) reachable
if every point in it is reachable. We thus know that there is a path � in G with ÆF(�; �) � "
i� there is a vertex j 2 V such that Rj 2 R(j).

Similar to [2] we �rst decide whether there exists a feasible path in the free space surface
by computing R(j) for all j 2 V in a dynamic programming manner. In fact we will not
store the whole R(j) but only parts of it which allow us to arrive at the correct decision.
The algorithm solving the decision problem consists of three stages: The preprocessing stage,
see Section 2.2, which computes the free space diagrams FDi;j together with some additional
reachability information; the dynamic programming stage, see Section 2.3, which decides if
there exists a feasible path in the free space surface; and the path reconstruction stage, see
Section 2.4, which constructs the path � in G along with feasible reparametrizations of � and
� that witness the fact that ÆF(�; �) � ". In Section 2.6 we show how to apply parametric
search to solve the minimization problem.

In the following we make use of a property of FDi;j for each (i; j) 2 E, which we call the
simplicity property of FDi;j: Each FDi;j is a row of cells, and each white region in such a cell
is the intersection of an elliptical disk with the cell boundary. Thus there is no vertical line
at any position in FDi;j which contains white, black, and white points alternatingly. Or in
other words, the white points on a vertical line always form an interval. From this we obtain
the following insight:
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Lemma 1 Let (i; j) 2 E, and u 2 Fi, v 2 Fj be white points with u � v for which exists a

feasible monotone path in FDi;j from u to v. Then for every u0 2 Fi and v0 2 Fj, u � u0 �
v0 � v there exists a feasible monotone path in FDi;j from u0 to v0.

Proof: Consider the feasible monotone path from u to v. Then due to the simplicity
property of FDi;j it is possible to go straight up from u0 until hitting this path, and similarly
to go straight down from v0 until hitting this path, and stay inside the free space all the time.
Stitching those pieces of paths together we obtain the desired feasible monotone path in FDi;j

from u0 to v0.

2.2 Preprocessing

We compute all one-dimensional free space diagrams FDi for all i 2 V . Conceptually we
continue to consider the FDi;j for all (i; j) 2 E, but we do not need to compute them
explicitly, for we capture the reachability information in the additional pointers we will
compute. Let (i; j) 2 E be �xed, then FDi;j � [0; p] � [0; 1] consists of p cells, one for

B0
k

k + d0kk + c0k

bk

Lk

ak

k + ck

Bk

k + dk

ak+1

Fi;j \ �k

Lk+1

bk+1

Figure 4: Intervals of the free space on the boundary of a cell.

each segment in �. Let �k be the cell in FDi;j corresponding to the kth segment �k of
�, 0 � k � p � 1. Let Lk = [ak; bk] be the white interval on the left boundary of �k,
let Bk = [k + ck; k + dk] be the white interval on the bottom boundary of �k, and let
B0
k = [k + c0k; k + d0k] be the white interval on the top boundary of �k. See Figure 4 for an

illustration. If Lk = ; then we set ak := 1 and bk := 0. Similarly if Bk = ; we set ck := 1
and dk := 0, and if B0

k = ; we set c0k := 1 and d0k := 0. Note that the left boundary of �k is
part of the vertical line segment fkg� [0; 1] with respect to the free space diagram FDi;j. We
call fkg � R the vertical line at k. We call the black parts in �k, of which there are at most
four, spikes. In particular we call the spikes bounded from above by ak or ak+1 lower spikes,
and the spikes bounded from below by bk or bk+1 upper spikes. We call ak; ak+1; bk; bk+1 the
heights of the corresponding spikes. Similarly, we call ck; c

0
k; dk; d

0
k widths of left and right

spikes. We call k the index of the two spikes bounding Lk. Note that the interval endpoints
correspond to heights or widths of spikes.

For each (i; j) 2 E we compute for each white interval I of FDi the leftmost point li;j(I)
(left pointer or l-pointer) on FDj and the rightmost point ri;j(I) (right pointer or r-pointer)
on FDj which can be reached from some point in I by a monotone feasible path in FDi;j.
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Preprocessing:

1. For all i 2 V compute the one-dimensional free space diagrams FDi .

2. For every i 2 V and every white interval I of FDi compute for all j 2 Adj(i)
the pointers li;j(I) and ri;j(I), and store them in an array each, indexed by j.
See Lemma 3.

Figure 5: Preprocessing steps.

This can be done in linear time for all intervals on FDj , see Lemma 3. Note that li;j(I) either
equals the left endpoint of I or equals k + c0k for some 0 � k � p� 1. For the right pointer
holds ri;j(I) = k + d0k for some other 0 � k � p� 1. Note that similar reachability pointers
have been used in [2] for attacking the case of closed curves. Let us call l(I) the left endpoint
of I, and r(I) the right endpoint of I.

For notation purposes we identify in the following a white interval I on FDi with a Bk

for some 0 � k � p � 1. If a white interval on FDi spans several cells we consider it to be
composed of one white interval per cell.

For each white interval I of FDi we store the left pointers and right pointers in two arrays
that are indexed by the j 2 Adj(i). Thus each white interval I on FDi has jAdj(i)j l-pointers
and r-pointers attached to it. See Figure 5 for an overview of the preprocessing steps.

The following lemma gives a characterization when points on FDj can be reached from
points on FDi by a monotone feasible path in FDi;j.

Lemma 2 Let (i; j) 2 E be �xed. Let 0 � k < k0 � p � 1, and assume that Bk; B
0
k0 6= ;.

Then there is a monotone feasible path in FDi;j from some point on Bk to a point on B0
k0 if

and only if

l
max
i=k+1

ai �
k0

min
i=l

bi for all k < l � k0: (1)

Proof: Assume there is a monotone path � in Fi;j from a point on Bk to a point on B0
k0 .

For each k < l � k0 consider the point where � passes the vertical line at l. � has to pass
above all ai for i = k + 1; : : : ; l and below all bj for j = l; : : : ; k0, otherwise it would not be
a monotone feasible path. For the other direction, assume that (1) holds for all k < l � k0.
Let ai1 ; : : : ; aim be the sequence of di�erent indices that form the partial maxima of the
sequence a1; : : : ; ap�1, when considering its pre�xes obtained by reading it from left to right.
We construct � to start in an arbitrary point on Bk, go vertically upwards until the height
ai1 , go horizontally until we hit the lower spike in i1, then visit the points ai1 ; : : : ; aim , and
then pass horizontally until it ends under some point on B0

k0 , which it then connects to by
going vertically straight up. Two points ai� and ai�+1 are connected in � by a path that starts
horizontally at height ai� until it hits the lower spike in i�+1. It then follows the boundary
of this spike (which is monotonically increasing) until the height ai�+1 . Since (1) holds for
l = i1; : : : ; im, every described piece in the path is indeed feasible, and � is monotone.

Lemma 3 Let (i; j) 2 E. Then all pointers li;j(Bk) and ri;j(Bk) for all white intervals Bk

on FDi, 1 � k � p� 1, can be computed in O(p) time.

Proof: The left pointers li;j(Bk) for all 0 � k � p � 1 are easily computed by a scan for
increasing k = 0; : : : ; p� 1: Let k be �xed. If ck � d0k then we set li;j(Bk) := k+max(ck; c

0
k).

Otherwise we greedily search for the �rst cell �k0 , k
0 > k, which contains a white point

6



on its upper boundary, and such that (1) holds. If such a cell does not exist then we set
li;j(Bk) := NIL. Otherwise we set li;j(Bk) := k0 + c0k0 . For the next iteration, i.e., for k
increased by one, we only have to consider cells to the right of �k0 , such that in total we visit
every cell at most once.

The computation of the right pointers is slightly more complicated. We proceed incre-
mentally for k = 0; : : : ; p� 1 as follows: For each k, if Bk 6= ;, we compute the largest value
k0 for which (1) holds. In order to do this we maintain a stack S := fi1; : : : ; img of indices
k < i1 < i2 < � � � < im � k0 which are the indices of those lower spikes that are horizontally
visible from the vertical line at k0. In other words, S is the sequence of di�erent indices that
form the partial maxima of the sequence ak+1; : : : ; ak0 , when reading it from left to right.
Thus each index is 2 S is characterized by the property that ais > al for all is < l � k0. We
call S the partial maxima stack, with top element im, and bottom element i1. Note that for
S = fi1; i2; : : : ; img we have i1 < i2 < � � � < im and ai1 > ai2 > � � � > aim . See Figure 6 for an
illustration. The signi�cance of these values is as follows: Let is < is+1 2 S be two successive
indices, and let is < i � is+1. Then the lowest point on the vertical line at k0 that can be
reached from Bi (if Bi 6= ;) by a monotone feasible path in FDi;j is ais+1 .

top

k076432 5 S

1 = i1
4 = i2
5 = i3
7 = im

k = 0 1

Figure 6: An example of lower spikes and their partial maxima stack S.

We initialize S = f0g and k0 = 1. Let k = 0; : : : ; p�1 be the current value of the iteration.
We maintain the invariant that (1) holds for the current values of k and k0 throughout the
algorithm. This is trivially true for the initialization case. And if we know that (1) holds for
k�1 and k0, then it immediately holds for k and k0. For �xed k we now search for the maximal
k0 that ful�lls (1). (We always denote the top element of S by aim and the bottom element
by ai1 , although the indices and the value of m change during the algorithm.) If ai1 > bk0+1,
then k0 + 1 violates (1), thus k0 is the maximal value we searched for. If ai1 � bk0+1, then
we have maxfai1 ; ak0+1g = maxk

0+1
i=k+1 ai � bk0+1, thus (1) holds for k

0 + 1 and we can safely
increase k0 by one. Now we have to maintain S to represent the partial maxima of lower
spikes between k and the increased value k0. For this we pop the topmost values from S until
aim > ak0 . Finally we push k0 on top. Then we start with a new iteration on k0.

Once we have found the maximal k0 that ful�lls (1), we know that there is no monotone
feasible path in FDi;j from any point on Bk (assuming that Bk 6= ;) to B0

k0+1. Thus the
rightmost point on FDj that can be reached by a monotone feasible path from Bk is the �rst
d0w which bounds a white interval on FDj to the left of the vertical line at k0 + 1.

p0 1 2 p� 1
FDi

Figure 7: Shortcut pointers on FDi.

In order to obtain all d0w eÆciently during the run of the algorithm we store O(p) shortcut
pointers for each FDi: At the k-th cell boundary of FDi, for integer 0 � k � p� 1, we store
a pointer to the rightmost white point on FDi that lies to the left of k. If there is no such
white point we set the shortcut pointer to NIL. See Figure 7 for an illustration. We construct
this pointer structure on the 
y by computing a pointer value from the shortcut pointer to
its left. Now we �nd d0w by greedily searching for the next white point on FDj to the left of
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k0 + 1. If possible we follow the next shortcut pointer; otherwise we greedily search for the
�rst white point and compute the shortcut pointers on the way until we either hit an already
computed shortcut pointer or the beginning of FDj . If k < w then we set ri;j(Bk) := w+ d0w.
If k > w then we set ri;j(Bk) := NIL. If k = w then if ck � d0k we set ri;j(Bk) := k + d0k,
otherwise we set ri;j(Bk) := NIL.

Finally, if i1 = k + 1 then we remove i1, i.e., the bottommost element, from S. Then we
start the next iteration on k with its value increased by one.

For the runtime analysis, note that k and k0 are always increased, and never decreased.
In each such increasing step we perform only constant time operations without counting the
stack operations and the location of the d0w. Once a value is removed from the stack (either by
popping from the top, or by removing from the bottom) it is never inserted in S again. Thus
every integer between 1 and p� 1 is at most once inserted in the stack and removed from the
stack. With respect to the shortcut pointers we charge every cell boundary for computing its
shortcut pointer. Thus the total time to compute all ri;j(I) is indeed O(p).

2.3 Dynamic Programming

In this stage we decide whether there exists a feasible monotone path in the free space surface.
Note that such a path traverses a sequence of free space diagrams FDi;j. We call the part of
a path that traverses one such free space diagram a segment of the path.

Conceptually we sweep all FDi;j at once with a vertical sweep line from left to right. Let
0 � x � p denote the position of the sweep line. For each i 2 V we store a set Ci � R(i) � Fi

of white points, which we compute in a dynamic programming manner. Throughout the
algorithm we maintain the following invariant:

De�nition 3 (Ci) Let i 2 V and x be the current position of the sweep line. Then Ci consists

of all reachable points u 2 R(i) � FDi, such that u � x, and for which the last segment of

their associated feasible monotone path crosses or ends at the sweep line.

Thus we are able to decide whether Ri 2 R(i) by checking if Ri 2 Ci for an advanced enough
position x of the sweep line. Let us call a sequence of consecutive white and black intervals of
FDi a consecutive chain of intervals. For a consecutive chain, as well as for a single interval,
C let l(C) be its left and r(C) be its right endpoint. For two consecutive chains C 0 � C we
call C 0 a consecutive subchain of C.

Lemma 4 Every Ci, for i 2 V , is a consecutive chain, for every value of x.

Proof: Let x and let i 2 V be �xed. Let w 2 Ci be the largest point in Ci. By de�nition
of Ci there is a j 2 Adj(i) and a white point u 2 Fj with u � x � w, such that u is reachable
and there exists a monotone feasible path in FDj;i from u to w. For any white point v 2 Fi

with x � v � w there exists by Lemma 1 a monotone feasible path from u to v in FDj;i,
which makes v in particular also reachable by the same path that reaches u, concatenated
with the monotone feasible path from u to v. Thus v 2 Ci, and Ci is a consecutive chain. See
Figure 8 for an illustration.

The algorithm we present is a mixture of a sweep (since we are sweeping with a sweep line),
dynamic programming (on the Ci we incrementally build up), and Dijkstra's algorithm for
shortest paths (since we are computing paths using a priority queue to augment the path in a
similar fashion to Dijkstra's algorithm). We maintain a priority queue Q of white intervals of
FDi which are known to be reachable. More precisely, for each i 2 V the �rst white interval
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Figure 8: A consecutive chain Ci.

of Ci (if Ci 6= ;) is stored in Q. The priority of an interval is its left endpoint. The events
for the sweep line, i.e., the di�erent values of x, are the left endpoints of the intervals in Q.
Every interval in Q is part of a consecutive chain to which we store a pointer together with
the interval. Since Ci = [l(Ci); r(Ci)] \ FDi we store the Ci implicitly in constant space by
storing only l(Ci) and r(Ci).

We initialize Q with all white Li (which are degenerate intervals). For all i 2 V if Li is
white we set Ci := Li, otherwise Ci := ;. Then we process these intervals in increasing order
as follows:

1. Extract and delete the leftmost interval I from Q; if there are several intervals with the
same priority pick an arbitrary one. Advance x to l(I).

2. Let Ci be the consecutive chain that contains I. Insert the next white interval of Ci

which lies to the right of I, into Q.

3. For each j 2 Adj(i) update Cj to comply with the new value of x: [li;j(I); ri;j(I)]
de�nes a consecutive chain on FDj, whose white intervals are white intervals on FDj

which have now been identi�ed to be reachable. Thus we need to merge [li;j(I); ri;j(I)]
into Cj. Knowing that Cj is a consecutive chain for every value of x, we can merge both
chains together by simply considering the interval endpoints. If li;j(I) > r(Cj) then we
discard the old Cj and replace it with [li;j(I); ri;j(I)]. If the left endpoint has changed
then we delete the old �rst interval of Cj in Q and insert the new one. Assuming an
appropriate implementation of the priority queue, each operation on Q takes O(log p)
time.

4. Store for each white interval J that has been newly added to Cj (or that has been
enlarged) a path pointer to the interval I (from which it can be reached by a monotone
feasible path in FDi;j).

We process all intervals in Q until we either �nd a j 2 V such that Rj 2 Cj , or until Q is
empty. In the latter case there is no path � in G with ÆF(�; �) � ". In the �rst case we know
that such a path exists, and we reconstruct it using the path pointers in the second stage of
the algorithm, which is described in Section 2.4.

2.4 Path Reconstruction

We assume that in the dynamic programming stage we found a j 2 V with Rj 2 J , where
J is a white interval in Cj for some position x of the sweep line. In this stage we use the
path pointers to construct a path � in G together with a feasible monotone path in FD"(�; �)
which witnesses the fact that ÆF(�; �) � ".

9



By construction the interval J has a path pointer attached to it. We follow this path
pointer to the right endpoint of an interval I, which is a suÆx of an interval of FDi for an
i 2 Adj(j). We repeat following the path pointers until we end at an Lk. This way we obtain
a sequence of pairs (i; r) where i 2 V and r is the right endpoint of the visited interval on FDi.
We call this sequence the path sequence. Note that it starts with (k;Lk) for a k 2 V . When
we extract the �rst component of each pair, we obtain a sequence of i 2 V that represents
the desired path � in G. The corresponding feasible monotone path in FD"(�; �) can be
constructed in an incremental way by following the path sequence and assuring monotonicity
by using again a partial maxima stack of indices of lower spikes, such as in Lemma 3.

2.5 Time Analysis

Theorem 1 The described algorithm decides whether there is a path � in G such that

ÆF(�; �) � " in O(pq log q) time and O(pq) space, where p is the number of line segments

of � and q is the complexity of G. If such a path � exists the algorithm computes � together

with a monotone feasible monotone path in the free space surface, in O(pq log q) time and

O(pq) space.

Proof: Each FDi has complexity O(p) and can be constructed in O(p) time. Each interval
I on FDi has jAdj(i)j l-pointers and r-pointers attached to it. The number of all l- and
r-pointers for all FDi sums up to O(pjEj) = O(pq), and can by Lemma 3 also be constructed
in this time. Thus we need O(pq) time and space for the preprocessing.

In the dynamic programming stage we insert and delete a suÆx of every white interval
of any FDi, i 2 V , at most once in Q. Also the left endpoint of a white interval of any FDi

might be changed jAdj(i)j times. Each priority queue operation needs O(log q) time, thus
O(pq log q) altogether. For each interval in Q we consider each j in the adjacency list of its
consecutive chain and spend constant time to merge consecutive chains and construct path
pointers for each such j. Altogether this sums up to O(pjEj) = O(pq) time, which together
with the priority queue operations is O(pq log q) time for the whole dynamic programming
stage. We store only one consecutive chain per vertex, and Q contains at most one interval
per vertex, which adds up to O(q) space. Additionally we store one path pointer per interval
in FDi, thus the space complexity for the path pointers is O(pq).

By construction of the path pointers there is no cycle in the graph of path pointers. Thus
every path pointer can be contained in a monotone feasible path in the free space surface at
most once. We reconstruct a feasible path using a graph traversal in O(pq) time (since there
are O(pq) path pointers). Clearly the construction of � in G then also needs O(pq) time.

The program has been implemented in C with a graphical user interface using OpenGL. It
allows to edit the graph and the curve, to solve the decision problem, to perform binary search
on ", and it visualizes the computed feasible parametrizations in a walk-through animation.
See Figure 9 for a screenshot of an example input; the found path � in G is marked in bold.
The decision algorithm runs remarkably fast without speci�c optimizations. For example, for
graphs with q = 700 edges and a curve of length p = 420 it runs in 5 seconds, for q = 1170 and
p = 1000 in 35 seconds, and for q = 1170 and p = 100 in less than 2 seconds, on a Pentium 4
processor. The implementation and the algorithm are shown in a video [7].

Observe that in practice one would prefer to run the algorithm on a pruned graph G0

which consists of those edges of G which are in the "-neighborhood of �. Those edges can
easily be found with a line sweep on G and the "-neighborhood of �. Notice however that
this does not yield a speed-up of the asymptotic runtime.
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Figure 9: Screenshot of the program. The curve � is drawn in light grey, and the edges of � are
marked in bold.

2.6 Parametric Search

In order to �nd the optimal " we apply parametric search, analogously to [2], to the algorithm
we presented to solve the decision problem. The outcome of this algorithm depends solely on
the relative positions of all possible widths and heights of spikes in all free space diagrams
in the free space surface. For varying " all those values depend on ", and for the parametric
search an " is critical if it makes two of these widths or heights coincide. There are O(pq)
di�erent widths or heights of spikes. As in [2] we now apply a parallel sorting algorithm
on those O(pq) values which depend on ", and generate in that way a superset of the
critical values of " we need. By utilizing Cole's trick [3] we obtain a running time of
O(pq log(pq) log q), at no extra storage.

Theorem 2 There is an algorithm that �nds a path � in G which minimizes ÆF(�; �), in

O(pq log(pq) log q) time and O(pq) space.

2.7 Variants

There are several variants of the problem setting and of the basic algorithm.
First, observe that the algorithm works in the same way for arbitrary (strongly) connected

but possibly non-planar or directed graphs with straight-line embeddings, as well as for em-
beddings of the graph and the curve in higher-dimensional spaces. Since the algorithm to
compute the Fr�echet distance does not depend on the dimension of the space in which the
curves are embedded, the runtime of the algorithm remains the same with q denoting the
number of edges and vertices of G.

Another straight-forward variant is to allow a path � in G to start and end not only at
vertices of G but also in the middle of segments si;j for edges (i; j) 2 E. In fact this can be
easily integrated into our algorithm by letting a path begin (or end) at any white point on
the left (or right) boundary of any FDi;j.

11



Another variant is to ask for more monotonicity in the path � that is found in the graph.
In our current problem setting we allow a path � in G to travel the same edges in G multiple
times. It seems to be hard to avoid these cases without increasing the runtime immensely.
However we can modify our algorithm to avoid \U-turns", i.e., to forbid a path � in G to
travel the edge (i; j) and immediately afterwards the edge (j; i). We incorporate this feature
by storing, at every reachable white interval I on FDi, a path pointer to each reachable
interval on FDj from which I can be reached; j 2 Adj(i). Performing a depth �rst traversal
in this graph of path pointers we can locally exclude the option to travel back the edge from
which we arrived in a vertex, and thus altogether obtain the same results as before.

Another variant is a time-space tradeo�, which we sketch in Section 2.8 and describe in
detail in Appendix A.

2.8 Time-Space Tradeo�

In every step of the dynamic programming stage in Section 2.3 we need mostly local reach-
ability information concerning the current interval, such as its l-pointer, its r-pointer, the
closest shortcut pointer, and the next white interval to the right in its consecutive chain.
We can generate this information on the 
y by conducting the former preprocessing in an
incremental way during the algorithm. I.e., we integrate the computation of the l-pointers
and r-pointers into the algorithm, such that we compute those pointers only when we need
to access them. If we did this in a straight-forward way, we would maintain at each edge its
partial maxima stack and at each vertex all shortcut pointers (compare Lemma 3), which is
all information we need to construct the l-pointers and r-pointers on the 
y. This however
would result in a total storage of O(pq). In order to decrease the storage we still follow this
approach but do not store the full partial maxima stacks and all shortcut pointers, but we
store only equidistant samples of each. Since during the algorithm we need to recompute the
missing information between two sample points, the spacing of this sampling is then re
ected
in the runtime. In the path reconstruction stage we apply a standard dynamic programming
trick for saving space, see [4, 5], which in our case introduces a logarithmic factor in the
runtime. We refer the interested reader to Appendix A for the detailed description of this
approach. The obtained results are summarized below.

Theorem 3 For any 1 � t � p there is an algorithm that decides if there is a path � in G
such that ÆF(�; ��) � " in O(pq(t+ log q)) time and O(pq=t) space.

If such a path � exists it can be computed together with a feasible monotone path in the

free space surface in O(pq(t+ log q) log p) time and O(pq=t) space. For t = 1 the runtime is

O(pq log q).

Theorem 4 For any 1 � t � p there is an algorithm which computes a path � in G which

minimizes ÆF(�; ��) in O(pq(t+ log q) log(pq)) runtime and O(pq=t) space.

Note that the time-space tradeo� from this section together with the variant to avoid
U-turns can be used to compute the Fr�echet distance for two polygonal curves with the same
time-space tradeo�. Thus, at the cost of a logarithmic factor in q compared to the algorithm
of [2], our algorithms also yields a time-space tradeo� for computing the Fr�echet distance of
curves.
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3 Graph-to-Graph Distance

In this section we generalize the Fr�echet distance to pairs of geometric graphs, i.e., embedded,
connected graphs H = (VH ; EH) and G = (VG; EG) with straight edges. Observe, that if H
is not a curve there is, in general, no injective continuous parameterization f : [0; 1] ! H, so
that we have to relax this condition. In the person-dog paradigm we would like to de�ne the
distance from H to G as the shortest length of a leash necessary so that the dog visits each
point of the edges of H while the person traverses some part of G.

More formally, identifying H and G with the points lying on their edges we will call a
mapping f : [0; 1] ! H which is continuous and surjective, a traversal of H. A continuous
(but not necessarily surjective) mapping g : [0; 1] ! G will be called a partial traversal of G.
The traversal distance from H to G is de�ned as

ÆT (H;G) = inf
f;g

max
t2[0;1]

kf(t)� g(t)k

where f ranges over all traversals of H and g over all partial traversals of G. Observe, that if
H and G are polygonal chains this de�nition corresponds to the weak Fr�echet-distance, see
[2]. Also observe that the traversal distance is not a generalization of the Fr�echet distance
between a curve and a graph as de�ned in Section 2. Figures 10a and 10d show examples,
where the traversal distance from H to G is small, in Figures 10b and 10c it is large. Let

H H

H

HG G
G

G

b) c) d)a)

Figure 10: a), d) small traversal distance; b), c) large traversal distance.

us �rst consider the decision problem, i.e., determining for given H;G and " � 0 whether
ÆT (H;G) � ". In order to �nd an algorithm for the decision problem, we consider for all
edges e 2 EH and f 2 EG the cells Ce;f of the free space diagram, which can be identi�ed
with the two-dimensional unit interval [0; 1]2 within which, as was mentioned before, the
freespace is obtained by the intersection with an elliptical disk. If e = (u; v) and f = (x; y),
we name the right, left, upper and lower sides of Ce;f as Cv;f , Cu;f , Ce;y, and Ce;x, respectively
(see Figure 11). Then we identify sides with the same name, i.e. we \glue together" cells of
the form Ce;f and Ce;f 0 (Ce;f and Ce0;f ) if f and f 0 (e and e0) have a common endpoint x
(u) at the sides named Ce;x (Cu;f ). Thus we obtain a generalization of the free space surface
from Section 2.1, which is a two-dimensional cell complex S in three dimensions, whose facets
are the cells Ce;f , whose edges are the sides Cu;f and Ce;x, and whose vertices are the points
Cu;x, with e 2 EH , f 2 EG, u 2 VH , x 2 VG. Please note that we use a slightly di�erent
notation in this section than in Section 2.

S contains the combined \white" freespace of all its cells and is a generalization of the
freespace diagram of two curves. A continuous path on S which completely lies inside the
free space corresponds to a simultaneous motion on G and H keeping a distance of at most
". Let us call these paths feasible.

If a feasible path � traverses some cell Ce;f then let I�;e;f be the set of those points on
e that are traversed by the corresponding motion on the graphs. The edge e 2 EH is called
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satis�ed by � if [

f2EG

I�;e;f = e :

It means that all points of e are eventually traversed by the motion on the graphs correspond-
ing to �. Therefore, we can conclude:

Lemma 5 ÆT (H;G) � ", if and only if there exists a feasible path � satisfying all edges

e 2 EH .

In order to obtain an algorithm to test the condition of Lemma 5 we introduce the traversal
graph T . The vertices of T are the one-dimensional facets Cu;f and Ce;x of the cell complex
S, with e 2 EH , f 2 EG, u 2 VH , x 2 VG. Two such facets are connected by an edge of T
if and only if they are both incident to some cell Ce;f and if there is a connection between
both by a curve through the free space of Ce;f , see Figure 11. Thus, to each edge of T we can
assign a cell of the free space. On the other hand, each cell is assigned to at most six edges.
It follows that T has O(pq) edges where p = jEGj and q = jEH j.

C e,fu,f

e,x

e,y

v,f

C

C

C

C

Figure 11: Edges of the traversal graph.

For e 2 EH ; f 2 EG let Je;f be the set of all points on e that have distance at most " from
f , i.e., the projection of the freespace in Ce;f to e. Any path � with the properties described
in Lemma 5 yields a path in the traversal graph T whose edges are assigned to the cells Ce;f

traversed by �. Since any edge e 2 EH is satis�ed by � it must be
S

f Je;f = e where f
ranges over all cells Ce;f traversed by �. Consequently, the equation is true if f ranges over
all edges in EG such that Ce;f is an edge in the connected component C of T containing �.
Our algorithm for the decision problem is based on the fact that also the converse is true:

Lemma 6 ÆT (H;G) � ", if and only if there exists a connected component C = (VC ; EC) of
the traversal graph T such that for all e 2 EH

[

f

Je;f = e

where f ranges over all edges in EG where Ce;f is assigned to an edge in EC.

To see the converse suppose that C is a connected component of T with this property.
Then we construct a path � on S as follows: � traverses all vertices of C by, say, breadth-
�rst-search. For each cell Ce;f visited, � makes sure that I�;e;f = Je;f by visiting the leftmost
and the rightmost point of the freespace (see Figure 12).
Then for all e 2 EH [

f

Ie;f;� =
[

f

Je;f
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Ce,f

Figure 12: Motion of � within Ce;f .

where f ranges over all edges in EG such that Ce;f is a cell visited by �. Therefore � satis�es
all edges e 2 EH and ÆT (H;G) � " by Lemma 5.

Lemma 6 enables us to give a quite simple algorithm for solving the decision problem.
In fact, given geometric graphs G and H and " > 0, we �rst determine all freespace cells
Ce;f ; e 2 EH ; f 2 EG, and the traversal graph T . By breadth-�rst-search we determine all
connected components of T and we check for each of them whether the condition of Lemma
6 holds for each edge e 2 EH . If this is the case for at least one connected component, the
algorithm answers \yes", otherwise \no".

In order to determine the runtime of this algorithm, we observe that the breadth-�rst-
search in total visits O(pq) cells Ce;f since there are O(pq) edges in T . For each cell we have
to add the interval Je;f to the portion of e covered so far which takes time O(log pq).

In order to solve the optimization problem observe that for the smallest " for which the
decision problem has a positive answer, there are two possibilities. On the one hand it could
be that the left endpoint of some interval Je;f equals the right endpoint of another one Je;f 0 ,
so that edge e gets satis�ed at that point. On the other hand it could be that the free space
in some cell Ce;f touches one of the sides of the cell, i.e., the traversal graph T changes.
Therefore, in order to solve the optimization problem we perform a parametric search using
Cole's approach [3] with a fast parallel sorting algorithm for the endpoints of the intervals
Je;f , including the values 0 and 1 to take care of the critical values of the second type. Since
there are O(pq) such endpoints and the decision problem can be solved in time O(pq log pq)
we obtain an O(pq log2 pq) algorithm for the computation problem. We summarize:

Theorem 5 Given two geometric graphs G and H and " > 0, it can be decided whether

ÆT (H;G) � " in time O(pq log pq) by the algorithm given above, where p and q are the numbers

of edges of G and H, respectively. The traversal distance from H to G can be computed in

time O(pq log2 pq).

4 Acknowledgements

We thank Scott Howard Morris for introducing us to the application of matching GPS curves,
and Lingeshwaran Palaniappan for implementing the algorithm of Section 2.

References

[1] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. In Proc. 14th ACM-SIAM

Sympos. Discrete Algorithms, pp. 589{598, 2003.

15



[2] H. Alt and M. Godau. Computing the Fr�echet distance between two polygonal curves.
Internat. J. Comput. Geom. Appl., 5:75{91, 1995.

[3] R. Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. Assoc.

Comput. Mach., 34(1):200{208, 1987.

[4] Dan Gus�eld. Algorithms on Strings, Trees, and Sequences. Cambridge University Press,
1997.

[5] D. S. Hirschberg. Algorithms for the longest common subsequence problem. J. Assoc.

Comput. Mach., 24:664{675, 1977.

[6] C. Wenk. Shape Matching in Higher Dimensions. PhD thesis, Freie Universit�at Berlin,
2002; to appear.

[7] C. Wenk, H. Alt, A. Efrat, L. Palaniappan, and G. Rote. Finding a curve in a map (Video).
To appear in Proc. 19th Ann. Symp. Comput. Geom., San Diego, June 2003. Association
for Computing Machinery, 2 pp.

A Appendix: Time-Space Tradeo�

This section presents a detailed description of the time-space tradeo� which was sketched in
Section 2.8.

A.1 Dynamic Programming

Observe that in every step of the dynamic programming stage we need mostly local reach-
ability information concerning the current interval, such as its l-pointer, its r-pointer, the
closest shortcut pointer, and the next white interval to the right in its consecutive chain.
In this section we skip the preprocessing completely, and present a variant of the dynamic
programming algorithm of Section 2.3 that integrates the preprocessing into the algorithm in
such a way that it incorporates a time-space tradeo�.

We store and maintain the following items during the algorithm:

� As in Section 2.3 we store at each vertex i 2 V exactly one consecutive chain Ci which
is represented by its endpoints.

� In order to compute the d0w eÆciently (see proof of Lemma 3) we store for each vertex
i 2 V a set of shortcut pointers, which we will describe in more detail below.

� For each edge (i; j) 2 E we maintain a stack S 0(i; j) of indices of lower spikes, which we
will describe in more detail below.

� For each edge (i; j) 2 E we store a current l-pointer li;j and a current r-pointer ri;j.
These are the pointers with respect to FDi;j, j 2 Adj(i), that have been computed for
the last processed interval on FDi. We update those pointers with every new interval
that we process on FDi.

We integrate the computation of the l-pointers and r-pointers into the algorithm, such
that we compute those pointers only when we need to access them. If we did this in a straight-
forward way, we would maintain at each edge its partial maxima stack and at each vertex
all shortcut pointers (compare Lemma 3), which is all information we need to construct the
l-pointers and r-pointers on the 
y. This however would result in a total storage of O(pq).
In order to decrease the storage we still follow this approach but do not store the full partial
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maxima stacks and all shortcut pointers, but we store only equidistant samples of each. Since
during the algorithm we need to recompute the missing information between two sample
points, the spacing of this sampling is then re
ected in the runtime. We will �rst use a
spacing of

p
p, and will later generalize it to an arbitrary parameter 1 � t � p.

Let us now go into the details of this approach. The processing of intervals from the
priority queue Q is adapted as follows: For step 2 of the dynamic programming stage we need
to �nd the leftmost white interval in Ci which lies to the right of the current interval I. For
this we scan the one-dimensional cells to the right of I and directly compute each interval
partition until we �nd the �rst white interval.

It remains to show how we adjust step 3 of the dynamic programming stage, since in this
stage the l-pointers and r-pointers are needed. For this we follow the lines of the proof of
Lemma 3. We have to show how we maintain the current l-pointers and r-pointers eÆciently.
For this we store and maintain compressed versions of the partial maxima stack at each edge
(i; j) 2 E, and of the shortcut pointers at each vertex i 2 V .

For each (i; j) 2 E we use the notion of the partial maxima stack S(i; j), however we do
not store S(i; j) directly, but only a subset of O(

p
p) indices. Let the stack S 0(i; j) contain

this subset of indices. S(i; j) is de�ned as in Lemma 3 to be the sequence of indices of the
partial maxima of the sequence of lower spikes between two indices k and k0. We let k be
the right endpoint of the last interval processed on FDi, and k0 as in Lemma 3 be the largest
k0 > k for which (1) holds. In the beginning S 0(i; j) is initialized to be empty. After that
we directly compute it or update it from the previously stored stack, and we then extract
the current ri;j from it. However, S(i; j) could contain up to O(p) indices, which we cannot
a�ord to store. Thus we de�ne S 0(i; j) to store every bppc-th index of S(i; j). More precisely,
S 0(i; j) contains the �rst (i.e., bottommost) index of S(i; j), and additionally every bppc-th
index, and �nally the last index of S(i; j), in the same order as in S(i; j).

In order to obtain all d0w eÆciently during the run of the algorithm we store only O(
p
p)

shortcut pointers for each FDi (as opposed to O(p) pointers as in Lemma 3). For every integer
1 � k � p

p we store at each position bkppc (which corresponds to the left boundary of the
bkppc-th cell of FDi) a pointer to the rightmost white point on FDi which lies to the left of
bkppc. If there is no such white point we set the shortcut pointer to NIL. We build up this
pointer structure on the 
y by computing a pointer value from the next shortcut pointer to
its left.

In the following we show that we can process the next interval I from the priority queue
Q in O(

p
p) time.

Lemma 7 Let x be the current position of the sweep line, and let I 2 Ci be the next interval

in Q. Then all S 0(i; j), ri;j, and li;j can be updated to comply with the new position l(I) of
the sweep line in total time O(

p
p).

Proof: In the beginning of the algorithm all li;j and ri;j are initialized with NIL. For an
interval I that has been picked from Q we update those pointers as follows: Assume I 2 Ci

and j 2 Adj(i). If li;j � l(I) then it remains unchanged. This is because it has been the
leftmost reachable point of the previous interval, which due to the simplicity of FDi;j, see
Lemma 1, implies that it is also reachable from the current interval and cannot lie further to
the left. If however li;j < l(I), then li;j cannot be reached by a feasible monotone increasing
path from I anymore. Thus in this case we greedily scan the cells of FDi;j to the right of
l(I) just as in the proof of Lemma 3 until we �nd the new li;j. The only di�erence is that
we compute the free space in each cell on the 
y. Note that, once we have computed the
pointers, we free the storage required for the free space.

Again it is more challenging to update the ri;j: Note that by construction holds that
al0 � bk0 and al0 > bk0+1 for l

0 = bottom(S 0(i; j)) and k0 = top(S 0(i; j)). First let r(I) � k0. We
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locate r(I) in S 0(i; j). If r(I) � l0 then ri;j remains the same. Otherwise we remove all entries
from the bottom of S 0(i; j) that are smaller than r(I). Now, in order to maintain the property
that bottom(S 0(i; j)) = bottom(S(i; j)), we �nd that k with r(I) � k � bottom(S 0(i; j))
which maximizes ak. We append k to the bottom of S 0(i; j).

By de�nition of top(S 0(i; j)) we know that the largest k0 � k for which (1) holds has to
be greater or equal to top(S 0(i; j)). We greedily search for this new value of k0 exactly as
in Lemma 3 and construct, on the 
y, the full partial maxima stack starting at top(S 0(i; j))
and ending in k0. We then pop top(S 0(i; j)) and push the spikes of this new stack at spacingp
p onto S 0(i; j), taking care that at the transition between the two stacks the spacing is

correct, and make sure to push k0 onto S 0(i; j). We set ri;j to be the �rst d0w which bounds
a white interval on FDj to the left of k0 + 1. We �nd this d0w by greedily searching for the
next white point on FDj to the left of k

0+1, following shortcut pointers when we meet them.
Now consider the special case that the value of k0 remains the same. If l(I) � ri;j, then ri;j
remains the same. Otherwise there is no point on FDj which can be reached by a monotone
feasible path from I, hence ri;j := NIL.

If r(I) > k0, then we discard S 0(i; j). We directly construct the full partial maxima stack
starting at r(I) and ending in k0, and store the indices at

p
p-spacing in S 0(i; j) as before.

Note that the size of each S 0(i; j) is only O(pp) during the whole course of the algorithm.
Also the number of shortcut pointers stored per vertex i 2 V is O(

p
p). Thus the total storage

is indeed at most O(q
p
p). For the analysis of the runtime consider a �xed (i; j) 2 E. During

the whole course of the algorithm bottom(S 0(i; j)) increases monotonically, and every integer
between 1 and p�1 is touched at most a constant number of times, and at most once inserted
in or removed from S 0(i; j). The argument is similar to the proof of Lemma 3. Thus all
changes of S 0(i; j) take O(p) time in total. However the steps of locating r(I) in S 0(i; j) and
�nding d0w take O(

p
p) time per white interval in FDi.

From Lemma 7 we know that all data structures can be updated in O(
p
p) time for one

processed interval of Q. Thus the processing of all intervals takes O(pq
p
p) time in total. The

computation of all shortcut pointers takes O(p) time. The handling of insertions, deletions,
and changes of intervals in Q takes O(pq log q) as before. Hence we obtained the following
result:

Lemma 8 There is an algorithm that decides if there is a path � in G such that ÆF(�; ��) � "
in O(pq(

p
p+ log q)) time and O(q

p
p) space.

Now let 1 � t � p be a given tradeo� parameter. We space the spikes in S 0(i; j) at distance
t instead of

p
p. Similarly we store shortcut pointers at each cell boundary bktc instead of

bkppc for every integer 1 � k � p=t. This way the storage becomes O(pq=t), and the runtime
is O(pq(t + log q)) since in both cases the time to process an interval in Q is linear in the
spacing of the spikes and the shortcut pointers.

Corollary 1 For any 1 � t � p there is an algorithm that decides if there is a path � in G
such that ÆF(�; ��) � " in O(pq(t+ log q)) time and O(pq=t) space.

A.2 Path Reconstruction

Above we only handled the decision problem without any attached path pointers to support
the path reconstruction. However we clearly do not want to store all O(pq) path pointers.
We overcome this problem by applying a standard dynamic programming trick for saving
space, see [4, 5]. However we will not be able to exploit it to its full extent, such that it will
introduce a logarithmic factor in the runtime. We break � up into several smaller pieces and
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compute the solution for those subparts of � while keeping certain path pointer information
for these subparts.

For i; j 2 f0; 1; : : : ; pg with i � j let �[i; j] := �j[i;j] be the polygonal sub-curve of �
starting in the i-th and ending in the j-th vertex of �. We start with applying the above
algorithm to the whole curve � = �[0; p].

Lemma 9 Let j 2 V . Then in each step of the algorithm, Cj contains at most one consecutive

subchain of intervals that can be reached by a monotone feasible path in FDi;j from points on

FDi, for each i 2 Adj(j). Each consecutive subchain of Cj equals [li;j(I); ri;j(I)] \ FDj for

some white interval I on FDi.

Proof: Assume that there are two disjoint consecutive subchains C and C 0 of Cj, that
can be reached by a monotone feasible path in FDi;j from two disjoint intervals I and I 0,
respectively, on FDi. Let C lie to the left of C 0, and I lie to the left of I 0. Since the left
endpoints of processed intervals of Q always lie to the left of the consecutive chains, we know
that l(I) � l(Cj) � l(C) and also l(I 0) � l(Cj) � l(C). But from Lemma 1 then follows that
C can be reached by a monotone feasible path in FDi;j from I 0, and thus C and C 0 are not
disjoint. If I 0 lies to the left of I then every feasible monotone path from I to C crosses every
feasible monotone path from I 0 to C 0, thus C and C 0 are also not disjoint.

For the second part, let C be a consecutive subchain of Cj and assume that [li;j(I); ri;j(I)]\
FDj; [li;j(I

0); ri;j(I
0)] \ FDj � C with [li;j(I); ri;j(I)] \ [li;j(I

0); ri;j(I
0)] = ;, for two disjoint

intervals I; I 0 on FDi. Let I lie to the left of I
0. Then l(I); l(I 0) � l(C), such that by Lemma 1

every feasible monotone path from I to C crosses every feasible monotone path from I 0 to C,
such that li;j(I) = li;j(I

0) and ri;j(I) = ri;j(I
0).

We maintain a variant of the path pointers that we had in step 4 of the algorithm in
Section 2.3: For each j 2 V we maintain a partition of Cj into consecutive subchains that
can be reached by a monotone feasible path in FDi;j from intervals on FDi for i 2 Adj(j).
From Lemma 9 we know that there is one interval on FDi from which the corresponding
consecutive subchain on FDj can be reached. Thus we can associate to each consecutive
subchain exactly one feasible monotone path in the free space surface to some Lk. In fact,
for each consecutive subchain we maintain a direct pointer that points directly to the point
Lk that can be reached from points on this consecutive subchain by a feasible monotone path
in a concatenation of free space diagrams of the free space surface. These pointers can be
maintained by constructing the path pointers as in Section 2.3, but instead of storing them
we follow them to the pointers of the consecutive subchain they can be reached from, and
then we store those direct pointers.

In order to be able to reconstruct one actual feasible path from the direct pointer in-
formation, we compute di�erent direct pointers for di�erent parts of the free space surface.
For an edge (i; j) 2 E, let �i;j be the number of the cell in FDi;j which contains the right
endpoint of the current Cj. Note that �i;j changes during the course of the algorithm. Let

V i;j
�i;j := FD"(�(�i;j +1); si;j) be the vertical right boundary of the partial free space diagram

FD0
i;j := FD"(�[0; �i;j + 1]; si;j). Note that V

i;j
�i;j contains at most one white interval.

Note that in the regular algorithm we consider one-dimensional free space diagrams only
at the upper and lower boundaries of FDi;j for (i; j) 2 E. However we now have to construct
one-dimensional sub free space diagrams at certain vertical cell boundaries of FDi;j. We wish

to compute for each white interval on a V i;j
bp=2c a direct pointer to an Lk that can be reached

by a monotone path from this interval. During the algorithm, once we arrived at �i;j � bp=2c,
the stored partial maxima stack provides the information which interval can be reached from
the white interval (if it exists at all) on V i;j

bp=2c, which in turn yields the direct pointer we want
to store.

19



Furthermore we wish to compute for each white Rl a direct pointer to a white interval on
a V i;j

bp=2c. For this we maintain for each consecutive subchain whose right endpoint is larger or

equal to bp=2c a direct pointer to a white interval on a V i;j
bp=2c

. Note that these direct pointers
can be maintained in the same way as the other direct pointers. Thus if a consecutive subchain
lies completely to the left of bp=2c it stores a direct pointer to a Lk, if it lies completely to
the right it stores a direct pointer to a white interval on a V i;j

bp=2c, and if it contains bp=2c it
stores both pointers. This needs O(pq(t + log q)) time and O(pq=t) storage for the dynamic
programming. Since every consecutive chain Cj contains at most jAdj(j)j subchains due to
Lemma 9, all direct pointers can be maintained during the dynamic programming with O(q)
extra space.

Concatenating the direct pointer information of both subproblems we can identify at most
O(q) paths that start at some Lk, end at some Rl, and pass a white interval on a V i;j

bp=2c at a
known point each. Note that the only information we have for these paths are their starting
point, the point where they pass the white interval on V i;j

bp=2c in the free space diagram FDi;j,
and their endpoint. We only consider exactly one of these paths, and store its starting point
Lk� , its endpoint Rl� , and the indices i�; j� and the point a�, where FDi�;j� is the free space

diagram where the path crosses the white interval on V i�;j�

bp=2c in the point a�.

In a recursive manner we now solve the subproblem in a second level for �[0; bp=2c],
maintaining direct pointers as above with respect to bp=4c, and with the only start vertex
k� and the end point a�. Note that this requires a very slight modi�cation of the algorithm
in that the endpoint is now not in a vertex of the graph, but on a �xed point on the edge
(i�; j�), which is similar to one of the variants discussed in Section 2.7. Similarly we solve the
subproblem for �[bp=2c; p], with respect to b3p=4c, and with the start point a� and the end
vertex l�. Concatenating the direct pointers for both subproblems we can extract four pointers
representing one feasible monotone path in the free space surface. This can be performed in
O(pq(t + log q)) time, O(pq=t) storage, and O(q) extra storage for the new pointers. We
keep repeating this recursive process for log p levels until we end at single segments of �.
We keep concatenating the computed pointers, and obtain a desired feasible path from some
Lk to some Rl in the end. The whole recursive procedure needs O(pq(t + log q) log p) time,
O(pq=t) storage, and O(q) extra storage for the path representation. Altogether this yields
the following result:

Theorem 3 For any 1 � t � p there is an algorithm that decides if there is a path � in G
such that ÆF(�; ��) � " in O(pq(t+ log q)) time and O(pq=t) space.

If such a path � exists it can be computed together with a feasible monotone path in the

free space surface in O(pq(t+ log q) log p) time and O(pq=t) space. For t = 1 the runtime is

O(pq log q).

A.3 Parametric Search

In order to �nd the optimal " we can apply parametric search in the same way as before. We
simply plug the time-space tradeo� variant into the parametric search paradigm and arrive,
using the same argumentation as in Section 2.6, at a runtime of O(pq(t+ log q) log(pq)) and
space complexity O(pq=t). Now in order to actually �nd the path we �rst run this variant of
the parametric search, which determines the optimal "� for which there exists a path � in G
such that ÆF(�; ��) � "�. With this value for " we run the algorithm that computes the path
in O(pq(t+ log q) log p) time and O(pq=t) space. Thus we can actually compute the optimal
path in G in O(pq(t+ log q) log(pq)) time and O(pq=t) space.

Theorem 4 For any 1 � t � p there is an algorithm which computes a path � in G which

minimizes ÆF(�; ��) in O(pq(t+ log q) log(pq)) runtime and O(pq=t) space.
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