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Abstract

This paper deals with questions from convex geometry related to shape matching. In

particular, we consider the problem of moving one convex �gure over another, minimizing the

area of their symmetric di�erence. We show that if we just let the two centers of gravity

coincide, the resulting symmetric di�erence is within a factor of 11/3 of the optimum. This

leads to e�cient approximate matching algorithms for convex �gures.

1 Introduction

A very common problem arising in application areas like computer vision or pattern recognition is
that two \�gures" F1 and F2 are given and the question is how much these �gures \look alike".
F1 might be an image of an unknown object, and F2 might be one of several possible templates
for this object. In other words, we want to match F1 and F2 as good as possible. The quality of a
match is measured by some \distance" function �(A;B) which assigns a number to any two sets A
and B.

More precisely, assume that we consider a certain set T of feasible transformations that may be
used for matching. Then we de�ne the shape matching problem as follows:

Given two �gures F1 and F2, �nd a transformation topt 2 T minimizing �(F1; t(F2))
over all t 2 T .

Reasonable sets of matching transformations are for example translations, rigid motions (i.e.,
compositions of translations and rotations), similarities, arbitrary a�ne mappings, or projective
transformations. (Note that for transformations that allow changes of size, such as homotheties, it
makes a di�erence if we exchange F1 and F2.)

Most of the previous work has concentrated on the Hausdor� distance as a distance measure
[ABB91, AST94, CGH+93, HKS93, AAR97]. Since solving the optimization problem exactly turns
out to be rather di�cult, more e�cient approximation algorithms have been developed. These algo-
rithms do not necessarily �nd the optimum but a solution whose quality is within a constant factor
of the optimal one. The simplest approach for getting approximation algorithms uses reference

points. Roughly speaking, a reference point is a characteristic point with the property that if two
�gures are matched optimally, their reference points lie close together. Conversely, if we restrict to
matching transformations that map the reference point of F2 onto the the reference point of F1, the
best solution in this restricted set cannot be much worse than the optimal solution. The restricted
set of transformations has fewer degrees of freedom, and thus the restricted optimization problem
is easier to solve.

For example, if T is the set of translations, the restricted optimal translation is directly available,
namely the vector between the two reference points. In the case of rigid motions, the two reference
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points are matched and then the optimal position of F2 is sought among rotations around this
point.

Formally, we call a map that assigns to each �gure in a certain class of �gures F a point in
the plane a reference point for T (with respect to a distance � and with respect to F) if there is
a constant c � 1, called the approximation factor, such that for any two �gures F1; F2 2 F there
exists r 2 T mapping the reference point of F2 onto the reference point of F1 and ful�lling for
all t 2 T the inequality

�(F1; r(F2)) � c � �(F1; t(F2)):
With respect to the Hausdor� distance and rigid motions (and also more general classes of

transformations) the center of gravity or centroid of the convex hull is not a reference point: This is
easily seen by considering a very long rectangle on the one hand and one of the triangles obtained
from the rectangle by cutting along the diagonal on the other hand.

However, two reference points with respect to the Hausdor� distance and rigid motions have
been found: the centroid of the boundary of the convex hull [ABB91] and the so-called Steiner

point [AAR97]. The Steiner point of a convex polygon is obtained as the center of gravity when a
mass proportional to the exterior angle is placed at each vertex. For a smooth convex body, the
mass has to be distributed on the boundary proportional to the curvature.

Here we consider a di�erent distance measure between �gures, namely the area of the symmetric

di�erence which we denote by

�(F1; F2) := area(F14 F2) = area(F1 n F2) + area(F2 n F1):

For a planar region F , we will often just write F instead of area(F ) when no confusion arises.
The symmetric di�erence � is one of the standard error measures considered in the theory of

convex approximation, see the surveys of Gruber [G83, G93]. In the area of computational geometry,
� has been investigated only in a few papers so far, including [ABGW90], where simpli�cation
problems are addressed, and a recent paper of de Berg et al. [BDK+96], which is also concerned
with matching problems under translations.

In some applications, � is more appropriate than the Hausdor� distance. Consider the case
when F1 is an image disturbed by noise: noise may add thin features to the boundary, but it is
unlikely to change large areas. The Hausdor� distance may change dramatically, even if only a
single point is added to F1, whereas the optimal matching for the symmetric di�erence will hardly
change, even if the noise adds some areas that are disconnected from F1.

For measurable sets A;B;C with �nite areas, the distance function � satis�es the triangle
inequality:

�(A;C) � �(A;B) + �(A;C) (1)

This follows from the set-theoretic relation

A4B � (A4C) [ (B 4C):

(To obtain a metric, some regularity conditions must be imposed on the sets A;B;C. For example,
for bounded sets which are equal to the closure of their interior, or for compact convex sets of
positive area, � is a metric.)

In this paper we restrict our attention to convex �gures only. For convex plane �gures, we
show that the centroid is a reference point for translations, rigid motions, and some other sets of
transformations. In particular, if we translate a convex �gure F2 so that its centroid matches the
centroid of another convex �gure F1, the resulting symmetric di�erence is at most 11=3 times as
large as the optimal one under translations. We give an example showing that this constant is
optimal. This theorem is the main geometric result of the paper, and it is proved in Section 2.

A related theorem has been obtained by de Berg, Devillers, van Kreveld, Schwarzkopf, and
Teillaud [BDK+96]. If instead of minimizing the area of the symmetric di�erence F1 4 t(F2),
we maximize the area of the intersection I = F1 \ t(F2), we get of course the same result since
�(F1; t(F2)) = F1+F2� 2I. However, when it comes to the relative performance of approximation
algorithms, there is a di�erence. De Berg et al. considered the very same heuristic as in our case,
namely letting the centroids coincide. They showed that the area of the intersection that is obtained
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in this way is at least 9=25 of the maximum area that can be obtained by translating F2. We will
discuss the relation between this result and our result in the concluding section.

In Section 3, we extend our result from translations to more general sets of transformations.
In Section 4, we apply this result to obtain approximate matching algorithms for various sets of
transformations.

This paper was presented at the Fourth Annual European Symposium on Algorithms in Barce-
lona (ESA '96) [AFRW96].

2 A reference point for translations

The following is the key lemma for our main result.

Lemma 1 Let F � R2 be a bounded convex set, let f � F be a measurable subset of F with positive

area. and let sF and sf denote the centroids of these sets. Let w be the length of the projection

of F onto a line perpendicular to the vector sF � sf . Then

w � jsF � sf j �
4

3
(F � f):

The inequality is strict if F n f has positive area.

Proof. We assume w.l.o.g. that sF and sf have the same x-coordinate so that w is the horizontal
width of F . We also assume that sf lies below sF . We will transform the sets f and F in �ve
steps into more special sets (see Figure 1). Their area and the horizontal width w of F will not
change. The centroids move, but in each step the distance of their y-coordinates will not decrease.
After the �nal step we are able to prove the inequality directly. For simplicity, the sets are called
f and F throughout the process.
Step 1.

Let L and R be the leftmost and rightmost point of F . (If L or R is not unique, we choose
arbitrarily.) We use a shearing that preserves x-coordinates and transforms F and f in such a way
that L and R have the same y-coordinate.
Step 2.

For a horizontal line g we denote by H+ and H� the upper and lower halfplane bounded by g,
respectively. Choose g in such a way that F \H� has the same area as f and replace f by F \H�.
Since some part of f 's area has been transferred from above g to below g, the y-coordinate of sf is
smaller than before.
Step 3.

We choose a vertical line s and apply Steiner symmetrization (see [BF33, x9]) to make F and f
symmetric about the axis s. This operation can be imagined as cutting F into in�nitesimally 
at
horizontal slices and arranging these slices symmetrically about s. The centroids sf and sF may
move in this step, but their y-coordinates do not change. The equality f = F \H� is still valid.
Because of the transformation carried out in Step 1, w is unchanged.

Now we would like to assume that f lies below the line segment LR. If this is not the case, we

can exchange the roles of f and its complementary set f := F n f : the formula sF = f

F
sf +

f

F
sf

implies that
sF � sf

F � f
= �

sF � sf

F � f
:

Thus, showing the upper bound of the lemma for f is as good as showing it for f .
Step 4.

Steps 4 and 5 transform F into a union of two isosceles triangles with base LR. First we �nd a
point O on the vertical axis s such that the area of the triangle LRO below g is equal to the area
of f . There is a horizontal line a such that F nLRO lies completely above a, whereas LRO nF lies
completely below a. (This line goes through the intersection points of the segments LO and RO
with the boundary of F .) Now we set f := LRO\H� and F := (F \H+)[ (LRO \H�). F may
now be temporarily non-convex, but f and F have the same area as before. As in Step 2, we may
regard this transformation of f as a movement of some of its mass from above a (f1 = f nLRO) to
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Figure 1: Transformations of F and f . The set f is the shaded area.

below a (f2 = LRO n f). Hence the y-coordinate of sf has decreased by some amount " � 0. The
set F has undergone the same change (deletion of f1 and addition of f2), but as the set F is bigger
than f , the y-coordinate of sF decreases only by f

F
� ". Hence the distance jsF � sf j is at least as

large as before.
Step 5.

We �nd a point P above LR on the vertical axis s such that the total area of the quadrilateral LPRO
is equal to the area of F . As in Step 4, we �nd a horizontal line b that separates F n LPRO from
LPROnF . (Possibly this line goes through L and R.) We �nally set F := LPRO, leaving f intact,
and reasoning as above, we conclude that the y-coordinate of sF increases by some nonnegative
amount. Hence the distance jsF � sf j is at least as large as before.

For the �gure remaining after Step 5 we show the claim of the lemma directly. We assume
without loss of generality that O is the origin and the height of the triangle LRO and its width
w = LR are both 1. Let the height of the triangle f be ", and let the height of the triangle LRP
be h � 0. Then area(f) = "2=2 and area(F ) = (1 + h)=2. The y-coordinate of sf is 2

3
", and the

y-coordinate of sF is the same as for the centroid of the triangle LOP , which is 2
3
� (1+h=2). Using

the inequalities 0 < " � 1, we get

w � jsF � sf j =
2

3
(1 + h=2� ") � 2

3
(1 + h� "2) =

4

3
(F � f): (2)

If F � f > 0, we must have either " < 1 or h > 0, and the inequality becomes strict. �

Now we come to the proof of the main theorem. Consider convex bodies F1 and F2 in the
plane. Let �opt(F1; F2) denote the minimal area of the symmetric di�erence between translates
of F1 and F2, and let �C(F1; F2) denote the area of the symmetric di�erence between translates
of F1 and F2 whose centroids coincide.
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Theorem 1 For convex plane bodies F1 and F2, we have

�C(F1; F2) �
11

3
� �opt(F1; F2):

The inequality is strict unless both sides are zero. The constant 11=3 in the inequality cannot be

improved.

Proof. We �rst assume that F2 � F1, so �opt(F1; F2) = F1 � F2 = F1 4 F2. Let s1, s2 be the
centroid of F1 and F2, respectively. Now suppose that F2 is translated by the vector s1 � s2
from F2|the optimal position|into the position F 02 where s1 and s2 are matched (see Figure 2).

F2

F 02

F1

w1

w2

s2

s1

Figure 2: Di�erence between optimal and heuristic position

The symmetric di�erence F 024 F2 is contained in the area that is \swept" by the boundary of F2
during the translation. By Cavalieri's principle, this area is bounded by twice the length of the
translation vector s1 � s2 times the width w2 of the projection of F2 onto a line normal to this
vector. So we have

�C(F1; F2) = F14 F 02

� (F14 F2) + (F24 F 02) by (1)

� (F14 F2) + 2 � js1 � s2j �w2

� (F14 F2) + 2 � js1 � s2j �w1

� (F14 F2) + 2 � 4
3
� (F1 � F2) by Lemma 1

=
11

3
� �opt(F1; F2);

where w1 denotes the width of the projection of F1 onto a line normal to s1 � s2. If F2 � F1 > 0,
we even get strict inequality from Lemma 1.

Let's now consider the general case. Assume that F1, F2 are in optimal position and let I =
F1 \ F2. Applying (1) to translates of F1, F2 and I with coinciding centroids we get

�C(F1; F2) � �C(F1; I) + �C(F2; I)

� 11

3
� �opt(F1; I) +

11

3
� �opt(F2; I) by the �rst case

=
11

3
� �opt(F1; F2);
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which proves the inequality of the theorem. Again, we get strict inequality whenever F14F2 > 0.
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Figure 3: �opt(F0; F") and �C(F0; F")

To see that the approximation factor 11=3 is best possible, we construct an example where this
factor can be approached arbitrarily closely. In fact, such an example can be found by examining
the proof of Lemma 1. In order to get the ratio between the sides of the inequality in (2) as small
as possible. we must choose h and " very small. For example, we may take h = 0, but " must be
positive. So we take an isosceles triangle F0 = LRO whose base and the corresponding height have
unit length. For " > 0 denote by F" the trapezoid obtained from F0 by cutting o� a tip of height "
(Figure 3). Clearly,

�opt(F0; F") = "2=2: (3)

The cut moves the centroid by 2
3

"2

1+"
towards the base. The area of the symmetric di�erence of

translates of F0 and F" with the same centroid is shown in Fig. 3. A straightforward computation
yields

�C(F0; F") = "2 � 33 + 18"� 11"2

18(1 + ")2
: (4)

It follows from (3) and (4) that

lim
"!0

�C(F0; F")

�opt(F0; F")
=

11

3
: �

3 Transformations other than translations

In many applications, more general matching transformations than just translations are considered.
These include, for example,

� rigid motions, i.e., combinations of translations and rotations;

� rigid motions where only a restricted set of rotations is allowed;

� (positive) homotheties, i.e., mappings of the form x 7! a + �(x � a), for some �xed scaling
factor � � 0 and some �xed center a 2 R2; this allows scaling and translation but no rotation;

� similarities, i.e., combinations of homotheties and rigid motions;

� arbitrary a�ne mappings.

We propose the centroid heuristic for �nding approximate solutions to the shape matching
problem for convex sets. This approach considers only those transformations in T that map the
centroid of F2 onto the centroid of F1. Let tC be an optimal transformation of this kind, and
denote �C(F1; F2) = �(F1; t

C(F2)) and �
opt(F1; F2) = �(F1; t

opt(F2)). Showing that the centroid is
a reference point for T amounts to proving that there is a constant c � 1 such that

�C(F1; F2) � c � �opt(F1; F2):
We denote the centroid of a set F by sF .
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Theorem 2 If a set of transformations T has the following properties:

(i) Equivariance with respect to the centroid: t(sF ) = st(F ) for all convex �gures F and all t 2 T .
(ii) T is closed under compositions with translations.

Then the centroid is a reference point for T with respect to the class of convex �gures, with approx-

imation factor c = 11=3.

Proof. Let F1; F2 be two �gures and F 02 := topt(F2). Translate F 02 so that the resulting �gure F 002
has the same centroid as F1. Then, by Theorem 1,

�(F1; F
00

2 ) � c � �(F1; F 02) = c � �opt(F1; F2):

We have F 002 = t0(F2) for a transformation t0 which is a composition of topt and a translation. By
condition (ii), t0 2 T , and by condition (i), t0(sF2 ) = sF 00

2

= sF1 . Since t
C is the optimal match of

F1 and F2 under transformations satisfying this condition, we have

�C(F1; F2) � �(F1; t
0(F2)) = �(F1; F

00

2 ) � c � �opt(F1; F2): �

A class of transformations for which condition (i) of Theorem 2 does not hold is the set of projective
transformations. However, all sets of transformations mentioned at the beginning of this section
satisfy conditions (i) and (ii) of Theorem 2. So for all these sets of transformations we obtain a
simpli�ed matching problem, whose optimal solution is an approximate solution for the original
problem. Since the number of degrees of freedom in the simpli�ed matching problem is reduced
by 2, this problem is hopefully easier to solve. We will consider algorithms based on this idea in
the next section.

4 Algorithms

The results of the previous sections can be used to design e�cient approximatematching algorithms
for convex polygons under various sets of transformations. These algorithms will produce a solution
which is at most by a factor of 11/3 worse than the optimal one. Throughout this section we assume
that we are given two convex polygons F1 and F2 (by a sorted list of their vertices) which are to
be matched. Let n be the total number of vertices of F1 and F2.

4.1 Translations

In the case of translations we just have to compute the centroids s1 and s2 and then to translate F2
by the vector s1 � s2. The centroids can easily be computed in linear time, for example by trian-
gulating each �gure, determining the centroids and areas of all triangles, and then determining the
total centroid as the weighted sum of the triangle centroids.

This gives a matching algorithm of runtime O(n). As far as asymptotic runtime is concerned,
this is not too big an improvement over the algorithm of de Berg et al. [BDK+96] which computes
the optimal match under translations in O(n logn) time. But our algorithm may be a viable
alternative in practice since it is much simpler.

Usually, after the two �gures have been matched, one also wants to compute the resulting area
of the symmetric di�erence. This can be done in linear time in a straightforward way. In fact,
the problem is equivalent to computing the area of the intersection I = F1 \ F2, since �(F1; F2) =
F1+F2� 2I. The sets F1, F2, and I are convex polygons, and I can be computed from the sorted
lists of vertices of F1 and F2 in linear time.

4.2 Homotheties

According to Theorem 2 we get an 11/3-approximate solution by �rst computing the two cen-
troids s1 and s2, then translating F2 by s1 � s2 obtaining F 02, and �nally stretching F 02 about s1 by
a factor � minimizing the symmetric di�erence.
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It remains to explain the last step. Suppose w.l.o.g. that s1 is the origin, and denote by

q(�) := �(F1; �F
0

2)

the function that we want to minimize.

Lemma 2 Suppose that F1 and F2 are convex polygons with a total number of n vertices. Then

the function q : R+ ! R
+ is a piecewise quadratic function with at most 2n + 1 quadratic pieces.

When viewed as a function of A = �2, the function �q(A) := q(
p
A) is convex. The function �q, and

hence also q, has a unique local minimum, which is the global minimum.

Proof. If we draw a ray from the origin through each vertex of F1 and F 02, we partition the plane
into at most n wedges. Within a wedge W , the boundary of each of the two �gures consists of
a line segment. Now, suppose that F 02 is stretched by the factor � which is 0 in the beginning
and is then continuously increased. We obtain the successive con�gurations a), b), and c) of the
edges e1 of F1 and e2 of �F 02 shown in Figure 4. In each case the symmetric di�erence within W is

a) b) c)

e1

e2

W
e2

e1

W W

e2

e1

s1 s1s1

Figure 4: Con�gurations of two edges inside a wedge

a quadratic function. The symmetric di�erence within the i-th wedge, which we denote by qi(�),
is thus a piecewise quadratic function with three quadratic pieces. The total symmetric di�erence
q(�) is the sum of the n functions qi(�). It is piecewise quadratic with 2n breakpoints.

We want to show that each function qi is convex when considered as a function of A = �2. The
parameter A is proportional to the area of F 02 and to the area of F 02 inside the wedge W . Therefore,
the �rst and third piece of �qi(A) := qi(

p
A) are linear functions of the form jarea(F1 \ W ) �

A � area(F 02 \W )j. The �rst piece is a strictly decreasing function, and the third piece is a strictly
increasing function. These two properties hold also for the �rst and third piece of qi. If the two
edges e1 and e2 are parallel, the second piece is missing. Otherwise, the second piece of qi is a
quadratic function which smoothly joins the �rst piece, which is strictly decreasing, to the second
piece, which is strictly increasing. If follows that the second piece is strictly convex, positive, with a
unique local minimumC3 inside its domain of validity. Hence, the second piece of qi can be written
in the form qi(�) = C1 + C2(� � C3)

2, with positive constants C1; C2; C3. The second piece of �qi
takes the form �qi(A) = qi(

p
A) = C1+C2(

p
A�C3)

2 = D1+D2A�D3

p
A with positive constants

D1; D2; D3. This function is strictly convex for A � 0.
Summarizing, �q, as a sum of the convex functions �qi, is a convex function of A. To prove that

the minimum A� is unique, we must exclude the possibility that A� occurs at a point where �q is
linear. But then all functions �qi must be linear at A�. It is impossible that A� lies in the �rst
part of all functions �qi, because then �q would be strictly decreasing at A�. Similarly,A� cannot lie
in the third part of all functions �qi. However, if A� lies in the �rst part of some functions �qi and
in the third part of some other functions �qi, this means that in some wedges, �F2 lies completely
outside F1, whereas in other wedges �F2 lies completely inside F1. But then there must be some
wedges where the boundaries of F1 and F2 cross, and therefore �q is strictly convex. �

We remark that, as the proof shows, the functions q and �q are even continuously di�erentiable
unless some edge of F1 is parallel to an edge of F2.

We have thus established that q is a very well-behaved function for optimization. The minimizer
�� of the function q can be determined in O(n) time by the prune-and-search technique: We search
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for the quadratic piece in which �� lies by performing a binary search among the 2n breakpoints,
successively narrowing down the interval [�0; �1] in which �� is known to lie. The decision whether
�� is bigger or smaller than the current decision point � depends just on the sign of the derivative
q0(�) at this point. When the interval [�0; �1] contains only k breakpoints, there are at most k
functions qi for which the de�nition changes inside the interval; the remaining functions are plain
quadratic functions and their sum can be accumulated in one quadratic function. This means that
q(�) and the derivative q0(�) can be evaluated in O(k) time. The next trial value for the binary
search is the median of the k remaining breakpoints and it can also be computed in O(k) steps.
This reduces k by a factor of 2. Thus, in O(n) time the interval in which �� must lie is narrowed
down to one quadratic piece of the function q. The optimum �� is then found by solving the linear
equation q0(��) = 0.

Summarizing the results of the last two subsections, we have:

Theorem 3 For the shape matching problem for two convex polygons with a total number of n

vertices, with respect to

1: the set of translations, or

2: the set of homotheties,

an 11=3-approximate solution can be found in O(n) time.

We remark that the technique of this subsection can also be used when the allowable transfor-
mations T consist only of translations in a given �xed direction d. This is an optimization problem
with one degree of freedom, just like the problem for homotheties after the scaling center is �xed.
Instead of the wedges, we consider strips formed by the lines parallel to d through every vertex of
F1 and F2. The translation minimizing � can be found in linear time, since, in the range where the
intersection I is nonempty,

p
I is a concave function of the translation vector. Another linear-time

algorithm for this task is described in Avis et al. [ABS+96], where the problem is approached in a
more indirect way.

4.3 Rigid Motions

As in the previous case we will �rst perform a translation such that the centroids of F1 and F2
coincide. We will assume for simplicity that F1 and F2 already have their common centroid at the
origin O. Now we have to rotate F2 around O by some angle ' in order to minimize the symmetric
di�erence. We denote by F 02 = t'(F2) the rotated copy of F2, and by q(') the symmetric di�erence
�(F1; t'(F2)) as a function of '. It is possible to work out an expression for q(') in terms of ',
but since we are interested in the minimum, we will only describe how the derivative q0(') can be
computed.

Lemma 3 The function q : R! R
+ is continuous; it is continuously di�erentiable except when a

vertex of F 02 := t'(F2) lies on an edge of F1 or vice versa. The derivative q0(') can be computed as

follows. Let I = F1 \F 02, and let P1; : : : ; P2m (m � 0) be a sequence of crossing points between F1
and F 02 in the following sense: between P2i�1 and P2i, the boundary of I is formed by the boundary

of F 02; and between P2i and P2i+1 (and between P2m and P1), the boundary of I is formed by the

boundary of F1. (If m = 0, then one of the sets F1; F
0

2 is contained in the other.)
Then q0(') is the alternating sum of squared distances of the points P1; : : : ; P2m from O:

q0(') =
2mX

i=1

(�1)i �OPi2 (5)

Proof. Instead of the symmetric di�erence we may equally well consider the area of the intersec-
tion I, since q(') = F1 + F2 � 2I, and so q0(') = �2 � @I

@'
. Let us consider the change of I in

the vicinity of a point Pi when ' changes to ' + " > ' (Figure 5). Assume that the part of I's
boundary that is formed by F 02 lies to the left of Pi and thus moves away from the part that is
formed by F1. We see that, between these two parts, a small wedge-like quadrilateral is inserted,
which has area

" �OPi2=2 + O("2):
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(The area of a circular sector of radius OPi and angle " would be " � OPi2=2. But in fact, the
distance from O to the boundary of I inside the sector of interest di�ers from the \ideal" radius
OPi by O("). This accounts for the error term O("2).) If i has di�erent parity, then an analogous
area of the same size is subtracted from I. Summing up the di�erent contributions, dividing by ",
and taking the limit "! 0 gives (5). �

Pi

F 02 F1 F 02 F1

O O

I

' '+ "

Figure 5: The derivative of the symmetric di�erence under rotations

O

e1

e2

 

d1

d2

Pi

C

A1

A2

Figure 6: Computing the distance OPi

From the lemma it follows that the minimum of q(') is either one of the points where q is not
di�erentiable, or one of the stationary points where q0(') = 0. There are up to O(n2) critical points
of nondi�erentiability: each vertex of F1 can lie on a particular edge of F 02 for at most two values
of ', and vice versa. These critical points are also the points where the points Pi may change:
there are O(n2) intervals such that, inside an interval, every point Pi is given as the intersection of
a �xed edge of F1 with a �xed edge of F 02, and thus q(') has a �xed analytic expression in terms
of '.

Summarizing, we have to check O(n2) single points plus O(n2) intervals. For �nding the possible
candidates for a minimum in each interval, we have to look for points where the derivative is zero,
i.e., for solutions of q0(') = 0, where q0(') is given by (5). Let us discuss how the equation q0(')
can be solved. Suppose that Pi is determined as the intersection of two edges e1 and e2. Then the
distance OPi can be expressed as follows. Let  denote the angle between e1 and e2, and let d1; d2
denote the distance from e1; e2, respectively, to the origin O (Figure 6). Then we have

OPi
2
=
d21 + d22 + 2d1d2 cos 

sin2 
:

(This can be checked by observing that the quadrilateral OA2PiA1 is inscribed in a circle with
diameter OPi and center C = (O + Pi)=2. The distance A1A2 can be expressed in terms of d1, d2,
and the angle A2OA1 = �� , and is can also be computed from the isosceles triangle A1A2C with
sides A1C = A2C = OPi=2 and angle A1CA2 = 2 or A1CA2 = 2� � 2 , as appropriate.) When
' varies and F 02 rotates, d1 and d2 remain �xed, but  must be substituted by  0 � ', for some
�xed  0.

It is convenient to use t = tan('=2) as a parameter instead of '. Then sin' = 2t=(1 + t2) and

cos' = (1� t2)=(1 + t2), so OPi
2
can be written as a rational function with bounded degree. The
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expression q0(') is the sum of at most n such functions. Thus, inside each interval, q0(') = 0 can
be solved as the root of a polynomial of degree O(n), and q(') has at most O(n) local minima.

Altogether, this gives O(n3) candidates for the minimum. In principle, these candidates can
be found exactly, since only computations with algebraic numbers are required. However, this
would be very expensive. A more practical approach would be to solve the polynomial equations
numerically. This still involves highly nontrivial numerical problems, whoses detailed investigation
goes beyond the scope of this paper. For an intensive treatment of this problem with respect to bit
complexity see [S82].

Even just computing q(') at all candidate points (assuming they are given to us) would take
O(n4) arithmetic operations. It does not make sense to spend so much time for �nding the optimal
rotation in the present context, since the computed value is only a rough approximation to the
overall problem. An algorithm that computes a good approximation to the optimal rotation within
reasonable time bounds is called for.

5 Conclusion and open problems

As mentioned in the introduction, de Berg et al. [BDK+96] showed that, when the centroids of two
convex sets F1 and F2 coincide, the area of their intersection is at least 9=25 of the maximum area
that can be obtained by translating F2. As in Section 3, this result extends to more general sets of
transformations.

Let us brie
y relate the bound of Theorem 1 to this result. This bound is more powerful than our
result when the area of the intersection is relatively small and the area of the symmetric di�erence is
relatively large. For example, when F1 � 4

7
F2, our bound is worthless: �(F1; t(F2)) � F2�F1 � 3

7
F2,

and if we multiply this by 11=3, the bound on �C(F1; F2) that we get is larger than the trivial bound
of F1+F2 that we get by placing F2 anywhere. In contrast to this situation, the bound of de Berg
et al. makes a nontrivial statement in any case. On the other hand, Theorem 1 gives the strongest
statement when the sets F1 and F2 have a very similar shape and � is small, as in the cases of
practical interest for pattern matching. One may check that Theorem 1 gives a stronger bound
precisely if �opt(F1; F2) <

6
31
(F1 + F2).

It is not known whether the fraction 9=25 in the mentioned bound is best possible. The correct
number should probably be 4=9. (There is an example showing that the factor cannot be improved
beyond 4=9.) The proof of the 9=25 bound uses an ingenious representation of the centroid. This
technique also yields results in all higher dimensions.

The extension of Theorem 1 to higher dimensions has not been considered so far. A direct
generalization of the proof of Lemma 1 to three dimensions is not possible, because there is no
way to ensure that the analogous operation to Steiner symmetrization leaves the \width" w, i.e.,
the area of the vertical projection, unchanged. By taking into account the loss that occurs in this
operation, we can show that the centroid has an approximation factor of at most 33

p
3=(8�) in

three dimensions, but this bound is not tight.

Our heuristic is guaranteed to �nd a translation which reduces the symmetric di�erence between
two given convex �gures to within a factor of 11=3 of the optimum. It would be nice to have a simple
method for getting a solution with a better approximation guarantee, using the heuristic solution as
a starting point. Techniques which have proved to be useful in similar situations include (a) testing
all vectors in a su�ciently �ne grid around the starting point and (b) applying the ellipsoid method
for convex optimization problems. (Recall that, in the range where the intersection I is nonempty,p
I is a concave function of the translation vector.) However, one needs some a-priori knowledge

about the region in which the optimal solution can lie in order to apply these methods. This
question is open to further research.

As discussed in the last section, the approximate shape matching problem under rigid motions
is not solved in a satisfactory way. If a good approximation algorithm for shape matching under
rotations were available, it could be combined with the technique of superimposing centroids to
give an approximate algorithm for rigid motions.
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