
λ > 4�

Gill Barequet1, Günter Rote2, and Mira Shalah1

1 Dept. of Computer Science
Technion—Israel Institute of Technology

Haifa 32000, Israel
{barequet,mshalah}@cs.technion.ac.il

2 Institut für Informatik
Freie Universität Berlin

Takustraße 9, D-14195 Berlin, Germany
rote@inf.fu-berlin.de

Abstract. A polyomino (“lattice animal”) is an edge-connected set of
squares on the two-dimensional square lattice. Counting polyominoes is
an extremely hard problem in enumerative combinatorics, with impor-
tant applications in statistical physics for modeling processes of percola-
tion and collapse of branched polymers. We investigated a fundamental
question related to polyominoes, namely, what is their growth constant,
the asymptotic ratio between A(n + 1) and A(n) when n → ∞, where
A(n) is the number of polyominoes of size n. This value is also known as
“Klarner’s constant” and denoted by λ. So far, the best lower and upper
bounds on λ were roughly 3.98 and 4.65, respectively, and so not even
a single decimal digit of λ was known. Using extremely high computing
resources, we have shown (still rigorously) that λ > 4.00253, thereby
settled a long-standing problem: proving that the leading digit of λ is 4.

Keywords: Polyominoes, lattice animals, growth constant.

1 Introduction

1.1 What Is λ?

The universal constant λ appears in the study of three seemingly completely
unrelated fields: combinatorics, percolation, and branched polymers. In combi-
natorics, the analysis of self-avoiding walks (SAWs, non-self-intersecting lattice
paths starting at the origin, counted by lattice units), simple polygons or self-
avoiding polygons (SAPs, closed SAWs, counted by either perimeter or area), and
polyominoes (SAPs possibly with holes, edge-connected sets of lattice squares,
counted by area), are all related. In statistical physics, SAWs and SAPs play
a significant role in percolation processes and in the collapse transition which
branched polymers undergo when being heated. A recent collection edited by
A. J. Guttmann [11] provides an excellent review of all these topics and the

� We acknowledge the support of the facilities and staff of the HPI Future SOC Lab
in Potsdam, where this project has been carried out.

c© Springer-Verlag Berlin Heidelberg 2015
N. Bansal and I. Finocchi (Eds.): ESA 2015, LNCS 9294, pp. 83–94, 2015.
DOI: 10.1007/978-3-662-48350-3�8

84 G. Barequet, G. Rote, and M. Shalah

connections between them. In this paper we describe our effort to prove that
the growth constant of polyominoes is strictly greater than 4. To this aim we
exploited to the maximum possible computer resources which were available to
us, designing and implementing carefully the algorithm and the required data
structures. Eventually we obtained a computer-generated proof which was ver-
ified by other programs implemented independently. Let us start with a brief
description of the history of λ and the three research areas, then describe the
method and computation of the lower bound on λ.

1.2 Brief History

Determining the exact value of λ (or even setting good bounds on it) is a hard
problem in enumerative combinatorics. In 1967, Klarner [13] showed that the
limit limn→∞ n

√
A(n) exists and denoted it by λ. Since then, λ has been called

“Klarner’s constant.” Only in 1999, Madras [16] proved the stronger statement
that the asymptotic growth rate in the sense of the limit λ = limn→∞ A(n +
1)/A(n) exists.

By using interpolation methods, Sykes and Glen [21] estimated in 1976 that
λ = 4.06 ± 0.02. This estimate was sharpened several times, the most accu-
rate (4.0625696± 0.0000005) given by Jensen [12] in 2003. Before carrying out
this project, the best proven bounds on λ were roughly 3.9801 from below [4]
and 4.6496 from above [14]. Thus, λ has always been an elusive constant, of
which not even a single significant digit was (rigorously) known. Our goal was to
raise the lower bound on λ over the barrier of 4, and thus reveal its first decimal
digit and proving that λ �= 4. The current improvement of the lower bound on
λ to 4.0025 also cuts the difference between the known lower bound and the
estimated value of λ by about 25% (from 0.0825 to 0.0600).

1.3 Enumerative Combinatorics

A polyomino is a connected set of cells on the planar square lattice, where con-
nectivity is along sides but not through corners of the cells. Polyominoes were
made popular by the pioneering book of Golomb [10] and by Martin Gardner’s
columns in Scientific American, and counting polyominoes by size became a pop-
ular fascinating combinatorial problem. The size of a polyomino is the number of
its cells. In this article we consider “fixed” polyominoes; two such polyominoes
are considered identical if one can be obtained from the other by a translation,
while rotations and flipping are not allowed. In the mathematical literature, the
number of polyominoes of size n is usually denoted as A(n), but no formula is
known yet for it. Researchers have suggested efficient back-tracking [19,20] and
transfer-matrix [6,12] algorithms for computing A(n) for a given value of n. The
latter algorithm was adapted in [4] and also in this work for twisted cylinders.
To-date, the sequence A(n) has been determined up to n = 56 by a parallel
computation on an HP server cluster using 64 processors [12]. The exact value
of the growth constant of this sequence, λ = limn→∞ A(n + 1)/A(n), has also
been elusive for many years. It has been interesting to know whether this value

λ > 4 85

is smaller or greater than the connective constant of this lattice. This latter con-
stant is simply the number of neighbors each cell of the lattice has, which is, in
this case, 4. In this work we reveal the leading decimal digit of λ: It is 4.

1.4 Percolation Processes

In physics, chemistry, and materials science, percolation theory deals with the
movement and filtering of fluids through porous materials. Giving it a mathe-
matical model, the theory describes the behavior of connected clusters in random
graphs. Suppose that a unit of liquid L is poured on top of some porous ma-
terial M . What is the chance that L makes its way through M and reach the
bottom? An idealized mathematical model of this process is a two- or three-
dimensional grid of vertices (“sites”) connected with edges (“bonds”), where
each bond is independently open (or closed) for liquid flow with some probabil-
ity p. Broadbent and Hammersley [5] asked in 1957, for a fixed value of p and
for the size of the grid tending to infinity, what is the probability that a path
consisting of open bonds exists from the top to the bottom. They essentially
investigated solute diffusing through solvent and molecules penetrating a porous
solid, representing space as a lattice with two distinct types of cells.

In the literature of statistical physics, fixed polyominoes are usually called
“strongly-embedded lattice animals,” and there, the analogue of the growth rate
of polyominoes is the growth constant of lattice animals. The terms high and
low temperature mean high and low density of clusters, respectively, and the
term free energy corresponds to the natural logarithm of the growth constant.
Lattice animals were used for computing the mean cluster density in percolation
processes (Gaunt et al. [9]), in particular those of fluid flow in random media.
Sykes and Glen [21] were the first to observe that A(n), the total number of con-
nected clusters of size n, grows asymptotically like Cλnnθ, where λ is Klarner’s
constant and C, θ are two other fixed values.

1.5 Collapse of Branched Polymers

Another important topic in statistical physics is the existence of a collapse tran-
sition of branched polymers in dilute solution at a high temperature. In physics,
a field is an entity each of whose points has a value which depends on loca-
tion and time. Lubensky and Isaacson [15] developed a field theory of branched
polymers in the dilute limit, using statistics of (bond) lattice animals (which are
important in the theory of percolation) to imply when a solvent is good or bad
for a polymer. Derrida and Herrmann [7] investigated two-dimensional branched
polymers by looking at lattice animals on a square lattice and studying their
free energy. Flesia et al. [8] made the connection between collapse processes to
percolation theory, relating the growth constant of strongly-embedded site an-
imals to the free energy in the processes. Madras et al. [17] considered several
models of branched polymers in dilute solution, proving bounds on the growth
constants for each such model.

86 G. Barequet, G. Rote, and M. Shalah

2 Twisted Cylinders

A “twisted cylinder” is a half-infinite wrap-around spiral-like square lattice, as is
shown in Fig. 1. We denote the perimeter (or “width”) of the twisted cylinder by

W=5

1

3
4
5
6

7
8

2

2

Fig. 1. A twisted cylinder of perimeter W = 5

the symbolW . Like in the plane, one can count polyominoes on a twisted cylinder
of width W and study their asymptotic growth constant, λW . It was proven that
the sequence (λW)∞W=1 is monotone increasing [4] and that it converges to λ [2].
Thus, the bigger W is, the better (higher) the lower bound λW on λ is.

It turns out that analyzing the growth rate of polyominoes is more convenient
on a twisted cylinder than in the plane. The reason is that we want to build up
polyominoes incrementally by considering one square at a time. On a twisted
cylinder, this can be done in a uniform way, without having to jump to a new
row from time to time. Imagine that we walk along the spiral order of squares,
and at each square decide whether or not to add it to the polyomino. Naturally,
the size of a polyomino is the number of positive decisions we make on the way.
The crucial observation is that no matter how big polyominoes are, they can be
characterized in a finite number of ways that depends only onW . This is because
all one needs to remember is the structure of the last W squares of the twisted
cylinder (the “boundary”), and how they are inter-connected through cells that
were considered before the boundary. This provides enough information for the
continuation of the process: whenever a new square is considered, and a decision
is taken about whether or not to add it to the polyomino, the boundary is
updated accordingly. Thus, the growth of polyominoes on a twisted cylinder can
be modeled by a finite-state automaton whose states are all possible boundaries.
Every state in this automaton has two outgoing edges that correspond to whether
or not the next square is added to the polyomino.

The number of states in the automaton that models the growth of polyominoes
on a twisted cylinder of perimeter W is large [3,4]: it is the (W+1)st Motzkin
number MW+1. The nth Motzkin number, Mn, counts the number of Motzkin
paths of length n (see Fig. 2 for an illustration): Such a path connects the
integer grid points (0, 0) and (n, 0) with n steps, consisting only of steps taken
from {(1, 1), (1, 0), (1,−1)}, and not going under the x axis. Motzkin numbers
can also be defined in a variety of other ways [1]. Asymptotically, Mn ∼ 3nn−3/2,
thus, MW increases roughly by a factor of 3 when W is incremented by 1.

λ > 4 87

The number of polyominoes with n cells

Fig. 2. A Motzkin path of length 7

that have state s as the boundary config-
uration is equal to the number of paths
that the automaton can take from the
starting state to the state s, paths which
involve n transitions in which a cell is
added to the polyomino. We compute these
numbers by using a dynamic-programming
recursion.

See Appendix A for more details about
Motzkin paths, and Appendix B for a small example automaton and more ex-
planations of this topic.

3 Method

In 2004, a sequential program that computes λW for any perimeter was developed
by Ms. Ares Ribó as part of her Ph.D. thesis under the supervision of G. Rote.
The program first computes the endpoints of the outgoing edges from all states
of the automaton and saves them in two long arrays succ0 and succ1, which
correspond to adding an empty or an occupied cell. Both arrays are of length
M := MW+1. Two successive iteration vectors (which contain the number of
polyominoes corresponding to each boundary) are stored as two arrays yold and
ynew of floating point numbers, also of length M . The four arrays are indexed
from 0 to M − 1. After initializing yold := (1, 0, 0, . . .), each iteration computes
the new version of y by performing the following simple loop.

ynew[0] := 0;
for s := 1, . . . ,M − 1:

(∗) ynew[s] := ynew[succ0[s]] + yold[succ1[s]];

As mentioned, the pointer arrays succ0[] and succ1[] are computed beforehand.
The pointer succ0[s] may be null, in which case the corresponding zero entry
(ynew[0]) is used.

As explained above, each index s represents a state. The states are encoded
by Motzkin paths, and these paths can be bijectively mapped to numbers s
between 0 and M − 1. In the iteration (∗), the vector ynew depends on itself, but
this does not cause any problem because succ0[s], if it is non-null, is always less
than s. Therefore, there are no circular references and each entry is set before
it is used. In fact, the states can be partitioned into groups G1, G2, . . . , GW :
The group Gi contains the states corresponding to boundaries in which i is the
smallest occupied cell, or, in other words, boundaries that start with i−1 empty
cells. The dependence between the entries of the groups is schematically shown
in Fig. 3: succ0[s] of an entry s ∈ Gi (for 1 ≤ i ≤ W−1), if it is non-null, belongs
to Gi+1. Naturally, succ0 of the single state in GW is null since a boundary with
all cells empty is invalid.

88 G. Barequet, G. Rote, and M. Shalah

GWGW−1GW−1Gi+1GiG3G2G1yold

GWGW−1GW−1Gi+1GiG3G2G1ynew

succ1 [s] succ0 [s]

Fig. 3. The dependence between the different groups of ynew and yold

At the end, ynew is moved to yold to start the new iteration. It was proven [4]
that after every iteration, we have the following interval for bounding λW :

min
s

ynew[s]

yold[s]
≤ λW ≤ max

s

ynew[s]

yold[s]
(1)

In this procedure, the two bounds converge (by the Perron-Frobenius Theorem)
to λW , and yold converges to a corresponding eigenvector. The vector yold is
normalized after every few iterations in order to prevent overflow. The scale of
the vector is irrelevant to the process. The program terminates when the two
bounds are close enough. The left-hand side of (1) is a lower bound on λW , which
in turn is a lower bound on λ, and this is our real goal.

4 Sequential Runs

In 2004 we obtained good approximations of λW up to W = 22. The program
required extremely high resources in terms of main memory (RAM) by the stan-
dards of that time. The computation of λ22 ≈ 3.9801 (with a single processor)
took about 6 hours on a machine with 32 GB of RAM. (Today, the same pro-
gram runs in 20 minutes on a regular workstation.) We extrapolated the first 22
values of (λW) (see Fig. 4) and estimated that only when we reach W = 27
we would break the mythical barrier of 4.0. However, as mentioned above, the
required storage is proportional to MW , which increases roughly by a factor of 3
when W is incremented by 1. With this exponential growth of both memory and
running time, the goal of breaking the barrier seemed then to be out of reach.

5 Computing λ27

Environment. The computation of λ27 was performed on a Hewlett Packard
ProLiant DL980 G7 server of HPI (Hasso Plattner Institute) Future SOC Lab
in Potsdam, Germany. It consists of 8 Intel Xeon X7560 nodes (Intel64 archi-
tecture), each having eight physical 2.26 GHz processors (16 virtual cores), for
a total of 64 processors (128 virtual cores). Hyperthreading was used to allow
processes to run on the physical cores of a node while sharing certain resources,
thus yielding twice as many virtual processor cores as physical processors. Each

λ > 4 89

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1

1.5

2.5

2

3

4

3.5

W

λW

Fig. 4. Extrapolating the sequence λW

node was equipped with 256 GiB of RAM (and 24 MiB of cache memory), for
a total of 2 TiB of RAM. Simultaneous access by all processors to the shared
main memory was crucial to the success of the project. Distributed memory
would incur a severe penalty in running time. The machine was run with the
Ubuntu version of Gnu/Linux. Compilation was done using the gcc C compiler
with OpenMP 2.0 directives for parallel processing.

Programming Improvements. Since for W = 27 the finite automaton has M28 ≈
2.1·1011 states, we initially estimated that we would need memory for two 8-byte
arrays (for storing succ0 and succ1) and two 4-byte arrays (for storing yold and
ynew), all of length M28, for a total of 24 · 2.1 · 1011 ≈ 4.6 TiB of RAM, which
was certainly out of reach, even with the available supercomputer. Apparently, a
combination of parallelization, storage-compression techniques, and a few other
enhancements and tricks allowed us to push the lower bound on λ above 4.0.

1. Parallelization. Since the set of states G of the automaton could be par-
titioned into groups G1, . . . , GW , such that succ0[s] for an element s ∈ Gi

belongs to Gi+1, the groups GW , . . . , G1 had to be processed sequentially
(in this order) but all elements in one group could be computed in paral-
lel. The size of the groups is exponentially decreasing; in fact, G1 comprises
more than half of all states, and GW contains only a single state. There-
fore, for the bulk of the work (the iterative computation of ynew), we easily
achieved coarse-grained parallelization and a distribution of the work on all
the 128 available cores, requiring concurrent read but no concurrent write
operations. We also parallelized the preprocessing phase (computing the succ
arrays) and various house-keeping tasks (e.g., rescaling the y vectors after
every 10th iteration). Tests with different numbers of processors revealed
indeed a speed-up close to linear.

2. Elimination of Unreachable States. A considerable portion of the states
of the automaton (about 11% asymptotically) are unreachable, i.e., there
is no binary string leading to these states. This happens because not all
seemingly legal states can be realized by a valid boundary. These states
do not affect the correctness of the computation, and there was no harm

90 G. Barequet, G. Rote, and M. Shalah

in leaving them, apart from the effect on the performance of the iteration.
We were able to characterize the unreachable states fairly easily in terms of
their Motzkin paths. After eliminating these states, we had to modify the
bijection between the Motzkin paths representing the remaining states and
the successive integers.

3. Bit-streaming of the succ0/1 Arrays. Instead of storing each entry
of the succ0/1 arrays in a full word (8 bytes, once the number of states
exceeded 232), we allocated to each entry exactly the number of required bits
and stored all entries consecutively in a packed manner. Since the succ0/1
entries were only accessed sequentially, there was only a small overhead in
running time for unpacking the resulting bit sequence. In addition, since we
knew a priori to which group Gi each pointer belonged, we needed only
�log2 |Gi|	 bits per pointer, for all entries in Gi (plus a negligible amount of
bits required to delimit between the different sets Gi). On top of that, the
succ0-pointer was often null because the choice of not adding the next cell
to the polyomino caused a connected component of the polyomino to lose
contact with the boundary. By spending one extra indicator bit per pointer,
we eliminated altogether these illegal pointers, which comprised about 11%
of all succ0 entries.

4. Storing Higher Groups Only Once. For states s not in the group G1,
yold[s] is not needed in the recursion (∗). Thus, we did not need to keep
two separate arrays in memory. The quotient ynew[s]/yold[s] could still be
computed before overwriting yold[s] by ynew[s], and thus the minimum and
maximum of these quotients, which give the bounds (1) on λ, could be ac-
cumulated as we scanned the states.

5. Recomputing succ0. Instead of storing the succ0 array, we computed its
entries on-the-fly whenever they were needed, and thus saved completely the
memory needed to store these pointers. Naturally, this required more run-
ning time. Streamlined computation of the pointers accelerated the successor
computation (see below). This variation has also benefited from paralleliza-
tion since each processor could do the pointer computations independently.
Since the elimination of the succ0 pointers was sufficient to get the program
running with W = 27, we did not pursue the option of eliminating the succ1
array in an analogous way.

6. Streamlining the Conversion from Motzkin Paths to Integers. Orig-
inally, we represented a Motzkin path by a sequence ofW+1 integer numbers
taking values from {−1, 0,+1}. However, we compressed the representation
into a sequence of (W+1) 2-bit items, each one encoding one step of the
path, which we could store in one 8-byte word (since W≤31). This compact
storage opened up the possibility of word-level operations. For converting
paths to numbers, we could process several symbols at a time, using look-up
tables.

Execution. After 120 iterations, the program announced the lower bound 4.00064
on λ27, thus breaking the 4 barrier. We continued to run the program for a
few more days. Then, after 290 iterations, the program reached the stable sit-

λ > 4 91

uation (observed in a few successive tens of iterations) 4.002537727 ≤ λ27 ≤
4.002542973, establishing the new record λ > 4.00253. The total running time
for the computations leading to this result was about 36 hours. In total, we used
a few dozens of hours of exclusive use of the server spread over several weeks.

6 Validity and Certification

Our proof depends heavily on computer calculations. This raises two issues about
its validity: (a) Elaborate calculations on a large computer are hard to reproduce,
and in particular when a complicated parallel computer program is involved, one
should be skeptical. (b) We performed the computations with 32-digit floating-
point numbers. We address these issues in turn.

(a) What our program tries to compute is an eigenvalue of a matrix. The
amount and length of the computations are irrelevant to the fact that eventually
we have a witness array of floating-point numbers (the “proof”), about 450 GB
in size, which is a good approximation of the eigenvector corresponding to λ27.
This array provides rigorous bounds on the true eigenvalue λ27, because the
relation (1) holds for any vector yold and its successor vector ynew. To check
the proof and evaluate the bounds (1), one only has to read the approximate
eigenvector yold and carry out one iteration (∗). This approach of providing
simple certificates for the result of complicated computations is the philosophy
of certifying algorithms [18]. We ran two different programs for the checking
task. The code for the only technically challenging part of the algorithm, the
successor computation, was based on programs written independently by two
people who used different state representations. Both programs ran in a purely
sequential manner, and the running time was about 20 hours each.

(b) Regarding the accuracy of the calculations, one can look how the re-
currence (∗) produces ynew from yold. One finds that each term in the lower
bound (1) results from the input data (the approximate eigenvector yold) through
at most 26 additions of positive numbers for computing ynew[s], plus one divi-
sion, all in single-precision float. The final minimization is error-free. Since we
made sure that no denormalized floating-point numbers occurred, the magnitude
of the numerical errors is comparable to the accuracy of floating-point numbers,
and the accumulated error is much smaller than the gap that we opened above 4.
By bounding the floating-point error, we obtain 4.00253176 as a certified lower
bound on λ. Thus, in particular, we now know that the leading digit of λ is 4.

7 Conclusion

In this project we computed λ27 and set a new lower bound on λ, which is
greater than 4. By this we also excluded the possibility that λ = 4. We believe
that with some more effort, it will be feasible to run the program for W = 28.
This would probably require (a) To eliminate also the storage for the succ1-
successors and compute them along with the succ0-successors; (b) To eliminate
all groups G2, . . . , GW and keep only group G1; and (c) To implement a cus-
tomized floating-point storage format for the numbers y. (With a total of 2 TiB

92 G. Barequet, G. Rote, and M. Shalah

of RAM, we can only afford 27 bits per entry.) We anticipate that this would
increase the lower bound on λ to about 4.0065.

References

1. Aigner, M.: Motzkin Numbers. European J. of Combinatorics 19, 663–675 (1998)
2. Aleksandrowicz, G., Asinowski, A., Barequet, G., Barequet, R.: Formulae for poly-

ominoes on twisted cylinders. In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez,
J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 76–87. Springer,
Heidelberg (2014)

3. Barequet, G., Moffie, M.: On the complexity of Jensen’s algorithm for counting
fixed polyominoes. J. of Discrete Algorithms 5, 348–355 (2007)

4. Barequet, G., Moffie, M., Ribó, A., Rote, G.: Counting polyominoes on twisted
cylinders. INTEGERS: Elec. J. of Comb. Number Theory 6(22), 37 (2006)

5. Broadbent, S.R., Hammersley, J.M.: Percolation processes: I. Crystals and mazes.
Proc. Cambridge Philosophical Society 53, 629–641 (1957)

6. Conway, A.: Enumerating 2D percolation series by the finite-lattice method: The-
ory. J. of Physics, A: Mathematical and General 28, 335–349 (1995)

7. Derrida, B., Herrmann, H.J.: Collapse of branched polymers. J. de Physique 44,
1365–1376 (1983)

8. Flesia, S., Gaunt, D.S., Soteros, C.E., Whittington, S.G.: Statistics of collapsing
lattice animals. J. of Physics, A: Mathematical and General 27, 5831–5846 (1994)

9. Gaunt, D.S., Sykes, M.F., Ruskin, H.: Percolation processes in d-dimensions. J. of
Physics A: Mathematical and General 9, 1899–1911 (1976)

10. Golomb, S.W.: Polyominoes, 2nd edn. Princeton Univ. Press, Princeton (1994)
11. Guttmann, A.J. (ed.): Polygons, Polyominoes and Polycubes. Lecture Notes in

Physics, vol. 775. Springer, Heidelberg (2009)
12. Jensen, I.: Counting polyominoes: A parallel implementation for cluster computing.

In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J.,
Zomaya, A.Y. (eds.) ICCS 2003, Part III. LNCS, vol. 2659, pp. 203–212. Springer,
Heidelberg (2003)

13. Klarner, D.A.: Cell growth problems. Canad. J. of Mathematics 19, 851–863 (1967)
14. Klarner, D.A., Rivest, R.L.: A procedure for improving the upper bound for the

number of n-ominoes. Canadian J. of Mathematics 25, 585–602 (1973)
15. Lubensky, T.C., Isaacson, J.: Statistics of lattice animals and dilute branched poly-

mers. Physical Review A 20, 2130–2146 (1979)
16. Madras, N.: A pattern theorem for lattice clusters. Annals of Combinatorics 3,

357–384 (1999)
17. Madras, N., Soteros, C.E., Whittington, S.G., Martin, J.L., Sykes, M.F., Flesia,

S., Gaunt, D.S.: The free energy of a collapsing branched polymer. J. of Physics,
A: Mathematical and General 23, 5327–5350 (1990)

18. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms.
Computer Science Review 5, 119–161 (2011)

19. Mertens, S., Lautenbacher, M.E.: Counting lattice animals: A parallel attack. J. of
Statistical Physics 66, 669–678 (1992)

20. Redelmeier, D.H.: Counting polyominoes: Yet another attack. Discrete Mathemat-
ics 36, 191–203 (1981)

21. Sykes, M.F., Glen, M.: Percolation processes in two dimensions: I. Low-density
series expansions. J. of Physics, A: Mathematical and General 9, 87–95 (1976)

λ > 4 93

Appendix A: Representing Boundaries as Motzkin Paths

B C CA A A AA AA --- -- -
code

0

2

3

1

9 12 162 3 4 5 8 10 11 13 14 15761

Motzkin path

9 12 162 3 4 5 8 10 11 13 14 157610 17

The figure above illustrates the representation of boundaries of polyominoes on
twisted cylinders as Motzkin paths. The figure should be read from bottom to
top. The bottom of the figure shows a partially constructed polyomino on a
twisted cylinder of width 16. The dashed line indicates two adjacent cells which
are connected “around the cylinder,” where this is not immediately apparent.
The boundary cells (top row) are shown darker. The light-gray cells away from
the boundary need not be remembered individually; what matters is the connec-
tivity among the boundary cells that they provide. This is indicated in a symbolic
code -AAA-B-CC-AA--AA. Boundary cells in the same component are represented
by the same letter, and the character ‘-’ denotes an empty cell. However, this
code was not used in our program. Instead, we represented a boundary as a
Motzkin path, as shown in the top part of the figure, because this representation
allows for a convenient bijection to successive integers and therefore for a com-
pact storage of the boundary in a vector. Intuitively, the Motzkin path follows the
movements of a stack when reading the code from left to right. Whenever a new
component starts, like component A in position 2 or component B in position 6,
the path moves up. Whenever a component is temporarily interrupted, such as
component A in position 5, the path also moves up. The path moves down when
an interrupted component is resumed (e.g., component A in positions 11 and 15)
or when a component is completed (positions 7, 10, and 17). The crucial prop-
erty is that components cannot cross, i.e., a pattern like . . . A . . .B . . .A . . .B . . .
cannot occur. As a consequence of these rules, the occupied cells correspond to
odd levels in the path, and the free cells correspond to even levels.

94 G. Barequet, G. Rote, and M. Shalah

Appendix B: Automata for Modeling Polyominoes on
Twisted Cylinders

A finite automaton is a very convenient tool for representing the growth of poly-
ominoes. Below is the automaton for width W = 3. The starting state is A--.
The states A-B and --A have no 0-successors.

--A -A- A-B

A-- AA-

-AAA-A

AAA

1 0

0

0 0

0

1

1

1

1
1

1

0

1

We associate the labels ‘1’ and ‘0’ with the edges, corresponding to whether
or not a cell was added to the polyomino in the corresponding step. The con-
struction of a polyomino is modeled by tracing the path in the automaton while
processing an input word of 1s and 0s, where the number of occurrences of ‘1’
is the size of the polyomino (minus 1, since the starting state contains already
one cell). We want to accept only legal polyominoes, that is, polyominoes that
are composed of connected squares. It is sufficient to consider a single accepting
state for the automaton (--A in the example) because this state can always be
reached by adding enough empty cells. The number of polyominoes on a twisted
cylinder is equal to the number of binary words recognized by the automaton,
that is, whose processing by the automaton terminates in an accepting state.

Automata theory and linear algebra give us strong tools to analyze the behav-
ior of a finite automaton. First, we can represent the automaton as an M ×M
0/1 transfer matrix B, where M is the number of states of the automaton, and
the (ij)th entry of B is 1 if an edge leads from the ith to the jth state of the
automaton. One can derive from B (through its characteristic polynomial) the
generating function of the sequence enumerating polyominoes on the twisted
cylinder, and a linear recurrence formula satisfied by this sequence. This has
been carried out [2] up to width W = 10.

Second, this matrix has a few interesting properties. It is proven [4] that
the largest eigenvalue (in absolute value) of B is exactly the desired growth
constant λW . Moreover, B is a primitive and irreducible matrix, and, hence, λW

is the only positive eigenvalue ofB. Under these conditions, the Perron-Frobenius
theorem provides an effective method for computing this eigenvalue: Start from
any positive vector (e.g., the vector in which all entries are 1) and repeatedly
multiply it by B. In the limit, this process converges to the eigenvector, and
the ratios between successive vectors in this process converge to the desired
eigenvalue, which is the desired growth constant.

	> 4
	Introduction
	What Is ?
	Brief History
	Enumerative Combinatorics
	Percolation Processes
	Collapse of Branched Polymers

	Twisted Cylinders
	Method
	Sequential Runs
	Computing 27
	Validity and Certification
	Conclusion

