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Improved Lower Bound on the Geometric Dilation of Point Sets∗

Adrian Dumitrescu† Ansgar Grüne‡ Günter Rote§

Abstract

Let G be an embedded planar graph whose edges are
curves. The detour between two points p and q (on
edges or vertices) of G is the length of a shortest path
connecting p and q in G divided by their Euclidean
distance |pq|. The maximum detour over all pairs of
points is called the geometric dilation δ(G). Ebbers-
Baumann, Grüne and Klein have shown that every
finite point set is contained in a planar graph whose
geometric dilation is at most 1.678, and some point
sets require graphs with dilation δ ≥ π/2 ≈ 1.57.
They conjectured that the lower bound is not tight.
We use new ideas, a disk packing result and arguments
from convex geometry, to prove this conjecture. The
lower bound is improved to (1 + 10−11)π/2.

1 Introduction

Consider a planar graph G embedded in R2, whose
edges are curves1 that do not intersect. Such graphs
arise naturally in the study of transportation net-
works, like waterways, railroads or streets. For two
points, p and q (on edges or vertices) of G, the detour
between p and q in G is defined as

δG(p, q) =
dG(p, q)
|pq|

where dG(p, q) is the shortest path length in G be-
tween p and q and |pq| denotes the Euclidean distance,
see Figure 1 for an example.
Good transportation networks should have small

detour values. In a railroad system, access is only
possible at stations, the vertices of the graph. Hence,
to measure its quality we can take the maximum de-
tour over all pairs of vertices. This results in the well-
known concept of graph-theoretic dilation studied ex-
tensively in the literature on spanners, see [7] for a
survey.

∗There is a full version [3] of this paper available.
†Computer Science, University of Wisconsin–Milwaukee,

3200 N. Cramer Street, Milwaukee, WI 53211, USA;
ad@cs.uwm.edu

‡Universität Bonn, Institut für Informatik I, D-53117 Bonn,
Germany; gruene@cs.uni-bonn.de; partially supported by a
DAAD PhD-grant

§Freie Universität Berlin, Institut für Informatik, Taku-
straße 9, D-14195 Berlin, Germany; rote@inf.fu-berlin.de

1For simplicity we assume here that the curves are piecewise
continuously differentiable, but think that the proofs can be
extended to a broader class of curves.
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Figure 1: A grid G of small dilation δ(G) = δG(p, q) =
dG(p, q)/|pq| < 1.678 introduced in [5]

However, if we consider a system of urban streets,
houses are usually spread everywhere along the
streets. Hence, we have to take into account not only
the vertices of the graph but all the points on its edges.
The resulting supremum value is the geometric dila-
tion

δ(G) := sup
p,q∈G

δG(p, q) = sup
p,q∈G

dG(p, q)
|pq|

on which we concentrate in this article. Several pa-
pers [6, 13, 2] have shown how to efficiently compute
the geometric dilation of polygonal curves. Besides
this the geometric dilation was studied in differential
geometry and knot theory under the notion of distor-
tion, see e.g. [9, 12].
Ebbers-Baumann et al. [5] recently considered the

problem of constructing a graph of lowest possible ge-
ometric dilation containing a given finite point set on
its edges. Even for three given points this is a difficult
task. Therefore they started by providing an upper
and a lower bound on the dilation necessary to embed
any finite point set, i.e. on the value

∆ := sup
P⊂R2, P finite

inf
G⊃P, G finite

δ(G) .

They showed that a slightly perturbed version of the
grid in Figure 1 can be used to embed any finite point
set. Thereby they proved ∆ < 1.678.
They also derived that ∆ ≥ π/2, by showing that

a graph G has to contain a cycle to embed a cer-
tain point set P5 with low dilation, and by using that
the dilation of every closed curve2 C is bounded by
δ(C) ≥ π/2.

2In this paper we use the notions “cycle” and “closed curve”
synonymously.
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They conjectured that this lower bound is not tight.
It is known that circles are the only cycles of dilation
π/2, see [4, Corollary 23], [1, Corollary 3.3], [12], [9].
And intuition suggests that one cannot embed com-
plicated point sets with small dilation if every face of
the graph has to be a circular disk. This idea would
have to be formalized and still does not rule out that
every point set could be embedded with dilation ar-
bitrarily close to π/2. New ideas are needed to prove
∆ > π/2.
In Section 2 we show that cycles with dilation

close to π/2 are close to circles, in some well-defined
sense (Lemma 4). The lemma can be seen as an in-
stance of a stability result for the geometric inequality
δ(C) ≥ π/2, see [8] for a survey. Such results com-
plement geometric inequalities (like the isoperimetric
inequality between the area and the perimeter of a
planar region) with statements of the following kind:
When the inequality is fulfilled “almost” as an equa-
tion, the object under investigation is “close” to the
object or class of objects for which the inequality is
tight. An important idea in the proof of this stability
result is a decomposition of any closed curve C into
the two cycles C∗ and M .
In Section 3 we use Lemma 4 to relate the dilation

problem to a certain problem of packing and covering
the plane by disks. By this we prove our main result
∆ ≥ (1 + 10−11)π/2.

2 Result for Closed Curves

We want to prove that a simple closed curve C of
low dilation is close to being a circle. We assume
that C is given by an arc-length parameterization c(t),
0 ≤ t ≤ |C|, where |C| denotes the length of C. Two
points p = c(t) and p̂ = c(t ± |C|

2 ) on C that divide
the length of C in two equal parts form a halving
pair of C. The segment which connects them is a
halving chord, and its length is the halving distance.
We write h = h(C) and H = H(C) for the minimum
and maximum halving distance of C.

C

M

C∗

h

H

p

p̂

Figure 2: An equilateral triangle C, a halving pair
(p, p̂) and the derived curves C∗ and M

To show that C is close to a circle, we consider
a decomposition into two curves, see Figure 2 for an
illustration. Themidpoint cycle M is the cycle formed
by the midpoints of the halving chords of C, and is

given by the parameterization

m(t) :=
1
2

(
c(t) + c(t+ |C|

2 )
)
.

The curve C∗ defined by

c∗(t) :=
1
2

(
c(t)− c(t+ |C|

2 )
)

is the result of the halving pair transformation defined
in [4]. We get it by moving the midpoint of every
halving chord to the origin. By definition, c∗(t) =
−c∗(t + |C|

2 ), hence C
∗ is centrally symmetric. On

the other hand, we have m(t) = m(t+ |C|
2 ), and thus,

M is traversed twice when C and C∗ are traversed
once. We define |M | as the length of the curve M
corresponding to one traversal.
The curve C∗ has the same set of halving distances

as C; thus, h(C∗) = h(C) = h and H(C∗) = H(C) =
H.
We have decomposed C into two components, from

which it can be reconstructed:

c(t) = m(t) + c∗(t), c
(
t+ |C|

2

)
= m(t)− c∗(t) (1)

To show that C is close to a circle, we first show
that H/h is close to 1, i.e. C∗ is close to a circle.
Then, we prove that the length of the midpoint cycle
is small. Combining both statements will deliver the
desired result.
We use the following lemma to find an upper bound

on the ratio H/h. Ebbers-Baumann et al. [4] have
proved it for convex cycles using arguments from con-
vex geometry similar to the ones in [10] but it can
easily be extended to the non-convex case.

Lemma 1 The geometric dilation δ(C) of any closed
curve C satisfies

δ(C) ≥ arcsin
(
h

H

)
+

√(
H

h

)2

− 1.

Note that the function g(x) = arcsin 1/x +
√
x2 − 1

appearing on the right-hand side starts from g(1) =
π/2 and is increasing on [1,∞). Approximating it
by its Taylor expansion, we can show that H/h ≤
1 +O(ε

2
3 ) if δ(C) ≤ (1 + ε)π

2 .
We still need an upper bound on the length |M |

of the midpoint cycle. We use the following lemma,
which we think is of independent interest.

Lemma 2

4|M |2 + |C∗|2 ≤ |C|2.

Proof. Using the linearity of the scalar product and
|ċ(t)| = 1, we obtain from (1)

〈ṁ(t), ċ∗(t)〉 = 1
4

〈
ċ(t) + ċ(t+ |C|

2 ), ċ(t)− ċ(t+
|C|
2 )

〉
=
1
4

(
|ċ(t)|2 − |ċ(t+ |C|

2 )|
2
)
=
1
4
(1− 1) = 0 .
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This means that the derivative vectors ċ∗(t) and
ṁ(t) are always orthogonal, thus |ṁ(t)|2 + |ċ∗(t)|2 =
|ċ(t)|2 = 1. This implies

|C| =
∫ |C|

0

√
|ṁ(t)|2 + |ċ∗(t)|2 dt

≥

√√√√(∫ |C|

0

|ṁ(t)| dt
)2

+

(∫ |C|

0

|ċ∗(t)| dt
)2

=
√
4|M |2 + |C∗|2

The above inequality can be seen by a geometric
argument. The left integral is the length of the
curve γ(s) :=

(∫ s

0
|ṁ(t)| dt,

∫ s

0
|ċ∗(t)| dt

)
, while the

right expression equals the distance of its end-points
γ(0) = (0, 0) and γ (|C|). �

Lemma 3 If δ(C) ≤ (1 + ε)π
2 , then |M | ≤

πh
2

√
2ε+ ε2.

Proof. Because the dilation of C is at least the de-
tour of a halving pair attaining minimum distance h,
we get (1 + ε)π/2 ≥ δ(C) ≥ |C|/2h, implying

|C| ≤ (1 + ε)πh. (2)

If |c∗(t)| < h/2 held for any t, then, due to the central
symmetry of C∗, the points c∗(t) and −c∗(t) would
form a halving pair of distance < h, a contradic-
tion. Hence, C∗ encircles but does not enter the open
disk Bh/2(0) of radius h/2 centered at the origin 0. It
follows

|C∗| ≥ πh. (3)

By plugging everything together, we get

|M |
Lemma 2
≤ 1

2

√
|C|2 − |C∗|2

(2),(3)

≤ 1
2
πh

√
(1 + ε)2 − 1 = πh

2

√
2ε+ ε2 ,

which concludes the proof of Lemma 3. �

It should be intuitively clear (remember Figure 2)
that the upper bound on H/h from Lemma 1 and
the upper bound on |M | of Lemma 3 imply that the
curve C is contained in a thin ring if its dilation is
close to π

2 . This is the idea behind the omitted proof
of the following lemma. We say that a cycle C is
enclosed in an (1 + ε)-ring if there is a radius r > 0
and a center c ∈ R2 such that the open region R
bounded by C satisfies Br(c) ⊆ R ⊆ B(1+ε)r(c).

Lemma 4 Let C ⊂ R2 be any simple closed curve
with dilation δ(C) ≤ (1 + ε)π/2 for ε ≤ 0.0001. Then
C can be enclosed in a (1 + 3

√
ε)-ring.

By a special cycle C we can also show that this result
cannot be improved apart from the coefficient of

√
ε.

The lemma can be extended to a larger, more practi-
cal range of ε, by increasing the coefficient of

√
ε.

3 New Lower Bound

We will combine Lemma 4 with a disk packing result.
A (finite or infinite) set C of disks in the plane with
disjoint interiors is called a packing.

Theorem 5 (Kuperberg, Kuperberg, Matoušek and
Valtr [11]) Let C be a packing in the plane with circu-
lar disks of radius at most 1. Consider the set of disks
C′ in which each disk C ∈ C is enlarged by a factor
of 1.00001 from its center. Then C′ covers no square
with side length 4.

From Lemma 4 and Theorem 5 we deduce our main
result:

Theorem 6 The minimum geometric dilation∆ nec-
essary to embed any finite set of points in the plane
satisfies ∆ ≥ (1 + 10−11)π/2.

Proof. (Sketch) Consider the set P :=
{ (x, y) | x, y ∈ {−9,−8, . . . , 9} } of grid points with
integer coordinates in the square Q1 := [−9, 9]2 ⊂ R2,
see Figure 3. We use a proof by contradiction and
assume that there exists a planar connected graph G
that contains P (as vertices or on its edges) and sat-
isfies δ(G) ≤ (1+10−11)π/2 < 2. In the full paper we

P

Q1

Q2

(−9,−9) (9,−9)

(9, 9)(−9, 9)

Figure 3: The point set P := {−9,−8, . . . , 9}2 and
the squares Q1 := [−9, 9]2 and Q2 := [−8, 8]2

show that if G attains such a low dilation, G contains
a collectionM of cycles with disjoint interiors which
cover the smaller square Q2 := [−8, 8]2. The length
of each cycle C ∈ M is bounded by 8π implying
that every disk encircled by C has a radius r ≤ 4.
Additionally, the dilation of every C ∈ M is at most
δ(G) ≤ (1 + 10−11)π/2. Hence, Lemma 4 shows
that every C has to be contained in an 1.00001-ring.
It follows that the inner disks of these rings are
disjoint and their 1.00001-enlargements cover Q2 in
contradiction to Theorem 5 (situation scaled by 4).
We would like to use the cycles bounding the faces

of G for M. Indeed, δ(G) < 2 implies that they
cover Q2 (analogous to Figure 4b). However, their
dilation could be bigger than the dilation δ(G) of the
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Figure 4: (a) The path ξ is a shortcut for some points
of C. (b) Every x ∈ Q2 is encircled by a cycle of
length ≤ 12 · δ(G).

graph, see Figure 4a. G can offer shortcuts in the
exterior of C, i.e., the shortest path between p, q ∈ C
does not necessarily use C.
Therefore, we have to find a different class of dis-

joint cycles covering Q2 which do not allow shortcuts.
The idea is to consider for every point x in Q2 the
shortest cycle ofG such that x is contained in the open
region bounded by the cycle. The regions of these cy-
cles cannot intersect partly, we have R1 ∩ R2 = ∅ or
R1 ⊆ R2 or R2 ⊆ R1. If we defineM to contain only
the cycles maximal with respect to inclusion of their
regions, it provides all the properties we need. Due to
space limitations we can not prove all of them here.
However, one argument is displayed in Figure 4b.

Every x ∈ Q2 is contained in a square S of the integer
grid. A shortest path ζ of G connecting neighbor
points p, q of P next to S cannot enter S because |ζ| ≤
δ(G)|pq| < 2. Hence, the concatenation of 12 such
shortest paths contains a cycle of length ≤ 12δ(G) ≤
12(1 + 10−11)π/2 ≤ 8π encircling x. This shows that
the regions ofM coverQ2 and that the length of every
C ∈M is bounded by |C| < 8π. �

4 Conclusion

Our result looks like a very minor improvement over
the easier bound ∆ ≥ π/2, but it settles the question
whether ∆ > π/2 and has required the introduction of
new techniques. Our approximations are not very far
from optimal, and we believe that new ideas are re-
quired to improve the lower bound to, say, π/2+0.01.
An improvement of the constant 1.00001 in the disk
packing result of [11] (Theorem 5) would of course
immediately imply a better bound for the dilation.
We do not know whether the link between disk

packing and dilation that we have established works
in the opposite direction as well: Can one construct a
graph of small dilation from a “good” circle packing
(whose enlargement by a “small” factor covers a large
area)? If this were true (in some meaningful sense
which would have to be made precise) it would mean
that a substantial improvement of the lower bound
on dilation cannot be obtained without proving, at

the same time, a strengthening of Theorem 5 with a
larger constant than 1.00001.
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