
Discrete Comput Geom 4:611-626 (1989)

Computing the Geodesic Center of a Simple Polygon*

R. Pollack, 1 M. Sharir, 1"2 and G. Rote 3

Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street,
New York, NY 10012, USA

2 School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel

lnstitut fiJr Mathematik, Technische Universit/it Graz, Austria

Abstract. The geodesic center of a simple polygon is a point inside the polygon
which minimizes the maximum internal distance to any point in the polygon. We
present an algorithm which calculates the geodesic center of a simple polygon with
n vertices in time O(n log n).

I. Introduction

The problem addressed in this paper, to locate the point inside a s imple polygon
P whose maximal in ternal distance (by a route inside P) from any point inside
P is min imal , is a general izat ion of the Eucl idean facility locat ion problem which
asks for the location of the point (facility) which is least far (in the Eucl idean
metric) from the furthest of a finite set of points (the communi ty which the facility
is to serve) [Me], [Dy2]. Indeed, since the furthest point from a point inside a
polygon is always a vertex of the polygon, the geodesic center of the convex hull
of the commun i ty to be served is the solut ion to the s tandard facility locat ion
problem. We can consider the problem of finding the geodesic center as another
kind of cons t ra ined facility location problem where we want, e.g., to locate an

* Work on this paper by the first author has been supported by National Science Foundation
Grant No. DMS-8501947. Work on this paper by the second author has been supported by Office of
Naval Research Grant No. N00014-82-K-0381, National Science Foundation Grant No. NSF-DCR-
83-20085, and by grants from the Digital Equipment Corporation, and the IBM Corporation. Part
of the work on this paper by the first two authors has been carried out at the Workshop on Movable
Separability of Sets at the Bellairs Research Institute of McGill University, Barbados, February 1986,
Work on this paper by the third author has been supported by the Fonds zur F/Srderung der
wissenschaftlichen Forschung (FWF), Project $32/01.

612 R. Pollack, M. Sharir, and G. Rote

rig. t

emergency service on a polygonal island or a nurses station on a polygonal
hospital floor. See Fig. 1 for an illustration of the geodesic center problem. The
standard Euclidean facility location problem can be solved in time O(n) [Mel],
[Dy2], but its extension to the problem of finding the geodesic center of a simple
polygon appears to be more difficult.

The problem of computing the geodesic center of a simple polygon has been
considered by Asano and Toussaint [AT]. They show that the geodesic center is
unique and present an algorithm to compute it in time O(n 4 log n), where n is
the number of vertices in the given polygon. The main idea of their algorithm is
to construct the geodesic furthest-point Voronoi diagram of the vertices of the
polygon and then to locate the geodesic center at either a vertex of the Voronoi
diagram or at the midpoint of a geodesic diameter (i.e., a shortest path inside
the polygon joining two vertices which has maximal length over all choices of
pairs of vertices). We will also use the term "geodesic diameter" to denote the
length of that path. There have been many algorithms to find the geodesic diameter
of a simple polygon. The best result at the present time is an O(n log n)-time
and O(n)-space algorithm due to Suri [Sul] .

A related problem is to compute the link diameter and the link center of a
simple polygon, where the link distance between two points is the minimum
number of edges in a polygonal path joining them inside the polygon and where
the link center and diameter are defined in an analogous manner to the definition
of geodesic center and diameter. In this case the link center is no longer unique
but consists of a polygon which may be as large as the entire given polygon. Suri
[Su2] has an O(n log n)-time and O(n)-space algorithm which computes the
link diameter o f a simple polygon and Lenhart etal. [Lea] presents an O(n 2)
algorithm for computing the link center of a simple polygon. E1-Gindy (private
communication) also reports similarly efficient algorithms for computing the link
center.

Our algorithm proceeds as follows. We start with a triangulation of the polygon
P, then perform something like a binary search through the diagonals of the
triangulation, determining at each tested diagonal, via the algorithm RELCEN
to be described in Section 3 below, on which side of that diagonal the geodesic
center lies. In this way we locate a triangle which contains the geodesic center.

Computing the Geodesic Center of a Simple Polygon 613

However, as we move around in this triangle the combinatorial structure of the
shortest path to a given vertex can change. We next use a modification of
Megiddo's method for solving linear programming problems in linear time [Me 1]
(see also Dyer [Dyl]) to find a polygon R (containing the geodesic center) within
this triangle where the structure of the path from each point x e R to each vertex
v of P remains constant, and consists of the straight segment from x to some,
possibly different, vertex followed by a fixed path of known length to v. In other
words, in our final subregion R, the internal distance from a point x to the ith
vertex of P has a fixed analytic expression of the form I xu~l + q, for i = 1, 2 , . . . , n
(where Ixu~l denotes the Euclidean distance from x to u~). The problem that
remains is equivalent to that of finding a smallest circle that contains a given
collection of n circles (where the ith circle is centered at us and has radius q).
This final task can be accomplished in linear time by a recent algorithm of
Megiddo [Me4].

The total time complexity of our algorithm is O(n log n).
The paper is organized as follows. In Section 2 we present the geometric

preliminaries needed to justify the algorithm RELCEN which is presented in
Section 3. In Section 4 we present the complete algorithm, and concluding remarks
are given in Section 5.

2. Geometric Preliminaries

Definitions. Let P be a simple polygon with n sides; that is P is a closed and
bounded simply connected planar region whose boundary consists of n (noninter-
secting) line segments. We assume that P is given as input by the circular sequence
of its vertices in their (say, counterclockwise) order along the boundary of P.
For x, y in P, g(x,y) is the shortest path inside P between x and y, d(x,y) is
the length of this path. Furthermore, let xy denote the straight line segment with
endpoints x and y and let lxyl denote its length. Finally, we let u(x, y) denote
the unit vector in the direction that the path g(x, y) starts at from x, and define
the geodesic angle /_xyz as the smaller of the two angles between u(y, x) and
u(y, z). A subset C of P is called P-convex if whenever x, y are in C, g(x, y) is
a subset of C. It immediately follows that the intersection of P-convex sets is
P-convex, and that P-convex sets are connected.

As shown in Lee and Preparata [LP], g(x, y) is a polygonal path whose corners
are vertices of P. For a fixed point x in P, the union of g(x, v) over all vertices
v of P is a planar tree Q(x) (rooted at x), which we call the shortest path tree
of P (with respect to x). This tree has n nodes, namely the vertices of P, and its
edges are straight segments connecting these nodes. It has been shown by Guibas
et al. [Gea] that, given a triangulation of P, this tree can be computed in linear time.

Given three points a, b, c in P, consider the geodesic paths g(a, b), g(b, c),
and g(c, a). There exist points a', b', and c' such that the paths g(a, b) and
g(a, c) intersect in the path g(a, a'), the paths g(b, c) and g(b, a) intersect in
g(b, b'), and finally the paths g(c, a) and g(c, b) intersect in g(c, c'). Moreover,
we see that the geodesic triangle Aa'b'c' has only reflex angles along its boundary

614 R. Pollack, M. Sharir, and G. Rote

Fig. 2

with the exception of the angles at a', b', and c'. This follows from the fact that
the sides g(a', b'), g(a', c'), g(b', c') of this triangle do not intersect, and the
interior of this triangle is fully contained in P; thus any nonreflex angle along,
say, g(a', b') would allow us to shortcut g(a, b) within P, thereby contradicting
its geodesicity (such a triangle is portrayed in Fig. 2).

Lemma 1. As x varies along g(b, c), d(a, x) is a convex function of d(b, x), and
d(a, x) <max{d(a , b), d(a, c)}.

Proof. Let a', b', c' be the "bifurcation points" of the paths g(a, b), g(a, c),
g(b, c), as defined above. Write t = d(b, x) and d/(t) = d(a, x), for x in g(b, c).
Clearly, ~b(t) is a well-defined continuous and piecewise smooth function of t.
Moreover, for x ¢ g(b, b') we have 0 ' (t) = -1 , and for x ~ g(c', c) we have ~b'(t) =
+1. For x e g(b', c'), we can easily check, using the law of cosines, that the right
derivative (~,')+(t) of 0 at t = d(b, x) is - c o s O(t), where O(t) is the angle between
u(x, a) and u(x, c). Similarly, the left derivative (O')-(t) of ~ at t is +cos O(t),
and O(t) is the angle between u(x, a) and u(x, b). But O(t)+O(t)> 7r, because
g(b', c') has only reflex angles; thus cos O(t)-< -cos O(t), i.e., (0')-(t)-< (0')+(t).

Computing the Geodesic Center of a Simple Polygon 615

Moreover, assume that a, b, c are arranged so that as x varies along g(b', c')
from b' to c', the vector u(a' , x) (weakly) turns clockwise (as in Fig. 2). Then,
using the fact that the edges of the geodesic triangle Aa'b'c ' have only reflex
angles, it is easy to check that as x varies in the above manner, the vector u(x, a)
strictly turns clockwise, whereas the vector u(x, c) weakly turns counterclockwise
(see Fig. 2). Thus O(t) is strictly increasing along g(b', c'), and thus ~b'(t) i~
piecewise continuous and increasing along g(b, c), from which convexity of 4/
follows.

Finally, note that ~/, is actually strictly convex on g(b', c'), whereas it is linear
with slope -1 , +1 along the remaining subpaths g(b, b'), g(c', c), respectively.
This is easily seen to establish the second assertion of the lemma. []

Corollary 1. The closed ball of radius r at x, B (r , x) = { y ~ P I d (x , y) < r } , is
P-convex.

The proof of the lemma also implies

Corollary 2. With the notation of the lemma, if the geodesic a n g l e / b a ' c at a' is
greater than or equal to 7r / 2 then d (b, c) > d (a', b), d (a', c).

It is obvious that d(a, x) is maximized for x a vertex of P.
Let F (x) = maxv d(x, v), where the maximum is taken over the vertices v of

P. Clearly, F is continuous and therefore has a minimum value called the geodesic
radius of P and denoted gr(P). The set of points

G(P) = {x ~ PI F (x) = gr(P)}

is the intersection of the closed balls of radius gr(P) centered at the vertices of
P. If G(P) contained two distinct points x, y it would have to contain g(x, y)
and the geodesic distance from a vertex would have to be constant along each
segment of g(x, y), which is clearly impossible by Lemma 1. Hence G(P) consists
of a single point, called the geodesic center of P, and denoted by geocen(P) (see
also [AT]).

Let c be a point of P and let the set of furthest vertices from c be V(c)=
{v~, v 2 , . . . , vk}. The following lemma gives sufficient conditions for such a point
c to be the geodesic center.

Lemma 2. I f the set {u(c, v)[v ~ V(c)} does not lie in an open half-plane through
c then c = geocen(P). Furthermore, ifc is a vertex o fPandfor somepair Vl, v2 ~ V(c)
the geodesic angle/_v~cv2 meets the exterior of P in a neighborhood of c then also
c = geocen(P) .

Proof Suppose first c is not a vertex of P. For any v~ in V(c), the line through
c orthogonal to u(c, v~) determines a diagonal D~ of P which separates P into
two components (the "sides" of D~). Suppose that x is a point of P lying on the
side of D~ which does not contain v~; then g(x, v~) must cross D~, say at x' and

616

Fig. 3

R. Pollack, M. Sharir, and G. Rote

\ \
¥

since either x ' = c or the geodesic angle/_x'cvi is ~ / 2 we see, by Corollary 2, that
d(x, vi) > d(x ' , v~) > d(c, vi) = F(c) , whence x is not geocen(P) (see Fig. 3). Hence
geocen(P) must be contained in the intersection of all (closed) half-polygons
P~ , Pk, where P~ is the side of Di containing v. and the assumptions of the
lemma imply that this intersection is {c}. Similar arguments apply if c is a vertex
of P. []

Remark. If two directions u(c, v~) and u(c, v2) are opposite, then again c is the
geodesic center and g(v~, v2) is a geodesic diameter (whose midpoint is c).

Definition. Given a cut of P, i.e., a segment C which is openly contained in P
and has endpoints on the boundary of P, thus separating P into two components,
the relative center of P on C is the unique point c of C which minimizes F(x)
for x in C and is denoted RELCEN(C) = c.

After having found the relative center c on a cut C we would like to know
where to look for the geodesic center. The case that it lies on C (and hence
geocen(P) = c) has been covered by the previous lemma. In the complementary
case, the following lemma enables us to determine on which side of C the geodesic
center lies.

Lemma 3. Let c = RELCEN(C) , and assume that the cone with apex c spanned
by all directions u(c, v) for v in V(c) lies in an open half-plane passing through c,
so that its intersection with a sufficiently small neighborhood of c is wholly contained
in P. Let u* be a unit vector in the direction o f the bisector of the angle of this cone.
Then geocen(P) lies on the side of C to which u* points (see Fig. 4).

Proof. Let d(c, v) = r for each v in V(c), while the next furthest vertex from c
has geodesic distance r ' < r from c. Note that for c' in B (r - r ' , c) the distance
from c' to any vertex not in V(c) is at most r. Choose a positive 8 < m i n { r - r', p},
where p is the length of the smallest initial segment of g(c, v) for v in V(c),
sufficiently small so that the boundary of B = B(8, c) consists of a single circular
arc and possibly a portion of at most two segments of the boundary of P (the
latter might occur only in case c is on the boundary of P). Let H be the line
passing through c and perpendicular to n*. For each v e V(c) let h(v) be the

Computing the Geodesic Center of a Simple Polygon 617

¥Z

V(c)={v,.v2}

1

Fig. 4

perpendicular distance from H to p~, where p~ is the intersection of g(c, v) and
the boundary of B(8, c), and let h=min~v(c)h(v) . The point c + h u * = p in
B(8, c) satisfies d(p, v) < r for all vertices v of P, since for v in V(c),

d(p, v) < d(p, p~) + d(pv, v) < d(c, pv) + d(p~, v) = r,

and we have already seen that d(p, v) < r for the other vertices of P. Hence p
lies in the intersection of the closed balls of some radius r" < r at each of the
vertices of P. Since the geodesic center of P must also lie in this intersection
which is connected (since P-convex) and disjoint from C (since, by definition
of RELCEN(C) , F_> r > r" on C), we see that the geodesic center of P lies on
the same side of C as p. []

3. The Algorithm RELCEN

Suppose a triangulation of P is given. Let C be a cut of P, i.e., C is openly
contained in P and has endpoints a and b on the boundary of P; thus C splits
P into two portions P~,/)2. For the sake of exposition, the subsequent analysis
deals only with that portion of P, say P~, which, in a sufficiently small neighbor-
hood of C, lies to the left of the directed segment a-~. Symmetric arguments will
apply to the other portion/)2 of P.

We construct, in linear time [Gea], the tree Q(a) of shortest paths from a to
the vertices of/)1 and the tree Q(b) of shortest paths from b to the vertices of
P~. Let v be any vertex of/)1. It is shown [Gea] that v is visible from some point
in C if and only if the geodesic triangle Aabv has only reflex angles along its
two sides g(a, v), g(b, v). When this is the case, v is visible from (each point in)
a subinterval pq of C, where p and q are the intersections of C with the extensions
of the last edges v=v, vbv along g(a, v), g(b, v), respectively; see Fig. 5. Thus v
is visible from C if and only if the parents v=, vb of v in Q(a), Q(b), respectively,
are distinct.

618 R. Pollack, M. Sharir, and G. Rote

C $o $! $2 s$ sit + !

Fig. 5

It also follows easily from Guibas et al. [Gea] that if v is visible from C and
has a child w in Q(a) (resp. in Q(b)) such that vavw is a right (resp. a left) turn,
then w is also a child of v in the other tree, and is not visible from C. Hence
each child w of a visible vertex v in Q(a) or in Q(b) is o f one of the following
three types:

(i) w is invisible from C (and is a child of v in both trees Q(a), Q(b)).
(ii) w is visible from C, is a child of v only in Q(a) , and vavw is a left

turn.
(iii) w is visible f rom C, is a child of v only in Q(b), and VbVW is a right

turn.

Let c(v) denote the maximum geodesic distance from v to any invisible vertex
in the subtree of Q(a) (or of Q(b)) rooted at v; if no such vertex exists, c(v) = 0.

Define a function dj(v) on the vertices v of P~ recursively as follows:

(a) I f v is invisible from C, put dl(v) = c(v).
(b) I f v is visible from C, let dj(v) be the maximum of c(v) and of max{d~(w~) +

I w~v[: w~ is a type (ii) child of v}.

Similarly we define a symmetric function dr(v) in terms of the type (iii) children
of v.

Let v be a visible vertex of P~, and let w~ wk be the children of v of type
(ii) arranged in counterclockwise order around v. Extend the segments
w~ v, wkv past v until they intersect C at the respective points s ~ , . . . , SE. Let
So be the intersection of C with the extension of ray, and let sk+~ be the intersection
of C with the extension of VbV. For each i = 0 , . . . , k define a function

, I l xv t+max(c (v) , l vw~l+dt (ws) :J>i) ,
f v.i(x) = t -oo ,

x ~ [s . s~÷l],

otherwise,

and, in a completely symmetric manner, we define a corresponding collection of
partial functions f~,i induced by type (iii) children in Q(b). We also repeat the
entire construction for the other portion P2 of P, obtaining similar collections of
functions f~.~, f~j for vertices v of P2. Enumerate all these functions as gl , • • . , gin.
Note that m = O(n), because each function is determined uniquely either by a
pair o f adjacent type (ii) or type (iii) children of some visible vertex v in Q(a)

Computing the Geodesic Center of a Simple Polygon 619

or in Q(b), or by the parent of v in one of these trees and one of the two
"extreme" corresponding type (ii) or type (iii) children of v in that tree. Since
each of these trees has linear size, the property follows.

Let F(x) = maxw d (x, w) for x e C, where the maximum is taken over all vertices
w of P.

Lemma 4. F(x) =max~.,~.ifo~i(x), where the maximum is taken over all visible
vertices v, tr ~ {1, r}, and indices i corresponding to type (ii) or (iii) children of v.

Proof. Let x ~ C. Clearly, each f~ (x) , when it is defined, is a geodesic distance
from x to some vertex w of P, thus F(x)>max~.~.~f~(x). On the other hand,
for each vertex w of, say Pl, d(x, w) is obtained by going along a straight segment
from x to some vertex v (visible from x), and then following the shortest path
g(v, w) from v to w. I f w = v then clearly d(x, w)<-f,~.~(x) for some tr and i.
Otherwise, let z be the next vertex after v along g(v, w). I f z is invisible from C
then so is w and we have

d(x, w)=lxvl+d(v, w)<-Ixvl+c(v)<<-fL(x)

for some o- and i. I f z is a type (ii) child of v, say z = wj in the above notation,
then for some i < j the function flv.~(x) is different from -oo, and

d(x, w)=lxvl+tvzl+ d(z, w)<~Ixvl +lvwjl+ d~(wj)

as is easily checked. By definition, then, d(x, w)<-f~v,~(x). Since a symmetric
inequality can be obtained in case z is a type (iii) child, the assertion of the
lemma follows easily. []

Thus, to calculate x* = R E L C E N (C) , we need to calculate

min maxf~i (x) .

It follows from Lemma 1 that the pointwise maximum of these functions, namely
F(x), is convex on C. Thus, considering C as an interval on the x-axis, given
any point Xo~ C, we can determine whether x*<Xo, X*>Xo, or x*=xo, by
calculating (in time proportional to the number of functions gj) F(xo)=
maxj gj(xo) and its one-sided derivatives at Xo. I f the left derivative (F')-(Xo) is
positive (resp. the right derivative (F')+(x0) is negative, resp. (F ')-(Xo)-<0 < -
(F')+(Xo)) then x * < Xo (resp. x * > Xo, x * = Xo). These derivatives are defined in
the following manner. I r a single function gj attains F at xo then (F')±(Xo) = g~(xo).
Otherwise we have (F')-(Xo)= mini g~(Xo), (F')+(Xo)= max~ g~(xo), where these
extrema are calculated over all gj attaining F at Xo; if any of the functions gj is
defined only on one side of Xo, it appears only in the expression defining the
corresponding one-sided derivative of F and not in that of the other one.

These observations allow us to apply Megiddo's technique for two-variable
linear programming [Mel] to find x* in linear time. Since the functions g~ have

620 R. Pollack, M. Sharir, and G. Rote

a somewhat irregular shape, some fine-tuning of the technique is required. We
perform O(log n) iterations; after the j th iteration we will have obtained a
subinterval /~ of C where x* is known to lie, and a subset Gj of the functions
gi such that

and

I Cjl ~ m. (~)~

max g(x) = F (x)

for all xE/~. As in Megiddo [Mel], each iteration will run in time linear in the
number of remaining functions (i.e., the functions in Gj), and this will imply
overall O(n) performance of the algorithm. Initially, lo=C and Go =
{g~, . . . , gm}. Consider the j th step. Combine the functions in Gj_~ into disjoint
pairs. Let g, h be such a pair. We can assume without loss of generality that
neither g nor h is - ~ throughout /j_~, or else we could simply discard that
function.

We define an extended intersection of g, h to be a point Xoe lj_~ such that
g(x) > h(x) for x lying on one side of x0 sufficiently near it, while g(x)< h(x)
on the other side of Xo sufficiently near it. Since each of g(x), h(x) has the form
t xvl+ c for x in some interval Jr, and - m otherwise, it is easily checked that g
and h can have at most four extended intersections over/ j_t , of which at most
two are real intersections, and the others occur at endpoints of the domains of
g or of h. (A special case arises when the domains of g, h are disjoint; in this
case we choose an arbitrary point Xo lying between these two domains, and call
it the (unique) extended intersection of g and h.) See Fig. 6 for an illustration
of extended intersections. It follows easily from definition that if g, h have no
extended intersections in/j_~, then one of them, say g, is larger than h throughout
/~_~, and consequently we simply discard h in this case.

Let S denote the collection of all O(n) extended intersections of the pairs g,
h. Find the median Xo of these intersections. Calculate F(xo)= m a x ~ j _ , g(xo)
and its one-sided derivatives at Xo (in the manner explained above, which takes
O(t Gj-tl) time) to determine which side ofxo contains x*. Next take the extended
intersections lying on that side of Xo, find their median x~, and determine which
side of x~ contains x*. Repeating this procedure one more time, we obtain a
subinterval /j of/j_~ known to contain x*, so that at most one-eighth of the
extended intersections lie in / j . Since each pair of functions contributes at most
four points to the set S, it follows that for at least half of the pairs g, h, all their
extended intersections lie outside/ j , and consequently we can determine which
of g, h is dominated by the other function throughout/~, and discard it from
further consideration (the idea of using multiple medians at a single iteration of
the algorithm is adapted from Zemel [Ze]). The remaining functions constitute
the next subcollection Gj, and the process is repeated again. Note that we will have

F(x)=maxg(x)

Computing the Geodesic Center of a Simple Polygon 621

(a)

1

(el

!

' I I

(e)

I '
I
t

(q)

?

1
I

(b)

x i
(a)

, i
I I
~ x
(f l

i I 1
{ I I

(h)

i t) (j)

Fig. 6

for all x e / j , and that IGjI~IG~-,[. This procedure stops either when at
some median x0 we have (F')-(Xo)<-O<-(F')+(Xo), in which case x * = x 0 , or
when I Gjt becomes smaller than some prespecified constant. In this case
minxes, maxg~cjg(x) can be calculated in constant time by a brute-force
method.

Let c = x* be the relative center of P on (7. Again we construct in O(n) time
the tree of shortest paths Q(c) from c to the vertices of P. Lemmas 2 and 3 allow
us to determine either that c is the geodesic center of P, or else on which side
of C that geodesic center must lie.

This completes the description of the R E L C E N procedure, and leads to the
following result.

T h e o r e m 1. The relative geodesic center of a simple polygon P along a cut C, and
the portion of P cut by C which contains the true geodesic center of P, can be
calculated in linear time, given a triangulation of P.

622 R. Pollack, M. Shadr, and G. Rote

Remark. This algorithm is used as a subroutine in the complete algorithm
GEOCEN given below, with the convention that if the output produced by
RELCEN is the geodesic center of P then the entire algorithm halts and outputs
this center.

4. The Algorithm GEOCEN

We are now in position to describe the complete procedure for the calculation
of geocen(P). It consists of the following steps.

I. Triangulate P (in time O(n log n) using the algorithm in Garey et al. [GJPT],
or more efficiently using the algorithm of Tarjan and Van Wyk [TV]). Place the
internal edges of the triangulation in a balanced binary tree T [Ch] such that:

(i) For each subtree T' of T, the edges stored at the nodes of T' bound a
collection of triangles that cover a connected simple subpolygon of P.

(ii) The number of edges in each of the two subtrees rooted at the left and
the fight children of a node e of T are both at least one-quarter of the
number of edges in the subtree rooted at e.

Such a balanced decomposition tree of P can be constructed in linear time [Gea],
or, by an alternative technique, in O(n log n) time [Ch].

We next search the tree T to locate the triangle Aabc of the triangulation of
P which contains the geodesic center of P. At each node of T along the search
path, we apply RELCEN to the corresponding diagonal e of P to determine
which side of e contains geocen(P), and then continue the search at the appropri-
ate child of that node. Hence in O(log n) applications of RELCEN, each of
which takes O(n) time, we obtain the desired triangle. Thus the total time required
by this step is O(n log n).

II. Next we want to locate a region within the triangle Aabc in which, for
each vertex v of P, the structure of the path g(x, v) and the analytic form of the
corresponding function d(x, v) are both uniquely determined by the vertex v.

To this end we construct the trees Q(a), Q(b), Q(c) of shortest paths from
a, b, and c, respectively, and record the k = O(n) "tangents", i.e., extensions of
shortest path edges toward the triangle Aabc that actually enter that triangle (see
Fig. 7). (As a matter of fact, we only need to calculate the portion of the tree
Q(a) consisting of shortest paths that do not cross the opposite side bc of our
triangle, and similarly for Q(b), Q(c).) Within any region determined by these
tangents the structure of g(x, v) and the analytic form of d(x, r) are both uniquely
determined for each vertex v. Our task is thus to determine the side of each one
of these tangents which contains geocen(P). To this end we use and adapt a
technique used by Megiddo [Me 1] in his linear-time algorithm for linear program-
ming in R 3. Specifically, we find the median slope of these tangents and let
Tt , . . . , Ttk/2 j have positive slope and Ttk/2j+t,..., Tk have negative slope with

Computing the Geodesic Center of a Simple Polygon

Fig. 7

623

respect to a new orientation of the axes where the x-axis is in the direction of
the median slope. Form the [k/2j intersections of the lines T~ and Ttk/2j÷~ for
i= 1 , [k/2J. Next find the median xl of the x-coordinates of these [k/2j
intersection points. Take the cut Cx determined by the line x = xl in the triangle
Aabc and apply RELCEN to Cx to determine which side of C~ contains the
geodesic center. For the roughly k/4 intersection points lying on the other side
of Cx find their median y-coordinate Yl. Take the cut Cy determined by the line
y = y~ in this triangle and apply RELCEN to Cy to determine which side of Cy
contains the geodesic center. Now for each of the roughly k/8 pairs of tangents
whose intersection lies in the quadrant determined by C~ and C r and opposite
to the quadrant containing the center, we can discard one of the two tangents
(since the side of it containing geocen(P) is now known). In addition, we add
the two half-planes bounded by the cuts Cx and Cy and containing geocen(P)
to a collection of half-planes that the algorithm constructs. Thus in O(log n)
applications of RELCEN we can find the side of each tangent containing
geocen(P), and at the same time obtain O(log n) half-planes whose intersection
is known to contain geocen(P). We then find an arbitrary point w lying in the
intersection of these half-planes, a task that can be accomplished in O(log n)
time, using Megiddo's technique for two-dimensional linear programming [Mel],
and then calculate the shortest-path tree Q(w) in O(n) time. By the preceding
discussion, the combinatorial structure of Q(w) and of Q(geocen(P)) are the
same, so that the analytic form of each function d (x, v) throughout the intersection
of those half-planes can be readily determined. Clearly, this substep also runs
in O(n log n) time.

Remark. In the preceding arguments we have assumed that geocen(P) is an
interior point of P. It is easy to check, using Lemma 2, that if geocen(P) lies in
the relative interior of an edge of P, the procedure sketched above will locate a
region containing the center, and will properly obtain the fixed analytic form of

624 R. Pollack, M. Sharir, and G. Rote

the functions d(x, v) for x in that region. Finally, if geocen(P) is a vertex of P
(which is to say, geocen(P) is a, b, or c) then it must be a reflex vertex, and so
be incident to a side of Aabc which is also a cut of P. But then a preceding
application of RELCEN to that cut would have found geocen(P) to lie on
that cut, and consequently would have terminated our algorithm. Hence in
step II, and in the succeeding step III, we can assume that geocen(P) is not a
vertex of P.

Ill. The problem is now reduced to finding the minmax of a family of functions
dr(x) = d(x, v~) = [XVk<i)l+ C, where ci = d(Vk,), v~), for i = 1 , . . . , n. Note that the
preceding remark and discussion allow us to ignore P completely and regard
each of the functions di(x) as being defined over the entire plane, because
geocen(P) must be the unique global minimum of F(x)-max~ d~(x). As noted
in the Introduction, this problem can be restated as follows: given n circles in
the plane, find the smallest circle which contains all of them. The simpler
one-center problem (in which instead of n circles we are given n points) has for
some time now linear-time solutions [Me1] (see also Dyer [Dy2] for an adaptation
of this technique to the weighted one-center problem). A very recent result of
Megiddo [Me4], obtained after the original preparation of this paper, shows how
to solve this last problem in time O(n). Our original solution has time complexity
O(n log n loglog n), and is accomplished by yet another technique due to
Megiddo [Me2] which uses parallel algorithms in the design of efficient sequential
optimization algorithms. It can be found in a preceding version [PS] of this
paper, but we omit the details here since this technique is fairly involved, and is
superseded anyway by [Me4].

Megiddo's solution is an adaptation of his linear-time algorithm for linear
programming in R d [Me3] and proceeds roughly as follows. The problem is
restated as: find a point x* -- (x, z) E R 3 which minimizes z, subject to the con-
straints z-c~>-Ixvko) t for i = 1 , . . . , n. Now for any i ~ j let H U be the plane

(Z -- Ci) 2 --I X l J k (i) [2 = (Z - - Cj) 2 --[X~)k(j)[2.

If we can determine which side of H~ contains the point x* where the desired
minimum of z is attained, then we can eliminate one of the constraints z - c~ ->
[XVktO], Z--Cj>]XVk~>I, from further consideration. This observation allows
Megiddo to eliminate some fixed fraction of the constraints in linear time, using
essentially the same ideas as in [Me3], thereby obtaining an overall linear-time
performance.

We thus obtain our main result.

Theorem 2. The geodesic center of a simple polygon having n sides can be calculated
in O(n log n) time.

5. Discussion

We have presented a rather involved algorithm for computing the geodesic
center of an n-sided simple polygon in time O(n log n). While this constitutes a

Computing the Geodesic Center of a Simple Polygon 625

significant improvement over the previous algorithm [AT], we have no matching
nonlinear lower bound on the complexity of the problem. An obvious open
problem is whether the geodesic center can be calculated in linear time (say when
a triangulation of the polygon is given). In attempting to enhance the efficiency
of our technique to achieve this goal, a major subproblem that arises is that each
application of RELCEN to a cut of the polygon P has to process the entire
collection of the vertices of P, even when the center of P is already known to
lie in a smaller subpolygon of P. We do not see how to exploit the information
provided by previous applications of RELCEN to reduce the complexity of
subsequent applications of this procedure.

Acknowledgments

The authors wish to thank Godfried Toussaint, for introducing the problem and
for some helpful discussions on it, Arie Tamir, for discussions on the problem
and for some helpful comments, observations, and references that helped us a
lot in the preparation of the paper, Nimrod Megiddo, for discussion of the
problem (which has eventually led to his improved linear-time solution of the
last substep of the problem [Me4]), and J~inos Pach, for discussions concerning
the notion of P-convexity. Some ideas concerning this problem were discussed
at the Workshop on Movable Separability of Sets at the Bellairs Research Institute
of McGill University, and at the research seminar on computational geometry
at the Courant Institute; we wish to thank the participants of these two groups
for stimulating discussions of these ideas.

References

[AT]

[Ch]

[Dyl]

[Dy2]

[GJPT]

[Gea]

[LP]

[Lea]

[Mel]

Asano, T., and Toussaint, G. T. (1985). Computing the geodesic center of a simple polygon,
Technical Report SOCS-85.32, McGill University.
Chazelle, B. (1982). A theorem on polygon cutting with applications, Proc. 23rd IEEE
Syrup. on Foundations of Computer Science, pp. 339-349.
Dyer, M. E. (1984). Linear-time algorithms for two- and three-variable linear programs,
SIAM J. Comput. 13, pp. 31-45.
Dyer, M. E. (1986). On a multidimensional search technique and its applications to the
Euclidean one-center problem, SIAM J. Computing 15, pp. 725-738.
Garey, M. R., Johnson, D. S., Preparata, F. P., and Tarjan, R. E. (1978). Triangulating a
simple polygon, Inform. Process. Lett. 7, pp. 175-180.
Guibas, L., Hershberger, J., Leven, D., Sharir, M., and Tarjan, R. E. (1987). Linear-time
algorithms for visibility and shortest path problems inside a triangulated simple polygon,
Algorithmica 2, pp. 209-233.
Lee, D. T., and Preparata, F. P. (1984). Euclidean shortest paths in the presence of rectilinear
barriers, Networks 14(3), pp. 393-410.
Lenhart, W., Pollack, R., Sack, J., Seidel, R., Sharir, M., Suri, S., Toussaint, G. T., Yap,
C., and Whitesides, S, (1987). Computing the link center of a simple polygon, Proc. 3rd
ACM Syrup. on Computational Geometry, pp. 1-10.
Megiddo, N. (1983). Linear-time algorithms for linear programming in R 3 and related
problems, SIAM J. Comput. 12, pp. 759-776.

626 R. Pollack, M. Sharir, and G. Rote

[Me2]

[Me3]

[Me4]

[PSI

[Sut]

[Su2]

[TV]

[Ze]

Megiddo, N. (1983). Applying parallel computation algorithms in the design of serial
algorithms, J. Asso~ Comput. Mach~ 30, pp. 852-866.
Megiddo, N. (1984). Linear programming in linear time when the dimension is fixed,
J. Assoc. Comput. Mach. 31, pp. 114-127.
Megiddo, N. (1989). On the ball spanned by halls, Discrete Comput. Geom., this issue, pp.
605-610.
Pollack, R., and Sharir, M. (1986). Computing the geodesic center of a simple polygon,
Technical Report 231, Computer Science Department, Courant Institute, New York Univer-
sity, September 1986.
Suri, S. (1986). Computing the geodesic diameter of a simple polygon, Technical Report
JHU/EECS-86/08, Department of Electrical Engineering and Computer Science, Johns
Hopkins University.
Suri, S. (1986). Polygon partitioning techniques for link distance problems, Technical
Report, Department of Electrical Engineering and Computer Science, Johns Hopkins
University.
Tarjan, R. E., and Van Wyk, C. J. (1988). An O(n log log n)-time algorithm for triangulating
simple polygons, SIAMJ. Computo 17, pp. 143-178.
Zemel, E. (1984). An O(n) algorithm for the linear multiple choice knapsack problem and
related problems, Inform. Process. Lett. 18, pp. 123-128.

Received September 17, 1986, and in revised form July 30, 1987.

