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Abstract. The geodesic center of a simple polygon is a point inside the polygon 
which minimizes the maximum internal distance to any point in the polygon. We 
present an algorithm which calculates the geodesic center of a simple polygon with 
n vertices in time O(n log n). 

I. Introduction 

The problem addressed in this paper,  to locate the point  inside a s imple polygon 
P whose maximal  in ternal  distance (by a route inside P)  from any point  inside 
P is min imal ,  is a general izat ion of the Eucl idean facility locat ion problem which 
asks for the location of the point  (facility) which is least far (in the Eucl idean 
metric) from the furthest of  a finite set of  points  (the communi ty  which the facility 
is to serve) [Me],  [Dy2]. Indeed,  since the furthest  point  from a point  inside a 
polygon is always a vertex of  the polygon,  the geodesic center  of the convex hull  
of the commun i ty  to be served is the solut ion to the s tandard  facility locat ion 
problem. We can consider  the problem of finding the geodesic center  as another  
kind of  cons t ra ined  facility location problem where we want,  e.g., to locate an 
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emergency service on a polygonal island or a nurses station on a polygonal 
hospital floor. See Fig. 1 for an illustration of  the geodesic center problem. The 
standard Euclidean facility location problem can be solved in time O(n) [Mel ], 
[Dy2], but its extension to the problem of finding the geodesic center of  a simple 
polygon appears to be more difficult. 

The problem of computing the geodesic center of  a simple polygon has been 
considered by Asano and Toussaint [AT]. They show that the geodesic center is 
unique and present an algorithm to compute it in time O(n 4 log n), where n is 
the number of vertices in the given polygon. The main idea of  their algorithm is 
to construct the geodesic furthest-point Voronoi diagram of  the vertices of the 
polygon and then to locate the geodesic center at either a vertex of the Voronoi 
diagram or at the midpoint of  a geodesic diameter (i.e., a shortest path inside 
the polygon joining two vertices which has maximal length over all choices of 
pairs of vertices). We will also use the term "geodesic diameter" to denote the 
length of  that path. There have been many algorithms to find the geodesic diameter 
of  a simple polygon. The best result at the present time is an O(n log n)-time 
and O(n)-space  algorithm due to Suri [Sul] .  

A related problem is to compute the link diameter and the link center of a 
simple polygon, where the link distance between two points is the minimum 
number of  edges in a polygonal path joining them inside the polygon and where 
the link center and diameter are defined in an analogous manner to the definition 
of  geodesic center and diameter. In this case the link center is no longer unique 
but consists of  a polygon which may be as large as the entire given polygon. Suri 
[Su2] has an O(n log n)-time and O(n)-space algorithm which computes the 
link diameter o f  a simple polygon and Lenhart etal. [Lea] presents an O(n 2) 
algorithm for computing the link center of  a simple polygon. E1-Gindy (private 
communication) also reports similarly efficient algorithms for computing the link 
center. 

Our algorithm proceeds as follows. We start with a triangulation of the polygon 
P, then perform something like a binary search through the diagonals of the 
triangulation, determining at each tested diagonal, via the algorithm RELCEN 
to be described in Section 3 below, on which side of  that diagonal the geodesic 
center lies. In this way we locate a triangle which contains the geodesic center. 



Computing the Geodesic Center of a Simple Polygon 613 

However, as we move around in this triangle the combinatorial structure of the 
shortest path to a given vertex can change. We next use a modification of  
Megiddo's method for solving linear programming problems in linear time [Me 1 ] 
(see also Dyer [Dyl])  to find a polygon R (containing the geodesic center) within 
this triangle where the structure of the path from each point x e R to each vertex 
v of  P remains constant, and consists of the straight segment from x to some, 
possibly different, vertex followed by a fixed path of  known length to v. In other 
words, in our final subregion R, the internal distance from a point x to the ith 
vertex of P has a fixed analytic expression of the form I xu~l + q, for i = 1, 2 , . . . ,  n 
(where Ixu~l denotes the Euclidean distance from x to u~). The problem that 
remains is equivalent to that of finding a smallest circle that contains a given 
collection of  n circles (where the ith circle is centered at us and has radius q). 
This final task can be accomplished in linear time by a recent algorithm of  
Megiddo [Me4]. 

The total time complexity of our algorithm is O(n log n). 
The paper is organized as follows. In Section 2 we present the geometric 

preliminaries needed to justify the algorithm RELCEN which is presented in 
Section 3. In Section 4 we present the complete algorithm, and concluding remarks 
are given in Section 5. 

2. Geometric Preliminaries 

Definitions. Let P be a simple polygon with n sides; that is P is a closed and 
bounded simply connected planar region whose boundary consists of  n (noninter- 
secting) line segments. We assume that P is given as input by the circular sequence 
of its vertices in their (say, counterclockwise) order along the boundary of P. 
For x, y in P, g(x,y) is the shortest path inside P between x and y, d(x,y) is 
the length of  this path. Furthermore, let xy denote the straight line segment with 
endpoints x and y and let lxyl denote its length. Finally, we let u(x, y) denote 
the unit vector in the direction that the path g(x, y) starts at from x, and define 
the geodesic angle /_xyz as the smaller of  the two angles between u(y, x) and 
u(y, z). A subset C of  P is called P-convex if whenever x, y are in C, g(x, y) is 
a subset of  C. It immediately follows that the intersection of P-convex sets is 
P-convex, and that P-convex sets are connected. 

As shown in Lee and Preparata [LP], g(x, y) is a polygonal path whose corners 
are vertices of  P. For a fixed point x in P, the union of  g(x, v) over all vertices 
v of P is a planar tree Q(x) (rooted at x), which we call the shortest path tree 
of P (with respect to x). This tree has n nodes, namely the vertices of  P, and its 
edges are straight segments connecting these nodes. It has been shown by Guibas 
et al. [Gea] that, given a triangulation of  P, this tree can be computed in linear time. 

Given three points a, b, c in P, consider the geodesic paths g(a, b), g(b, c), 
and g(c, a).  There exist points a', b', and c' such that the paths g(a, b) and 
g(a, c) intersect in the path g(a, a'), the paths g(b, c) and g(b, a) intersect in 
g( b, b'), and finally the paths g( c, a) and g( c, b) intersect in g( c, c'). Moreover, 
we see that the geodesic triangle Aa'b'c' has only reflex angles along its boundary 
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Fig. 2 

with the exception of  the angles at a', b', and c'. This follows from the fact that 
the sides g(a', b'), g(a',  c'), g(b', c') of this triangle do not intersect, and the 
interior of  this triangle is fully contained in P;  thus any nonreflex angle along, 
say, g(a',  b') would allow us to shortcut g(a, b) within P, thereby contradicting 
its geodesicity (such a triangle is portrayed in Fig. 2). 

Lemma 1. As  x varies along g( b, c), d( a, x) is a convex function of  d( b, x), and 
d(a, x) <max{d(a ,  b), d(a, c)}. 

Proof. Let a', b', c' be the "bifurcation points" of  the paths g(a, b), g(a, c), 
g(b, c), as defined above. Write t = d(b, x) and d/(t) = d(a, x), for x in g(b, c). 
Clearly, ~b(t) is a well-defined continuous and piecewise smooth function of t. 
Moreover, for x ¢ g(b, b') we have 0 ' ( t )  = -1 ,  and for x ~ g(c', c) we have ~b'(t) = 
+1. For x e g(b',  c'), we can easily check, using the law of  cosines, that the right 
derivative (~,')+(t) of  0 at t = d(b, x) is - c o s  O(t), where O(t) is the angle between 
u(x, a)  and u(x, c). Similarly, the left derivative (O')-(t)  of ~ at t is +cos O(t), 
and O(t) is the angle between u(x, a) and u(x, b). But O(t)+O(t)> 7r, because 
g(b', c') has only reflex angles; thus cos O(t)-< -cos  O(t), i.e., (0')-(t)-< (0')+(t). 
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Moreover, assume that a, b, c are arranged so that as x varies along g(b', c') 
from b' to c', the vector u(a' ,  x) (weakly) turns clockwise (as in Fig. 2). Then, 
using the fact that the edges of the geodesic triangle Aa'b'c '  have only reflex 
angles, it is easy to check that as x varies in the above manner, the vector u(x, a) 
strictly turns clockwise, whereas the vector u(x, c) weakly turns counterclockwise 
(see Fig. 2). Thus O(t) is strictly increasing along g(b', c'), and thus ~b'(t) i~ 
piecewise continuous and increasing along g(b, c), from which convexity of  4/ 
follows. 

Finally, note that ~/, is actually strictly convex on g(b', c'), whereas it is linear 
with slope -1 ,  +1 along the remaining subpaths g(b, b'), g(c',  c), respectively. 
This is easily seen to establish the second assertion of the lemma. [] 

Corollary 1. The closed ball of radius r at x, B ( r , x ) = { y ~ P I d ( x , y ) < r } ,  is 
P-convex. 

The proof  of  the lemma also implies 

Corollary 2. With the notation of  the lemma, if the geodesic a n g l e / b a ' c  at a' is 
greater than or equal to 7r / 2 then d ( b, c) > d ( a', b ), d ( a', c ). 

It is obvious that d(a, x) is maximized for x a vertex of P. 
Let F ( x ) =  maxv d(x, v), where the maximum is taken over the vertices v of 

P. Clearly, F is continuous and therefore has a minimum value called the geodesic 
radius of P and denoted gr(P).  The set of  points 

G( P) = {x ~ PI F (x )  = gr(P)} 

is the intersection of  the closed balls of radius gr(P) centered at the vertices of  
P. If G(P)  contained two distinct points x, y it would have to contain g(x, y) 
and the geodesic distance from a vertex would have to be constant along each 
segment of  g(x, y), which is clearly impossible by Lemma 1. Hence G(P)  consists 
of a single point, called the geodesic center of P, and denoted by geocen(P) (see 
also [AT]). 

Let c be a point of  P and let the set of  furthest vertices from c be V(c )=  
{v~, v 2 , . . . ,  vk}. The following lemma gives sufficient conditions for such a point 
c to be the geodesic center. 

Lemma 2. I f  the set {u(c, v)[ v ~ V(c)} does not lie in an open half-plane through 
c then c = geocen(P).  Furthermore, ifc is a vertex o fPandfor  somepair Vl, v2 ~ V(c) 
the geodesic angle/_v~cv2 meets the exterior of  P in a neighborhood of  c then also 
c = geocen(P) .  

Proof Suppose first c is not a vertex of  P. For any v~ in V(c), the line through 
c orthogonal to u(c, v~) determines a diagonal D~ of  P which separates P into 
two components (the "sides" of D~). Suppose that x is a point of P lying on the 
side of  D~ which does not contain v~; then g(x, v~) must cross D~, say at x' and 
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since either x '  = c or the geodesic angle/_x'cvi is ~ / 2  we see, by Corollary 2, that 
d(x,  vi) > d(x ' ,  v~) > d(c, vi) = F(c) ,  whence x is not geocen(P) (see Fig. 3). Hence 
geocen(P) must be contained in the intersection of  all (closed) half-polygons 
P~ . . . .  , Pk, where P~ is the side of  Di containing v.  and the assumptions of the 
lemma imply that this intersection is {c}. Similar arguments apply if c is a vertex 
of  P. [] 

Remark. If two directions u(c, v~) and u(c, v2) are opposite, then again c is the 
geodesic center and g(v~, v2) is a geodesic diameter (whose midpoint is c). 

Definition. Given a cut of  P, i.e., a segment C which is openly contained in P 
and has endpoints on the boundary of  P, thus separating P into two components, 
the relative center of  P on C is the unique point c of  C which minimizes F(x)  
for x in C and is denoted RELCEN(C)  = c. 

After having found the relative center c on a cut C we would like to know 
where to look for the geodesic center. The case that it lies on C (and hence 
geocen(P)  = c) has been covered by the previous lemma. In the complementary 
case, the following lemma enables us to determine on which side of C the geodesic 
center lies. 

Lemma 3. Let c = RELCEN(C) ,  and assume that the cone with apex c spanned 
by all directions u(c, v) for v in V(c) lies in an open half-plane passing through c, 
so that its intersection with a sufficiently small neighborhood of  c is wholly contained 
in P. Let u* be a unit vector in the direction o f  the bisector of  the angle of  this cone. 
Then geocen(P)  lies on the side of  C to which u* points (see Fig. 4). 

Proof. Let d(c, v) = r for each v in V(c), while the next furthest vertex from c 
has geodesic distance r ' <  r from c. Note that for c' in B ( r - r ' ,  c) the distance 
from c' to any vertex not in V(c) is at most r. Choose a positive 8 < m i n { r -  r', p}, 
where p is the length of  the smallest initial segment of  g(c, v) for v in V(c), 
sufficiently small so that the boundary of  B = B(8, c) consists of  a single circular 
arc and possibly a portion of  at most two segments of  the boundary of  P (the 
latter might occur only in case c is on the boundary of  P). Let H be the line 
passing through c and perpendicular to n*. For each v e  V(c) let h(v)  be the 



Computing the Geodesic Center of a Simple Polygon 617 

¥Z 

V(c)={v,.v2} 

1 

Fig. 4 

perpendicular distance from H to p~, where p~ is the intersection of  g(c, v) and 
the boundary of B(8, c), and let h=min~v(c)h(v) .  The point c + h u * = p  in 
B(8, c) satisfies d(p, v) < r for all vertices v of P, since for v in V(c), 

d(p, v) < d(p, p~) + d(pv, v) < d( c, pv) + d(p~, v) = r, 

and we have already seen that d(p, v) < r for the other vertices of P. Hence p 
lies in the intersection of the closed balls of some radius r" < r at each of the 
vertices of P. Since the geodesic center of P must also lie in this intersection 
which is connected (since P-convex) and disjoint from C (since, by definition 
of RELCEN(C) ,  F_> r >  r" on C), we see that the geodesic center of P lies on 
the same side of C as p. [] 

3. The Algorithm RELCEN 

Suppose a triangulation of  P is given. Let C be a cut of P, i.e., C is openly 
contained in P and has endpoints a and b on the boundary of P; thus C splits 
P into two portions P~,/)2. For the sake of exposition, the subsequent analysis 
deals only with that portion of P, say P~, which, in a sufficiently small neighbor- 
hood of C, lies to the left of the directed segment a-~. Symmetric arguments will 
apply to the other portion/)2 of P. 

We construct, in linear time [Gea], the tree Q(a) of shortest paths from a to 
the vertices of/)1 and the tree Q(b) of shortest paths from b to the vertices of  
P~. Let v be any vertex of/)1. It is shown [Gea] that v is visible from some point 
in C if and only if the geodesic triangle Aabv has only reflex angles along its 
two sides g(a, v), g(b, v). When this is the case, v is visible from (each point in) 
a subinterval pq of C, where p and q are the intersections of C with the extensions 
of the last edges v=v, vbv along g(a, v), g(b, v), respectively; see Fig. 5. Thus v 
is visible from C if and only if the parents v=, vb of v in Q(a), Q(b), respectively, 
are distinct. 
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It also follows easily from Guibas et al. [Gea]  that if  v is visible from C and 
has a child w in Q(a)  (resp. in Q(b))  such that vavw is a right (resp. a left) turn, 
then w is also a child of  v in the other tree, and is not visible from C. Hence 
each child w of  a visible vertex v in Q(a)  or in Q(b) is o f  one of  the following 
three types: 

(i) w is invisible from C (and is a child of  v in both trees Q(a),  Q(b)).  
(ii) w is visible from C, is a child of  v only in Q(a) ,  and vavw is a left 

turn. 
(iii) w is visible f rom C, is a child of  v only in Q(b),  and VbVW is a right 

turn. 

Let c(v) denote the maximum geodesic distance from v to any invisible vertex 
in the subtree of  Q(a )  (or of  Q(b))  rooted at v; if no such vertex exists, c(v) = 0. 

Define a function dj(v) on the vertices v of  P~ recursively as follows: 

(a) I f  v is invisible from C, put dl(v) = c(v). 
(b) I f  v is visible from C, let dj(v) be the maximum of c(v) and of max{d~(w~) + 

I w~v[: w~ is a type (ii) child of  v}. 

Similarly we define a symmetric function dr(v) in terms of  the type (iii) children 
of  v. 

Let v be a visible vertex of  P~, and let w~ . . . . .  wk be the children of  v of  type 
(ii) arranged in counterclockwise order around v. Extend the segments 
w~ v, . . . .  wkv past v until they intersect C at the respective points s ~ , . . . ,  SE. Let 
So be the intersection of  C with the extension of  ray, and let sk+~ be the intersection 
of  C with the extension of VbV. For each i = 0 , . . . ,  k define a function 

, I l xv t+max(c (v ) , l vw~l+dt (ws) :J>i ) ,  
f v.i( x ) = t -oo , 

x ~ [ s .  s~÷l], 

otherwise, 

and, in a completely symmetric manner,  we define a corresponding collection of 
partial functions f~,i induced by type (iii) children in Q(b). We also repeat the 
entire construction for  the other portion P2 of  P, obtaining similar collections of  
functions f~.~, f~j  for vertices v of  P2. Enumerate  all these functions as gl ,  • • . ,  gin. 
Note that m = O(n),  because each function is determined uniquely either by a 
pair o f  adjacent type (ii) or type (iii) children of  some visible vertex v in Q(a)  
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or in Q(b),  or by the parent of  v in one of these trees and one of  the two 
"extreme" corresponding type (ii) or type (iii) children of v in that tree. Since 
each of  these trees has linear size, the property follows. 

Let F(x) = maxw d (x, w) for x e C, where the maximum is taken over all vertices 
w of P. 

Lemma 4. F(x) =max~.,~.ifo~i(x), where the maximum is taken over all visible 
vertices v, tr ~ {1, r}, and indices i corresponding to type (ii) or (iii) children of  v. 

Proof. Let x ~ C. Clearly, each f~ (x ) ,  when it is defined, is a geodesic distance 
from x to some vertex w of P, thus F(x)>max~.~.~f~(x). On the other hand, 
for each vertex w of, say Pl, d(x, w) is obtained by going along a straight segment 
from x to some vertex v (visible from x), and then following the shortest path 
g(v, w) from v to w. I f  w = v then clearly d(x, w)<-f,~.~(x) for some tr and i. 
Otherwise, let z be the next vertex after v along g(v, w). I f  z is invisible from C 
then so is w and we have 

d(x, w)=lxvl+d(v, w)<-Ixvl+c(v)<<-fL(x) 

for some o- and i. I f  z is a type (ii) child of  v, say z = wj in the above notation, 
then for some i < j  the function flv.~(x) is different from -oo, and 

d(x, w)=lxvl+tvzl+ d(z, w)<~Ixvl +lvwjl+ d~(wj) 

as is easily checked. By definition, then, d(x, w)<-f~v,~(x). Since a symmetric 
inequality can be obtained in case z is a type (iii) child, the assertion of the 
lemma follows easily. [] 

Thus, to calculate x* = R E L C E N ( C ) ,  we need to calculate 

min maxf~i (x) .  

It follows from Lemma 1 that the pointwise maximum of these functions, namely 
F(x), is convex on C. Thus, considering C as an interval on the x-axis, given 
any point Xo~ C, we can determine whether x*<Xo, X*>Xo, or x*=xo, by 
calculating (in time proportional to the number of  functions gj) F(xo)= 
maxj gj(xo) and its one-sided derivatives at Xo. I f  the left derivative (F')-(Xo) is 
positive (resp. the right derivative (F')+(x0) is negative, resp. (F ' )-(Xo)-<0 < - 
(F')+(Xo)) then x * <  Xo (resp. x * >  Xo, x * =  Xo). These derivatives are defined in 
the following manner. I r a  single function gj attains F at xo then (F')±(Xo) = g~(xo). 
Otherwise we have (F')-(Xo)= mini g~(Xo), (F')+(Xo)= max~ g~(xo), where these 
extrema are calculated over all gj attaining F at Xo; if any of the functions gj is 
defined only on one side of  Xo, it appears only in the expression defining the 
corresponding one-sided derivative of  F and not in that of  the other one. 

These observations allow us to apply Megiddo's technique for two-variable 
linear programming [Mel ]  to find x* in linear time. Since the functions g~ have 
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a somewhat irregular shape, some fine-tuning of  the technique is required. We 
perform O(log n) iterations; after the j th  iteration we will have obtained a 
subinterval /~ of C where x* is known to lie, and a subset Gj of the functions 
gi such that 

and 

I Cjl ~ m. (~)~ 

max g(x) = F ( x )  

for all xE/~. As in Megiddo [Mel],  each iteration will run in time linear in the 
number of  remaining functions (i.e., the functions in Gj), and this will imply 
overall O(n) performance of  the algorithm. Initially, lo=C and Go = 
{g~, . . . ,  gm}. Consider the j th  step. Combine the functions in Gj_~ into disjoint 
pairs. Let g, h be such a pair. We can assume without loss of generality that 
neither g nor h is - ~  throughout /j_~, or else we could simply discard that 
function. 

We define an extended intersection of g, h to be a point Xoe lj_~ such that 
g(x) > h(x) for x lying on one side of x0 sufficiently near it, while g(x)< h(x) 
on the other side of Xo sufficiently near it. Since each of g(x), h(x) has the form 
t xvl+ c for x in some interval Jr, and - m  otherwise, it is easily checked that g 
and h can have at most four extended intersections over/ j_t ,  of which at most 
two are real intersections, and the others occur at endpoints of the domains of 
g or of h. (A special case arises when the domains of  g, h are disjoint; in this 
case we choose an arbitrary point Xo lying between these two domains, and call 
it the (unique) extended intersection of g and h.) See Fig. 6 for an illustration 
of  extended intersections. It follows easily from definition that if g, h have no 
extended intersections in/j_~, then one of them, say g, is larger than h throughout 
/~_~, and consequently we simply discard h in this case. 

Let S denote the collection of all O(n) extended intersections of the pairs g, 
h. Find the median Xo of  these intersections. Calculate F(xo)= m a x ~ j _ ,  g(xo) 
and its one-sided derivatives at Xo (in the manner explained above, which takes 
O(t Gj-tl ) time) to determine which side ofxo contains x*. Next take the extended 
intersections lying on that side of Xo, find their median x~, and determine which 
side of x~ contains x*. Repeating this procedure one more time, we obtain a 
subinterval /j of/j_~ known to contain x*, so that at most one-eighth of the 
extended intersections lie in / j .  Since each pair of  functions contributes at most 
four points to the set S, it follows that for at least half of the pairs g, h, all their 
extended intersections lie outside/ j ,  and consequently we can determine which 
of  g, h is dominated by the other function throughout/~,  and discard it from 
further consideration (the idea of  using multiple medians at a single iteration of 
the algorithm is adapted from Zemel [Ze]). The remaining functions constitute 
the next subcollection Gj, and the process is repeated again. Note that we will have 

F(x)=maxg(x)  
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for all x e / j ,  and that IGjI~IG~-,[. This procedure stops either when at 
some median x0 we have (F')-(Xo)<-O<-(F')+(Xo), in which case x * = x 0 ,  or 
when I Gjt becomes smaller than some prespecified constant. In this case 
minxes, maxg~cjg(x)  can be calculated in constant time by a brute-force 
method. 

Let c = x* be the relative center of  P on (7. Again we construct in O(n) time 
the tree of  shortest paths Q(c) from c to the vertices of  P. Lemmas 2 and 3 allow 
us to determine either that c is the geodesic center of  P, or else on which side 
of  C that geodesic center must lie. 

This completes the description of  the R E L C E N  procedure, and leads to the 
following result. 

T h e o r e m  1. The relative geodesic center of  a simple polygon P along a cut C, and 
the portion of  P cut by C which contains the true geodesic center of  P, can be 
calculated in linear time, given a triangulation of P. 
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Remark. This algorithm is used as a subroutine in the complete algorithm 
GEOCEN given below, with the convention that if the output produced by 
RELCEN is the geodesic center of  P then the entire algorithm halts and outputs 
this center. 

4. The Algorithm GEOCEN 

We are now in position to describe the complete procedure for the calculation 
of  geocen(P).  It consists of  the following steps. 

I. Triangulate P (in time O(n log n) using the algorithm in Garey et al. [GJPT], 
or more efficiently using the algorithm of  Tarjan and Van Wyk [TV]). Place the 
internal edges of the triangulation in a balanced binary tree T [Ch] such that: 

(i) For each subtree T' of  T, the edges stored at the nodes of  T' bound a 
collection of triangles that cover a connected simple subpolygon of P. 

(ii) The number of edges in each of the two subtrees rooted at the left and 
the fight children of  a node e of T are both at least one-quarter of the 
number of  edges in the subtree rooted at e. 

Such a balanced decomposition tree of P can be constructed in linear time [Gea], 
or, by an alternative technique, in O(n log n) time [Ch]. 

We next search the tree T to locate the triangle Aabc of the triangulation of 
P which contains the geodesic center of P. At each node of T along the search 
path, we apply RELCEN to the corresponding diagonal e of  P to determine 
which side of e contains geocen(P),  and then continue the search at the appropri- 
ate child of  that node. Hence in O(log n) applications of RELCEN, each of 
which takes O(n) time, we obtain the desired triangle. Thus the total time required 
by this step is O(n log n). 

II. Next we want to locate a region within the triangle Aabc in which, for 
each vertex v of P, the structure of the path g(x, v) and the analytic form of the 
corresponding function d(x, v) are both uniquely determined by the vertex v. 

To this end we construct the trees Q(a), Q(b), Q(c) of shortest paths from 
a, b, and c, respectively, and record the k = O(n) "tangents", i.e., extensions of 
shortest path edges toward the triangle Aabc that actually enter that triangle (see 
Fig. 7). (As a matter of  fact, we only need to calculate the portion of  the tree 
Q(a) consisting of shortest paths that do not cross the opposite side bc of our 
triangle, and similarly for Q(b), Q(c).) Within any region determined by these 
tangents the structure of  g(x, v) and the analytic form of  d(x, r) are both uniquely 
determined for each vertex v. Our task is thus to determine the side of each one 
of  these tangents which contains geocen(P).  To this end we use and adapt a 
technique used by Megiddo [ Me 1] in his linear-time algorithm for linear program- 
ming in R 3. Specifically, we find the median slope of  these tangents and let 
Tt , . . . ,  Ttk/2 j have positive slope and Ttk/2j+t,..., Tk have negative slope with 
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respect to a new orientation of the axes where the x-axis is in the direction of 
the median slope. Form the [k/2j intersections of the lines T~ and Ttk/2j÷~ for 
i=  1 . . . .  , [k/2J. Next find the median xl of the x-coordinates of these [k/2j 
intersection points. Take the cut Cx determined by the line x = xl in the triangle 
Aabc and apply RELCEN to Cx to determine which side of C~ contains the 
geodesic center. For the roughly k/4 intersection points lying on the other side 
of Cx find their median y-coordinate Yl. Take the cut Cy determined by the line 
y = y~ in this triangle and apply RELCEN to Cy to determine which side of Cy 
contains the geodesic center. Now for each of the roughly k/8 pairs of tangents 
whose intersection lies in the quadrant determined by C~ and C r and opposite 
to the quadrant containing the center, we can discard one of the two tangents 
(since the side of it containing geocen(P) is now known). In addition, we add 
the two half-planes bounded by the cuts Cx and Cy and containing geocen(P) 
to a collection of half-planes that the algorithm constructs. Thus in O(log n) 
applications of RELCEN we can find the side of each tangent containing 
geocen(P), and at the same time obtain O(log n) half-planes whose intersection 
is known to contain geocen(P). We then find an arbitrary point w lying in the 
intersection of these half-planes, a task that can be accomplished in O(log n) 
time, using Megiddo's technique for two-dimensional linear programming [Mel], 
and then calculate the shortest-path tree Q(w) in O(n) time. By the preceding 
discussion, the combinatorial structure of Q(w) and of Q(geocen(P)) are the 
same, so that the analytic form of each function d (x, v) throughout the intersection 
of those half-planes can be readily determined. Clearly, this substep also runs 
in O(n log n) time. 

Remark. In the preceding arguments we have assumed that geocen(P) is an 
interior point of P. It is easy to check, using Lemma 2, that if geocen(P) lies in 
the relative interior of an edge of P, the procedure sketched above will locate a 
region containing the center, and will properly obtain the fixed analytic form of 
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the functions d(x, v) for x in that region. Finally, if geocen(P) is a vertex of P 
(which is to say, geocen(P) is a, b, or c) then it must be a reflex vertex, and so 
be incident to a side of  Aabc which is also a cut of P. But then a preceding 
application of RELCEN to that cut would have found geocen(P) to lie on 
that cut, and consequently would have terminated our algorithm. Hence in 
step II, and in the succeeding step III, we can assume that geocen(P) is not a 
vertex of  P. 

Ill.  The problem is now reduced to finding the minmax of a family of functions 
dr(x) = d(x, v~) = [XVk<i)l+ C, where ci = d(Vk,), v~), for i = 1 , . . . ,  n. Note that the 
preceding remark and discussion allow us to ignore P completely and regard 
each of the functions di(x) as being defined over the entire plane, because 
geocen(P) must be the unique global minimum of F(x)-max~ d~(x). As noted 
in the Introduction, this problem can be restated as follows: given n circles in 
the plane, find the smallest circle which contains all of  them. The simpler 
one-center problem (in which instead of n circles we are given n points) has for 
some time now linear-time solutions [Me1] (see also Dyer [Dy2] for an adaptation 
of  this technique to the weighted one-center problem). A very recent result of 
Megiddo [Me4], obtained after the original preparation of  this paper, shows how 
to solve this last problem in time O(n). Our original solution has time complexity 
O(n log n loglog n), and is accomplished by yet another technique due to 
Megiddo [Me2] which uses parallel algorithms in the design of efficient sequential 
optimization algorithms. It can be found in a preceding version [PS] of this 
paper, but we omit the details here since this technique is fairly involved, and is 
superseded anyway by [Me4]. 

Megiddo's solution is an adaptation of his linear-time algorithm for linear 
programming in R d [Me3] and proceeds roughly as follows. The problem is 
restated as: find a point x* -- (x, z) E R 3 which minimizes z, subject to the con- 
straints z-c~>-Ixvko) t for i =  1 , . . . ,  n. Now for any i ~ j  let H U be the plane 

( Z -- Ci) 2 --I X l J k ( i ) [  2 = ( Z  - -  Cj ) 2 --[X~)k(j)[2. 

If  we can determine which side of  H~ contains the point x* where the desired 
minimum of z is attained, then we can eliminate one of  the constraints z - c~ -> 
[XVktO], Z--Cj>]XVk~>I, from further consideration. This observation allows 
Megiddo to eliminate some fixed fraction of the constraints in linear time, using 
essentially the same ideas as in [Me3], thereby obtaining an overall linear-time 
performance. 

We thus obtain our main result. 

Theorem 2. The geodesic center of  a simple polygon having n sides can be calculated 
in O(n log n) time. 

5. Discussion 

We have presented a rather involved algorithm for computing the geodesic 
center of  an n-sided simple polygon in time O(n log n). While this constitutes a 
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significant improvement over the previous algorithm [AT], we have no matching 
nonlinear lower bound on the complexity of the problem. An obvious open 
problem is whether the geodesic center can be calculated in linear time (say when 
a triangulation of the polygon is given). In attempting to enhance the efficiency 
of our technique to achieve this goal, a major subproblem that arises is that each 
application of RELCEN to a cut of the polygon P has to process the entire 
collection of the vertices of P, even when the center of P is already known to 
lie in a smaller subpolygon of P. We do not see how to exploit the information 
provided by previous applications of RELCEN to reduce the complexity of 
subsequent applications of this procedure. 
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