
Discrete Applied Mathematics 109 (2001) 3–24

Generalized self-approaching curves

Oswin Aichholzera ; 2, Franz Aurenhammera;2, Christian Ickingb; 1,
Rolf Kleinb;1, Elmar Langetepeb; ∗; 1, G�unter Rotec;2
aFernUniversit�at Hagen, Praktische Informatik VI, D-58084 Hagen, Germany

bTechnische Universit�at Graz, A-8010 Graz, Austria
cFreie Universit�at Berlin, Institut f�ur Informatik, D-14195 Berlin, Germany

Received 1 September 1998; revised 6 September 1999; accepted 9 February 2000

Abstract

We consider all planar oriented curves that have the following property depending on a �xed
angle ’. For each point B on the curve, the rest of the curve lies inside a wedge of angle ’
with apex in B. This property restrains the curve’s meandering, and for ’6�=2 this means that
a point running along the curve always gets closer to all points on the remaining part. For all
’¡�, we provide an upper bound c(’) for the length of such a curve, divided by the distance
between its endpoints, and prove this bound to be tight. A main step is in proving that the
curve’s length cannot exceed the perimeter of its convex hull, divided by 1 + cos’. ? 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

Let f be an oriented curve in the plane running from A to Z , and let ’ be an
angle in [0; �). Suppose that, for every point B on f, the curve segment from B to
Z is contained in a wedge of angle ’ with apex in B. Then the curve f is called
’-self-approaching, generalizing the self-approaching curves introduced by Icking and
Klein [4].
At the 1995 Dagstuhl Seminar on Computational Geometry, Seidel [1] posed the

following open problems. Is there a constant, c(’), so that the length of every ’-self-
approaching curve is at most c(’) times the distance between its endpoints? If so, how
small can one prove c(’) to be?
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Both questions are answered in this paper. We provide, for each ’ in [0; �), a
constant c(’) with the above property, and prove it minimal by constructing a ’-self-
approaching curve such that this factor c(’) is achieved.
Self-approaching curves are interesting for di�erent reasons. If a mobile robot wants

to get to the kernel of an unknown star-shaped polygon and continuously follows the
angular bisector of the innermost left and right reex vertices that are visible, the
resulting path is self-approaching for ’= �=2; see [4]. Since the value of c(�=2) is
known to be ≈5:3331, as already shown in Icking et al. [5], one immediately obtains
an upper bound for the competitive factor of the robot’s strategy. Improving on this,
Lee and Chwa [6] give a tight upper bound of � + 1 for this factor, and Lee et al.
[7] present a di�erent strategy that achieves a factor of 3:829, while a lower bound of
1:48 is shown by L�opez-Ortiz and Schuierer [8].
In the construction of spanners for euclidean graphs, one can proceed by recursively

adding to the spanning structure a point from a cone of angle ’, resulting in a sequence
p1; p2; : : : ; pn such that for each index i, pi+1; : : : ; pn are contained in a cone of angle
’ with apex pi; see [10] or [2]. Note, however, that such a sequence of points does
not necessarily de�ne a ’-self-approaching polygonal chain because the property may
not hold for every point in the interior of an edge.
Finally, such properties of curves are interesting in their own right. For example,

in the book by Croft et al. [3] on open problems in geometry, curves with increasing
chords are de�ned by the property that for every four consecutive points A; B; C; D
on the curve, B is closer to C than A to D. The open problem of how to bound the
length of such curves divided by the distance between its endpoints has been solved
by Rote [9]; he showed that the tight bound equals 2

3�. There is a nice connection to
the curves studied in this paper. Namely, a curve has increasing chords if and only if
it is �=2-self-approaching in both directions.
In this paper we generalize the results of [5] to arbitrary angles ’¡�. In Section

2 we prove, besides some elementary properties, the following fact. Let B; C and D
denote three consecutive points on a ’-self-approaching curve f. Then

CD6BD − cos’ length(f[B; C]);

where CD denotes the euclidean distance between points C and D and length(f[B; C])
denotes the length of f between B and C. This property accounts for the term
“self-approaching”; in fact, for ’6�=2 the factor cos’ is not negative, so that CD6BD
holds: The curve always gets closer to each point on its remaining part. Although this
property does not hold for ’¿�=2, we will nevertheless see that our analysis of the
tight upper bound c(’) directly applies to this case, too.
In Section 3 we show that the length of a ’-self-approaching curve cannot exceed

the perimeter of its convex hull, divided by 1+cos’. This fact is the main tool in our
analysis. It allows us to derive an upper bound for the curve’s length by circumscribing
it with a simple, closed convex curve whose length can be easily computed, see Section
4. Finally, in Section 5, we demonstrate that the resulting bound is tight, by constructing
’-self-approaching curves for which the upper bounds are achieved.
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2. De�nitions and properties

For two points B and C let r̃(B; C) denote the ray starting at B and passing through
C. We simply write BC for the euclidean distance between B and C.
We consider oriented curves f in the plane, i.e., each curve f has a speci�ed

direction from beginning to end. We do not make any assumptions about smoothness
or recti�ability of the curve, although it will turn out that ’-self-approaching curves
are recti�able.
For two consecutive points B and C on f, we write f[B; C] for the part of f

between B and C. By f¿B (f¿B) we denote the part of f from B to the end (without
B) and length(f); length(f[B; C]), etc., means the length of the curve or of an arc.
For a curve f[B; C] and a point D 6∈ f[B; C] let (D;f[B; C]) be the positive angle
of rotation around D the curve goes through from B to C. So if we consider f[B; C]
as a continous function in polar coordinates centered at D running from ( B; BD) to
( C; CD) then (D;f[B; C])= | B −  C |.

De�nition 1. A curve f is called ’-self-approaching for 06’¡� if for any point B
on f there is a wedge of angle ’ at point B which contains f¿B. In other words, for
any three consecutive points B; C; D on f, the angle (B; f[C;D]) is at most ’.
Let f be an oriented curve from A to Z . Then the quantity

length(f[A; Z])
AZ

is called the detour of f.

The detour of a curve is the reciprocal of the minimum growth rate used in [9].
We wish to bound the detour of ’-self-approaching curves. The �rst de�nition of

’-self-approaching curves also makes sense for ’¿�, but then any circular arc con-
necting two points A and Z is ’-self-approaching, which means that the detour of such
curves is not bounded. Therefore, we restrict our attention to the case ’¡�. Each
0-self-approaching curve is a line segment and its detour equals 1. So if necessary we
neglect the case ’=0 in the following.

Lemma 2. A ’-self-approaching curve does not go through any point twice.

Proof. Suppose the curve visits point B twice. Shortly after the �rst visit of B there
is a point on the curve for which the ’-self-approaching property is violated.

So a ’-self-approaching curve f[B; C] cannot visit B again, now we want to show a
stronger restriction, that is, a ’-self-approaching curve f[B; C] cannot loop around B.

Lemma 3. Let B; C; D be three consecutive points on a ’-self-approaching curve. If
C lies on r̃(D; B) then CD6BD.
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Fig. 1. For 0¡’¡�=2 the curve is enclosed by two congruent arcs of a ’-algorithmic spiral S.

Proof. The assumption CD¿BD would lead to an angle (B; f[C;D])= �, violating
the ’-self-approaching property.

The following lemma shows, roughly speaking, that a ’-self-approaching curve
f[A; Z] is enclosed by two oppositely winding ’-logarithmic spirals through A with
pole Z , see Fig. 1. For ’¿�=2, this is true only locally, as long as the curve does
not leave the vicinity of A. In polar coordinates (r;  ), a ’-logarithmic spiral is the
set of all points with r=e cot ’ or e− cot ’. Each ray through the origin intersects the
spiral in the same angle ’. In the appendix we give a short summary of known facts
of ’-logarithmic spirals. For ’ 6= �=2, the length of an arc S[A; B] of a ’-logarithmic
spiral S around pole Z is given by (1=cos’)(AZ − BZ). Note that for ’= �=2, the
spiral degenerates to a circle.
The property of Lemma 4a is used in Section 4 for the circumscription of a ’-self-

approaching curve by a convex area whose perimeter is easy to determine. With the
help of Lemma 4b we are able to prove a close connection between the length of a
’-self-approaching curve and the perimeter of its convex hull, see Section 3.

Lemma 4. Let B; C; D be three consecutive points on a ’-self-approaching curve f :
(a) CD6BD e−(D;f[B;C])cot ’;
(b) CD6BD − cos’ length (f[B; C]):

The inequalities of Lemma 4 are ful�lled by equality for the arc S[A; B] of a
’-logarithmic spiral S around a pole Z , see Fig. 1, i.e. we have BZ =AZ e− cot ’

and AZ =BZ − cos’ length (S[A; B]).
In order to proof Lemma 4 we will �rst establish a somewhat weaker bound for

the bound of the lemma, from which the stronger bounds will follow by a limiting
argument.
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Lemma 5. Let B; C; D be three consecutive points on a ’-self-approaching curve f.
Let � denote the angle (D;f[B; C])¿0 and let �’ denote the angle (B; f[C;D])6’.
Assume that �¡�− ’;
(a) Then

CD=BD
sin �’

sin( �’+ �)
6BD

sin’
sin(’+ �)

: (0)

For � cot’61; �6 1
2 ; sin �6sin’=2 and �6|cos(’=2)| it follows that

CD6BD e−� cot ’ eK�2 ; (1)

where the constant K =2(1 + cot2 ’) depends only on ’.
(b) We have

CD − BD + BC cos �’=BC sin �’
1− cos �
sin �

: (2)

For �61; it follows that

CD − BD + BC cos’6BC �: (3)

Proof. Within this proof we make use of some elementary inequalities shown in
Lemma 11 in the appendix. Eqs. (0) and (2) follow from the sine law. From (2),
we obtain (3) by using Lemma 11f , cos �’¿cos’ and |sin �’|61.
Now, to prove (1), we have to show the inequality

sin(’+ �)
sin’

e2(1+cot
2 ’)�2¿e� cot ’:

We have
sin(’+ �)
sin’

=
sin’ cos �+ cos’ sin �

sin’

= cos �+ sin � cot’

¿ 1− �2 + sin � cot’;

using Lemma 11a,

e� cot ’61 + � cot’+ �2 cot2 ’;

using Lemma 11e, and �nally

e2(1+cot
2 ’)�2¿1 + 2(1 + cot2 ’)�2;

using Lemma 11d with x=2(1 + cot2 ’)�2. So we only have to show

(1− �2 + sin � cot’)(1 + 2(1 + cot2 ’)�2)¿1 + � cot’+ �2 cot2 ’: (4)

The left-hand side of (4) can be transformed to

sin2 ’+ (1 + cos2 ’)�2 − 2�4 − cot’(−sin2 ’ sin �− 2�2 sin �)
sin2 ’

;
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whereas the right-hand side of (4) can be transformed to

sin2 ’+ � cot’ sin2 ’+ �2 cos2 ’

sin2 ’
:

Since sin2 ’¿0 holds for ’¿0 we subtract the numerators and it remains to show

− 2�4 + �2 − cot’(sin2 ’(�− sin �)− 2�2sin �)¿0: (5)

For 0¡’6�=2 and �61=2 we have −cot’60 and −2�4+�2 = �2(1−2�2)¿0. From
Lemma 11b we conclude

sin2 ’(�− sin �)− 2�2 sin �60
and (5) follows in this case.
For �=2¡’¡� we have −cot’¿0 and from Lemma 11c we conclude with �61=2

sin2 ’(�− sin �)¿0:
Then it su�ces to prove

−2�2 + 1 + 2 cot’ sin �¿0:
This obviously holds for small �. In particular, from sin �6sin’=2 and cos’¡0 we
conclude 2 cot’ sin �1 = cos’2 sin �1=sin’¿cos’ for all 0¡�16�61=2. Therefore, it
su�ces to require additionally �6

√
(1 + cos’)=2= |cos(’=2)|.

Now, we show how Lemma 4 follows from Lemma 5.

Proof of Lemma 4. First, we consider part (a) of Lemmas 4 and 5. We divide
the angular range of (D;f[B; C]) into n equal sectors of angle �:=(D;f[B; C])=n.
By choosing n large enough, we can ensure that � ful�lls the conditions for (1) in
Lemma 5.
By continuity, the curve f[B; C] must pass through n + 1 consecutive points B=

A0; A1; A2; : : : ; An=C with (D;f[Ai; Ai+1])= � for i=0; : : : ; n− 1. Then we can apply
(1) to the successive distances A0D=BD; A1D; : : : ; AnD=CD to obtain

Ai+1D6AiDe−� cot ’eK�2 ;

and hence

CD6BDe−(D;f[B;C]) cot ’eK
(D;f[B;C])2

n :

Since we can choose n arbitrarily large, we get (D;f[B; C])2=n → 0 as n → ∞, and
Lemma 4a follows.
Now, we consider part (b) of Lemmas 4 and 5. The proof is similar as for part

(a), cutting the curve into pieces which are small enough that the “error term” BC �
in (3) can be neglected. However, in the way in which the subdivision of the curve is
de�ned, we have to make a case distinction.
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Case 1: ’= �=2. Then cos’=0 and Lemma 4b follows from Lemma 4a.
Case 2: ’¡�=2. In this case, cos’¿0, and Lemma 4b gives a lower bound for

the decrease BD− CD of the distance to D from B to C in terms of length(f[B; C]).
From Lemma 4a we conclude that the distance to D is strictly decreasing from B to
C, and hence we have C′D¿CD for all points C′ on the curve f[B; C]. Let us choose
an arbitrary �¿0. We will show that

BD − CD¿length(f[B; C])(cos’− �):

Let us set �:=min{�; 1}|cos’|; so � ful�lls the conditions for (3) in Lemma 5.
The length of a curve f[B; C] is, by de�nition, the supremum of the lengths of all

polygonal chains Q which are obtained as polygonal subdivisions of f with consecutive
vertices on f. Let us take such a subdivision Q=(A0; A1; : : : ; An) with n+1 consecutive
points Ai on f[B; C] and A0 =B, An=C. We would like to apply (3) to the segments
AiAi+1. Therefore, whenever (D;f[Ai; Ai+1])¿�, we have to re�ne the subdivision Q
by inserting at least one additional point between Ai and Ai+1. Denoting the newly
inserted point again by Ai+1 (and renumbering the points behind it), we select Ai+1 in
such a way that we get (D;f[Ai; Ai+1])= �. Then we have

length(f[Ai; Ai+1])¿AiAi+1¿2CD sin
�
2
;

which is a �xed positive constant. It follows that each newly inserted point consumes
a certain part of length(f[B; C]), and therefore we have to insert only �nitely many
points. We end up with a re�ned subdivision Q′ with length(Q′)¿length(Q) and with
the desired property.
Now we apply (3) to the segments AiAi+1, obtaining

AiD − Ai+1D¿AiAi+1(cos’− �)¿AiAi+1 cos’(1− �):

Summation gives

BD − CD¿ lenght(Q′)cos’(1− �)

¿ length(Q)cos’(1− �):

Since this holds for any �¿0 and any subdivision Q, the lemma is proved for this
case.
Case 3: �=2¡’¡�. In this case, cos’¡0, Lemma 4b gives an upper bound for

the increase BD − CD of the distance to D from B to C in terms of length(f[B; C]).
We will proceed similarly as in the proof of Lemma 4a. Let us choose � as in case 2.
On the curve f[B; C], we �nd n+ 1 consecutive points B=A0; A1; A2; : : : ; An=C with
(D;f[Ai; Ai+1])= (D;f[B; C])=n, choosing n large enough so that (D;f[B; C])=n6�.
We apply (3) to the successive pieces and obtain

Ai+1D − AiD6 AiAi+1(−cos’+ �)

6 length(f[Ai; Ai+1])(−cos’)(1 + �):
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Summation gives

CD − BD6length(f[B; C])(−cos’)(1 + �)

for any �¿0, and the proof of part (b) of Lemma 4 is complete.

3. ’-self-approaching curves and the perimeter of their convex hull

In this section we prove that the length of a ’-self-approaching curve is bounded
by the perimeter of its convex hull, divided by 1 + cos’.
Let conv(P) denote the convex hull of a point set P and peri(P) the length of the

perimeter of conv(P).

Theorem 6. For a ’-self-approaching curve f with 06’¡�;

(1 + cos’)length(f)6peri(f):

Proof. For ’=0 we have a straight line segment. The theorem is obvious since the
perimeter of the convex hull of a line segment equals two times its length.
So let us assume 0¡’¡� from now on. The length of a curve f is, by de�nition,

the supremum of the lengths of all polygonal chains Q which are obtained as polyg-
onal subdivisions of f with consecutive vertices on f. Therefore, an upper bound
for the length of all such chains is also an upper bound for the length of f. Let
Q=(A0; A1; : : : ; An) be a polygonal subdivision of f[A0; An] with n + 1 consecutive
points on f[A0; An]. Before we prove that (1+cos’)length(Q) is bounded by peri(f),
we will introduce additional subdivision points of the curve into Q. This may only
increase length(Q), but it will make the proof simpler. We go through the vertices
of Q, starting at the end. When considering Ai, we have already added all additional
subdivision points after Ai+1, and we now consider which subdivision points we may
add between Ai and Ai+1. Let P denote the convex hull of all vertices of Q which
come after Ai+1, inclusive of Ai+1 and inclusive of the additional points which were
added in previous steps. By the ’-self-approaching property, Ai+1 lies on the boundary
of P. There are two cases, depending on whether the point Ai+1 lies on the boundary
of conv(P ∪ {Ai}) or not.
If Ai+1 lies in the interior of conv(P ∪ {Ai}), we do nothing, and we proceed by

looking at Ai−1. Suppose now that the point Ai+1 lies on the boundary of conv(P ∪
{Ai}). Let B1; B2; : : : be the sequence of vertices which lie clockwise from Ai+1 on P,
let B−1; B−2; : : : be the sequence of vertices anti-clockwise from Ai+1 on P, and let
B0:=Ai+1, see Fig. 2.
Suppose the left tangent from Ai to P touches P in Bj, and the right tangent

from Ai to P touches P in B−k . Depending on whether the curve f[Ai; B0] “winds”
counterclockwise or clockwise around P, it will either intersect the extended sides
r̃(Bj; Bj−1); r̃(Bj−1; Bj−2); : : : ; r̃(B2; B1), or the extended sides r̃(B−k ; B−k+1);
r̃(B−k+1; B−k+2); : : : ; r̃(B−2; B−1), in the given order. This follows from the fact that the
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Fig. 2. The additional subdivision points between Ai and Ai+1 are N1; N2; : : : ; N7.

curve f is disjoint from P, by the ’-self-approaching property. We add these �nitely
many subdivision points between Ai and Ai+1 and proceed by looking at Ai−1.
In this way, after processing the whole chain Q, we obtain a possibly re�ned

subdivision, which we again denote by Q=(A0; A1; : : : ; An). This subdivision has the
property that, if Ai+1 lies on the boundary of conv({Ai; : : : ; An}), each vertex of P:=
conv({Ai+1; : : : ; An}) is also on the boundary of conv({Ai; : : : ; An})= conv(P ∪ {Ai})
although not necessarily as a vertex.
Now, we have to distinguish between the cases ’6�=2 and ’¿�=2. If 06’6�=2,

we show that, for a subdivision Q of f with the additional property mentioned above,

peri(Q)¿(1 + cos’)length(Q): (6)

If �=26’¡�, then cos’60, and we show the weaker statement

peri(Q)¿length(Q) + cos’ length(f): (6′)

The left side is bounded by peri(f), whereas the right side of each inequality can be
made arbitrarily close to (1 + cos’)length(f), thus proving the theorem.

We will use induction on the number of vertices of Q. The assertion is true for Q
being a line segment, so let us assume that Q has at least three vertices, the �rst two
are called A and B. Let Q′ denote the chain Q without the initial segment AB. The
induction hypothesis is that (6) or (6′) is ful�lled for Q′ and f¿B. For the inductive
step, it is then su�cient to prove

peri(Q)− peri(Q′)¿(1 + cos’)AB; (7)

if 06’6�=2, or

peri(Q)− peri(Q′)¿AB+ cos’ length(f[A; B]); (7′)
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Fig. 3. (AB + AB′)− BB′¿AB + cos’ length(f[A; B]).

if �=26’¡�. Note that for ’ being in either domain, the inequality of (7) or (7′)
that we need to prove is weaker than the other inequality. Hence, independently of ’,
it is su�cient to prove any of (7) or (7′).
We distinguish two cases, depending on whether B lies on the boundary of conv(Q)

or not.
Case 1: The point B is on the boundary of conv(Q). In this case we prove (7′).

We have a situation as depicted in Fig. 3. When passing from conv(Q′) to conv(Q),
the segment between B and one of its neighboring vertices B′ is replaced by the chain
BAB′. So we need to show

(AB+ AB′)− BB′¿AB+ cos’ length(f[A; B]);

which follows from Lemma 4b, by considering the three consecutive points A; B; B′

on f.
Case 2: The point B is not on the boundary of conv(Q). In this case we prove

(7). We use the notation : : : ; B−2; B−1; B0 =B; B1; B2; : : : for the vertices of Q′ that was
introduced above. The two vertices of conv(Q′) which are adjacent to B are B−1 and
B1. Then A must lie in the wedge included between r̃(B−1; B) and r̃(B1; B), see Fig. 4.
W.l.o.g. we may assume that B−1 appears before B1 on f so (B; f[B−1; B1]) is at
most ’ since f is ’-self-approaching.
Suppose the left tangent from A to P touches P in Bj, and the right tangent from

A to P touches P in B−k . Then the points B−k+1; B−k+2; : : : ; Bj−2; Bj−1 are not ver-
tices of conv(Q). As we move continuously along Q from B to A, the points where
these points disappear from the boundary of the convex hull are point A and the in-
tersections of the segment AB with the extended sides r̃(Bj; Bj−1); : : : ; r̃(B2; B1), and
r̃(B−k ; B−k+1); : : : ; r̃(B−2; B−1), see Fig. 4. We prove (7) by showing that it is true for
each transition from one intersection point D′ on AB to the next intersection point D′′.
We have to show

(D′′B−k′ + D′′Bj′)− (D′B−k′ + D′Bj′)¿(1 + cos’)D′′D′:

We may use the fact that D′ is contained in the triangle D′′B−k′Bj′ , and the angle at
D′ in the triangle B−k′D′Bj′ is less than the angle (B; f[B−1; B1]), which is at most
’. This elementary geometric inequality is proved in Lemma 10 in the appendix.



O. Aichholzer et al. / Discrete Applied Mathematics 109 (2001) 3–24 13

Fig. 4. (D′′B−2 + D′′B1)− (D′B−2 + D′B1)¿(1 + cos’) · D′′D′.

4. An upper bound for the detour

Theorem 7. The length of a ’-self-approaching curve is not greater than c(’) times
the distance of its endpoints; where

c(’):=




1 for ’=0;

max
�∈[0::�=2]

2� + �+ 2√
5− 4 cos� for ’= �=2;

max
�∈[0::’]

(1 + e� cot ’)e� cot ’ − 2=(1 + cos’)
cos’

√
((1 + e� cot ’)e� cot ’ − cos�)2 + sin2 �

(∗) otherwise:

Proof. For ’=0 we have a straight line segment, and the theorem is obvious. So let
us assume 0¡’¡� from now on.
Let f be a ’-self-approaching curve from A to Z . W.l.o.g., we may assume that f

does not cross the segment AZ . Otherwise we apply the bound c(’) successively to
each subcurve between two successive curve points on AZ and add up the results. Due
to the self-approaching property the curve points on AZ appear in the same order as
on f, so the overall bound is less than or equal to c(’).
Assume w.l.o.g. that the curve starts by leaving A on the left side of the directed

line AZ . Let AC be the right tangent from A to the curve, touching the curve in the
point C. The curve is on the left side of AC. We select C as far as possible from A,
and we denote the angle at point C in the triangle ACZ by �, see Fig. 5. For C =Z we
set �=0. Note that �6’ holds, otherwise there is a point C0 before C on f such that
the angle (C0; f[C; Z]) is also greater than ’ which contradicts the self-approaching
property at C0. Let B denote the �rst point of intersection of the curve with r̃(C; Z).
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Fig. 5. A ’-self-approaching curve must lie in this area. The angle �′ shown here maximizes (∗) in the
de�nition of c(’).

For C =Z we take B=A. Since the curve neither crosses r̃(A; C) nor the segment
AZ; Z must lie between B and C. We apply Lemma 4a to the arc f[B; C], considering
the three consecutive points B; C; Z on f, and we get

CZ6BZe−� cot ’:

Applying the lemma to f[A; B], considering the three consecutive points A; B; C on f,
we get

CB6CAe−� cot ’:

Note that the last inequalities trivially hold for C =Z , �=0 and A=B. All in all,
since CB=CZ + BZ , we obtain

CA¿CZ(1 + e� cot ’)e� cot ’: (8)

Now we select a point C′ on r̃(A; C) with C′A¿CA, let �′ be the angle at C′ in the
triangle AC′Z . We choose C′ such that the equation

C′A=C′Z(1 + e� cot ’)e�
′ cot ’ (9)

is ful�lled. Such a point C′ exists, since, as we move C′ further away from A, the
ratio C′A :C′Z converges to 1, the angle �′ decreases towards 0 and hence e�

′ cot ’ also
converges to 1, whereas 1 + e� cot ’ is a constant bigger than 1. Therefore inequality
(8) changes direction as AC′ → ∞. We have �′6�6’, and also C′ 6= Z .
In the following let B′ be the point on r̃(C′; Z) with B′Z =C′Ze� cot ’ and B′ 6∈ C′Z .

First, we show that a ’-self-approaching curve from A to Z is contained in the convex
region bounded by the following three curves, see Fig. 5:
(1) A ’-logarithmic spiral from A to B′ of polar angle �′ with pole C′;
(2) a ’-logarithmic spiral from B′ to C′ of polar angle � with pole Z ;
(3) the segment AC′.
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Let B′′ be the �rst intersection point of f with r̃(C′; Z). By Lemma 4 applied to the
pole C, the arc f[A; B′′] lies inside the ’-logarithmic spiral S of polar angle � with
pole C starting at A. The ’-logarithmic spiral S ′ with pole C′ through A is obtained
from S by stretching it about the center A, and hence f[A; B′′] is also contained inside
S ′, and in part (1) of the region boundary; see Lemma 12 in the appendix. In particular,
B′′Z6B′Z . It follows with the help of Lemma 3 that, between the rays ZA and ZB′,
no point of the whole curve f[A; Z] can lie outside S ′.
Now let C′′ be the �rst intersection point of f with r̃(Z; C′). By Lemma 4 applied

to B′′; C′′ and Z , the arc f[B′′; C′′] lies inside the ’-logarithmic spiral T around pole Z
with polar angle � starting at B′′. Since B′′Z6B′Z , the arc lies inside the logarithmic
spiral T ′ which forms part (2) of the region boundary. Again, it follows with the
help of Lemma 3 that, below the line C′B′, no point of the whole curve f can lie
outside T ′.
Finally, in the region between the rays ZC′ and ZA, the curve cannot escape across

the segment AC′, and the proof is complete.
Next, we compute the perimeter of the bounding area and apply Theorem 6. We

treat only the case ’ 6= �=2, where we have proper spirals. The case ’= �=2, where
we have circular arcs, has already been treated in [5].
We choose a scale such that C′Z equals 1. Now AC′=(1 + e� cot ’)e�

′ cot ’ and
B′Z =e� cot ’ holds by construction. Therefore the lengths of the three curves (1)–(3)
are given by

L1 :=
1

cos’
(AC′ − B′C′)=

1
cos’

((1 + e� cot ’)e�
′ cot ’ − (1 + e� cot ’));

L2 :=
1

cos’
(B′Z − C′Z)=

1
cos’

(e� cot ’ − 1);

L3 := AC′=(1 + e� cot ’)e�
′ cot ’

and for the distance of the endpoints of f we have

AZ =
√
((1 + e� cot ’)e�′ cot ’ − cos�′)2 + sin2 �′:

Altogether we conclude from Theorem 6

length(f)
AZ

6
L1 + L2 + L3

AZ
1

1 + cos’
:

The right term can be transformed to

(1 + e� cot ’)e�
′ cot ’ − 2=(1 + cos’)

cos’
√
((1 + e� cot ’)e�′ cot ’ − cos�′)2 + sin2 �′

and it is easy to compute the maximum of the last expression for �′ ∈ [0; ’].

The function c(’) is strictly monotone and continuous for ’ ∈ [0; �). It tends to
in�nity if ’ tends to �. The graph of the function for 06’61:8 is shown in Fig. 6.
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Fig. 6. The function c(’) is strictly monotone and continuous for ’ ∈ [0; �).

5. Tightness of the upper bound

Theorem 8. The upper bound c(’) given in Theorem 7 for the detour of ’-self-
approaching curves is tight.

Proof. We construct a ’-self-approaching curve f from A to Z similar to parts of
Fig. 5 used in the proof of Theorem 7, the construction is shown in Fig. 7. The
curve starts with two logarithmic spirals similar to parts (1) and (2) in the proof
of Theorem 7, except that part (2) is split into two parts at point B1. The segment
C′Z of length 1 in Fig. 5 is replaced by a ’-self-approaching zigzag curve of length
L′
3 = 2=(1+cos’) from C′ to Z , which moves inside a thin rectangle along the segment

C′Z . This last part of the curve, see Fig 8, is obtained by “stacking” small cycloids
(x; y)= (r(�−sin �); r(1−cos �)), for 06�62’ as described in the appendix. One piece
of cycloid has “height” H = r(1− cos 2’)= 8r sin2’ cos2’ and length L=8r sin2’=2.
We must choose the size parameter r in such a way that 1=H is an even integer n; then
the curve of n pieces of cycloids with “height” H will precisely connect the points C′

and Z . The length of the curve is then nL=L=H =2=(1 + cos’), which is what we
need. The width of the construction is W = r(2’ − sin 2’). We arrange the cycloid
pieces on the left side of the segment C′Z , as indicated in Fig. 8; then the curve is
contained in a rectangle �C

′
Z �Z �C of width W =Z �Z . The long side Z �C

′
slightly extends

the segment ZC′ by the amount 2r − H .
Now, we can describe the whole construction of the curve, in reverse direction. The

curve consists of the following parts, numbered in accordance with Theorem 7, using
the notation from there:
(3′) The curve ends with the ’-self-approaching curve from C′ to Z described above,

whose length is 2=(1 + cos’);
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Fig. 7. The construction of the ’-self-approaching curve with maximal detour for ’=2.

Fig. 8. A sequence of cycloid parts forming a ’-self-approaching curve inside a thin rectangle.

(2) before, there is a ’-logarithmic spiral of polar angle �=2 with pole Z connecting
C′ to some point B1 on r̃( �Z; Z).

(2′) then, a ’-logarithmic spiral of polar angle �=2 with pole �Z connecting B1 to �B;
(1′) the curve starts with a ’-logarithmic spiral of polar angle � with pole �C between

a point �A and �B, where �6’ is the value for which the maximum in the de�nition
of c(’) is attained.

It can be checked that the parts which are logarithmic spirals are always ’-self-
approaching, as the line from any point X to the current pole contains the whole
curve on one side. So obviously the whole curve is ’-self-approaching. Since r can
be made as small as we like, we have �C → C′, �Z → Z , �A → A, �B → B′ as r → 0,
and the logarithmic spirals that we use will approach the “ideal” logarithmic spirals
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Fig. 9. BC6AC − AB cos’

that appear in Theorem 7, see Fig. 5. This means that

length(f)
�AZ

→ L1 + L2 + L′
3

AZ

=
(1 + e� cot ’)e� cot ’ − 2 + 2=(1 + cos’) cos’
cos’

√
((1 + e� cot ’)e� cot ’ − cos�)2 + sin2�

which equals c(’).

6. Conclusions

Here we analyze the maximum length of curves with an upper bound on the angular
wedge at A. This condition is not symmetric since it distinguishes the source and the
target of the curve. One might also consider a symmetric situation, where curves are
’-self-approaching in both directions.
Generalizations to three dimensions are also completely open.

Appendix

Lemma A.1. Let ABC be a triangle with angle �− ’ at B (06’6�); as in Fig. 9.
Then BC6AC − AB cos’.

Proof. From the cosine law and from |cos’|61 we conclude
AC2 = AB2 + BC2 − 2ABBC cos(�− ’)

= BC2 + 2ABBC cos’+ (AB cos’)2 + AB2(1− cos2’)

¿ (BC + AB cos’)2:

Lemma A.2. Let V be a point inside a triangle ABC. We connect each vertex to v
using segments l1 =BV; r1 =CV; and z=AV . Let l2 =AB and r2 =AC be two edges
of the triangle; see Fig. 10. Let 06’6� be the angle between l1 and r1 then for
the lengths of the segments l1 + r1 + (1 + cos’)z6l2 + r2 holds.
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Fig. 10. l1 + r1 + (1 + cos’)z6l2 + r2 holds for 06’6�.

Proof. The claim is obviously true for z=0. Let z¿0. We have to prove the inequality
l2 − l1 + r2 − r1¿(1 + cos’)z. Using Lemma A.1 we conclude

l16 l2 − z cos(�− �2);

r16 r2 − z cos(�− �2):

So l2 − l1 + r2 − r1¿ − (cos �2 + cos�2)z holds and it is su�cient to show that
−(cos �2+cos�2)¿1+cos’ is ful�lled. We know that −(cos �2+cos�2) is equivalent
to −2 cos((�2+�2)=2)cos((�2−�2)=2). Also the following equations are obviously true:

�2 + �2
2

=
2�− ’
2

= �− ’
2
;

�2 − �2
2

= (�− �2)− ’
2
:

From the position of A we conclude 06(�− �2)6’ and so |(�− �2)− ’=2|6’=2
holds. Altogether we conclude

−(cos �2 + cos�2) = −2 cos
(
�2 + �2
2

)
cos

(
�2 − �2
2

)

= 2cos
(’
2

)
cos

(∣∣∣(�− �2)− ’
2

∣∣∣)
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Fig. 11. The stretched spiral S′ is always on one side of spiral S.

¿ 2 cos2
(’
2

)

= 2
(
1 + cos’

2

)
=1 + cos’:

This completes the proof.

Lemma A.3. The following inequalities hold:
(a) cos x¿1− x2 for all x ∈ R.
(b) x6sin x(1 + 2x2) for 06x61.
(c) sin x6x for 06x61.
(d) ex¿1 + x for all x ∈ R.
(e) ex61 + x + x2 for x61.
(f ) (1− cos x)=sin x6x for 06x61.

Proof. In parts (a)–(e), the di�erence between the two sides of the inequality is in
each case a convex function achieving its minimum value of 0 for x=0. For part (e),
this is only true for x6ln 2. For ln 26x61 in part (e), and for part (f), where the
expression on the left-hand side equals tan x=2, the di�erence between the two sides
is a concave function, taking nonnegative values at the boundaries of the de�nition
interval.

Lemma A.4. Let S[A; B] be a ’-logarithmic spiral of polar angle 0¡�¡� starting
at point A around pole C and let C′ be a point on r̃(A; C) with C′A¿CA. Let S ′ be
the ’-logarithmic spiral of polar angle � starting at point A around pole C′ and let
B′ be the intersection point of r̃(C′; B) and S ′; see Fig. 11. Then we have C′B′¿C′B;
i.e. S[A; B] lies inside the area surrounded by S[A; B′]; B′C′ and C′A.

Proof. We scale such that AC =1. Let �′6� be the angle at C′ in the triangle
AC′B′. We have CB=e−� cot ’ and C′B′=(1+CC′)e−�′ cot ’. From the law of sine we
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conclude
CC′

sin(�− �′)
=

C′B
sin �

=
CB
sin �′

:

Therefore, we have to show(
1 +

sin(�− �′)
sin �′

e−� cot ’
)
e−�′ cot ’¿

sin �
sin �′

e−� cot ’:

This is equivalent to

sin �′e� cot ’ + sin(�− �′)¿sin �e�
′ cot ’

which in turn reads

e� cot ’ − cos �
sin �

¿
e�

′ cot ’ − cos �′
sin �′

:

Then it remains to show that the function g with g(�; ’):=(e� cot ’ − cos �)=sin � is
monotonically increasing for 0¡�¡� and 0¡’¡�. We assume that ’ is �xed. Let
g′(�; ’) denote the derivative of g in �. We obtain

g′(�; ’)=
sin(�− ’) e� cot ’ + sin’

sin’ sin2 �

which is positive for 0¡�¡� if the numerator sin(�−’) e� cot ’ + sin’= : h(�; ’) is
positive. The derivative of h in � is given by (sin �=sin’) e� cot ’ and is positive for all
0¡�¡� and 0¡’¡�. Then h is monotonically increasing and from h(0; ’)= 0 we
conclude h(�; ’)¿0 for 0¡�¡� and 0¡’¡�. Thus, the proof is complete.

Logarithmic spirals: Logarithmic spirals, directed to the center, are used to construct
interesting examples of ’-self-approaching curves. In polar coordinates (r;  ), a loga-
rithmic spiral with pole at the origin Z is the set of all points r= r0q ;  ∈ (−∞;∞),
for some q¿0. We have right spirals and left spirals, depending on whether q¿1
or q¡1. For q=1 we get a circle. The pole Z may be regarded as a limit point of
the spiral. Each ray through the origin intersects the spiral in the same angle � with
cot �= ± ln q. We call such a spiral an �-logarithmic spiral, see Fig. 12 as an exam-
ple with �=1:3. �-logarithmic spirals with � small enough, directed to the center, are
simple examples of ’-self-approaching curves. Parts of ’-logarithmic spirals are used
to construct ’-self-approaching curves with maximum detour.
For ’ 6= �=2, the length of an arc S[A; B] of a ’-logarithmic spiral S is given by

length(S[A; B])=
1

cos’
(AZ − BZ):

Cf. also Lemma 4b, where the same ratio between change of radius and arc length
appears as an upper bound for ’-self-approaching curves.
Cycloids and their: ’-evolutes: A cycloid is the curve traced by a point M on the

circumference of a circle rolling on a line without slipping, see Fig. 13. In coordinates,
a cycloid generated by a circle of radius r rolling on the x-axis is given by x=(� −
sin �)r, y=(1− cos �)r for � ∈ R. Cycloids play a role in our construction of extreme
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Fig. 12. A 1:3-logarithmic spiral.

Fig. 13. The envelope of all lines which intersect a cycloid in a given angle ’ is another congruent cycloid.

self-approaching curves. It is well-known that the evolute of a cycloid C′, i.e., the
envelope of all normals, or the locus of the centers of curvature, is another congruent
cycloid C: Each tangent t of the cycloid C (the evolute) intersects the other cycloid
C′ (the involute) in a point where it has a tangent t′ that is perpendicular to t. One
may generalize this relation between evolute and involute to an angle ’ di�erent from
the right angle: Each tangent t of the ’-evolute intersects the ’-involute in an angle
’. It turns out that, even for this more general situation, the ’-evolute of a cycloid C′,
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i.e, the envelope of all lines which are obtained from the tangents of C′ by a rotation
of ’ about the point of tangency, is another congruent cycloid C, see Fig. 13.
It is known that the tangent MT of a cycloid always goes through the highest point

T of the current position of the circle. It is convenient to measure directions by the
clockwise oriented angle � with the vertical downward direction. The tangent direction
TM (taken always in the direction pointing leftward) turns precisely half as fast as
the radius OM of the rolling circle. When OM has direction �, TM has direction �=2.
Now we trace out the arc of a cycloid C from the lowest point Z until the radius OM
has direction 2’. At this point Z ′, we start another arc of a congruent cycloid C′ for
which Z ′ is the lowest point, this time rolling counterclockwise, stopping again when
the circle has been rotated by an angle of 2’. The length of each of the two arcs of
the cycloid is L=8rsin2’=2. We can think of C and C′ being generated by two circles
rolling clockwise simultaneously at the same speed. The circle generating C′ rolls on
a line which is higher by the distance H =(1− cos 2’)r, and it is always in a position
where the radius O′M ′ is by an angle 2� − 2’ clockwise from the radius OM . The
centers O and O′ of the two circles always have the same relative position; they are
translated horizontally. The highest point T of the lower circle lies on the other circle,
and similarly for the lowest point on the higher circle. The directed clockwise angle
between TO and TO′ is 2’.
To see that C is the ’-evolute of C′, consider a tangent t=MT of C, having

direction �=2. At the same time the direction of the tangent t′=M ′T ′ (taken always
in the direction showing leftwards) is �=2 + � − ’. The peripheral angle between the
tangent T ′M ′ and M ′T is equal to ’, since it corresponds to a central angle T ′OT =2’.
It follows that the direction of M ′T is �=2, and hence M ′T coincides with the tangent
t=MT , and, as we have already seen, the angle between TM and T ′M ′ is ’.
Thus, if we go through the curve in the reverse direction in which we discussed its

generation, starting at C′, the curve will always be enclosed in the wedge of angle ’
between the tangents to C′ and C. Thus we have a ’-self-approaching curve.
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