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Abstract. We consider all planar oriented curves that have the follow-
ing property depending on a fixed angle ϕ. For each point B on the
curve, the rest of the curve lies inside a wedge of angle ϕ with apex
in B. This property restrains the curve’s meandering, and for ϕ ≤ π

2

this means that a point running along the curve always gets closer to all
points on the remaining part. For all ϕ < π, we provide an upper bound
c(ϕ) for the length of such a curve, divided by the distance between its
endpoints, and prove this bound to be tight. A main step is in proving
that the curve’s length cannot exceed the perimeter of its convex hull,
divided by 1 + cos ϕ.
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1 Introduction

Let f be an oriented curve in the plane running from A to Z, and let ϕ be an
angle in [0, π). Suppose that, for every point B on f , the curve segment from
B to Z is contained in a wedge of angle ϕ with apex in B. Then the curve f
is called ϕ-self-approaching, generalizing the self-approaching curves introduced
by Icking and Klein [5].

At the 1995 Dagstuhl Seminar on Computational Geometry, Seidel [2] posed
the following open problems. Is there a constant, c(ϕ), so that the length of
every ϕ-self-approaching curve is at most c(ϕ) times the distance between its
endpoints? If so, how small can one prove c(ϕ) to be?

Both questions are answered in this paper. We provide, for each ϕ in [0, π),
a constant c(ϕ) with the above property, and prove it minimal by constructing
a ϕ-self-approaching curve such that this factor c(ϕ) is achieved.

Self-approaching curves are interesting for different reasons. If a mobile robot
wants to get to the kernel of an unknown star-shaped polygon and continuously
follows the angular bisector of the innermost left and right reflex vertices that
are visible, the resulting path is self-approaching for ϕ = π/2; see [5]. Since the
value of c(π/2) is known to be ≈ 5.3331, as already shown in Icking et al. [6], one
immediately obtains an upper bound for the competitive factor of the robot’s
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strategy. Improving on this, Lee and Chwa [7] give a tight upper bound of π+1
for this factor, and Lee et al. [8] present a different strategy that achieves a factor
of 3.829, while a lower bound of 1.48 is shown by López-Ortiz and Schuierer [9].

In the construction of spanners for euclidean graphs, one can proceed by
recursively adding to the spanning structure a point from a cone of angle ϕ,
resulting in a sequence p1, p2, . . . , pn such that for each index i, pi+1, . . . , pn are
contained in a cone of angle ϕ with apex pi; see Ruppert and Seidel [11] or Arya
et al. [3]. (Note, however, that such a sequence of points does not necessarily
define a ϕ-self-approaching polygonal chain because the property may not hold
for every point in the interior of an edge.)

Finally, such properties of curves are interesting in their own right. For ex-
ample, in the book by Croft et al. [4] on open problems in geometry, curves with
increasing chords are defined by the property that for every four consecutive
points A,B,C,D on the curve, B is closer to C than A to D. The open problem
of how to bound the length of such curves divided by the distance between its
endpoints has been solved by Rote [10]; he showed that the tight bound equals
2
3π. There is a nice connection to the curves studied in this paper. Namely,
a curve has increasing chords if and only if it is π/2-self-approaching in both
directions.

In this paper we generalize the results of [6] to arbitrary angles ϕ < π. In
Sect. 2 we prove, besides some elementary properties, the following fact. Let B,
C, and D denote three consecutive points on a ϕ-self-approaching curve f . Then

CD ≤ BD − cosϕ · length(f [B . . C])

holds, where CD denotes the euclidean distance between points C and D and
length(f [B . . C]) denotes the length of f between B and C. This property
accounts for the term “self-approaching”; in fact, for ϕ ≤ π/2 the factor cosϕ
is not negative, so that CD ≤ BD holds: The curve always gets closer to each
point on its remaining part. Although this property does not hold for ϕ > π

2 ,
we will nevertheless see that our analysis of the tight upper bound c(ϕ) directly
applies to this case, too.

In Sect. 3 we show that the length of a ϕ-self-approaching curve cannot
exceed the perimeter of its convex hull, divided by 1 + cosϕ. This fact is the
main tool in our analysis. It allows us to derive an upper bound for the curve’s
length by circumscribing it with a simple, closed convex curve whose length can
be easily computed, see Sect. 4. Finally, in Sect. 5, we demonstrate that the
resulting bound is tight, by constructing ϕ-self-approaching curves for which the
upper bounds are achieved.

The proofs of Lemma 3 and Theorem 1, which are omitted or only sketched
here due to the limitation of space, can be found in the full paper [1].

2 Definitions and properties

For two points B and C let r(B,C) denote the ray starting at B and passing
through C. We simply write BC for the euclidean distance between B and C.
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We consider plane curves f : [0 . . 1] → IR2 parameterized by a parameter that
is usually denoted by t ∈ [0 . . 1]. It is considered as an oriented curve, i. e., it
has a specified direction from beginning to end.

We do not make any assumptions about smoothness or rectifiability of the
curve, although it will turn out that ϕ-self-approaching curves are rectifiable.
For a point X on the curve we write tX for the parameter value with f(tX) = X
if no confusion arises. (We will see below in Lemma 1 that tX is in fact unique.)

For two points B = f(tB) and C = f(tC) on f with tB ≤ tC , we write
f [B . . C] or f [tB . . tC ] for the part of f between B and C. By f [B . .] we denote
the part of f from B to the end. By length(f), length(f [B . . C]), etc., we mean
the length of the curve or of an arc.

Definition 1. A curve f is called ϕ-self-approaching for 0 ≤ ϕ < π if for any
point B on f there is a wedge of angle ϕ at point B which contains f [B . .]. In
other words, for any three points B,C,D with tB < tC < tD, the angle CBD, if
it is defined, is at most ϕ.

Let f be an oriented curve from A to Z. Then the quantity

length(f [A . . Z])
AZ

is called the detour of f .

The detour of a curve is the reciprocal of the minimum growth rate used
in [10].

We wish to bound the detour of ϕ-self-approaching curves. The first definition
of ϕ-self-approaching curves also makes sense for ϕ ≥ π, but then any circular
arc connecting two points A and Z is ϕ-self-approaching, which means that the
detour of such curves is not bounded. Therefore, we restrict our attention to
the case ϕ < π. Each 0-self-approaching curve is a line segment and its detour
equals 1.

Lemma 1. A ϕ-self-approaching curve does not go through any point twice.

Proof. Suppose the curve visits point X twice. Shortly after the first visit of
X there is a point on the curve for which the ϕ-self-approaching property is
violated. �	

By this lemma, we can take any point Z on the curve as the origin of a polar
coordinate system and use a continuous parameterization f(t) = (r(t), ψ(t)) for
any part f [A . . B] of the curve which comes before Z. For a point X = f(tX)
on the curve we will use the notation X = (r(tX), ψ(tX)) =: (rX , ψX).

Lemma 2. If tA < tB < tZ and ψA ≡ ψB (mod 2π), then rB ≤ rA.

Proof. The assumption rB > rA would lead to an angle BAZ = π, violating the
ϕ-self-approaching property. (The case rB = rA is also excluded, by Lemma 1,
but we do not use this fact.) �	

The following lemma shows, roughly speaking, that a ϕ-self-approaching
curve f [A . . Z] is enclosed by two oppositely winding ϕ-logarithmic spirals
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through A with pole Z, see Fig. 1. For ϕ > π/2, this is true only locally, as
long as the curve does not leave the vicinity of A. In polar coordinates (r, ψ), a
ϕ-logarithmic spiral is the set of all points with r = eψ cotϕ or r = e−ψ cotϕ.

ϕ

A ϕ Z

f [A..Z]

Fig. 1. For 0 < ϕ < π/2 the curve is enclosed by two congruent arcs of a
ϕ-logarithmic spiral.

Each ray through the origin intersects the spiral in the same angle ϕ. For
ϕ �= π/2, the length of an arc S[A . . B] of a ϕ-logarithmic spiral S with pole
Z is given by 1

cosϕ (AZ − BZ). For ϕ = π/2, the spiral degenerates to a circle.
The properties of Lemma 3 are used in Sect. 4 for the circumscription of a
ϕ-self-approaching curve by a convex area whose perimeter is easy to determine.

Lemma 3. Let tA ≤ tB < tZ .

(a) rB ≤ rA · e−|ψB−ψA| cotϕ .

(b) rB ≤ rA − cosϕ · length(f [A . . B]) .

Note that Lemma 3 also applies to any subsection of the curve f .

3 ϕ-self-approaching curves and the perimeter of their
convex hull

In this section we show that the length of a ϕ-self-approaching curve is bounded
by the perimeter of its convex hull, divided by 1 + cosϕ.

Let conv(P ) denote the convex hull of a point set P and peri(P ) the length
of the perimeter of conv(P ).

Theorem 1. For a ϕ-self-approaching curve f with 0 ≤ ϕ < π,

(1 + cosϕ) length(f) ≤ peri(f) .

The proof can only be sketched here. First, the claim is shown for a polygonal
chain whose vertices lie on the curve f . This is done by induction on the number
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of vertices. But the length of a curve f is, by definition, the supremum of the
lengths of all polygonal chains which are obtained as polygonal subdivisions
of f . Therefore, an upper bound for the length of all such chains is also an upper
bound for the length of f .

4 An upper bound for the detour

Theorem 2. The length of a ϕ-self-approaching curve is not greater than c(ϕ)
times the distance of its endpoints, where

c(ϕ) :=




1, for ϕ = 0,

max
β∈[0..π

2 ]

2β + π + 2√
5− 4 cosβ

, for ϕ = π/2,

max
β∈[0..ϕ]

h(ϕ, β), otherwise,

with h(ϕ, β) :=

(
(1 + eπ cotϕ)eβ cotϕ − 2

1+cosϕ

)
/ cosϕ

√
((1 + eπ cotϕ)eβ cotϕ − cosβ)2 + sin2 β

.

The function c(ϕ) is strictly monotone and continuous for ϕ ∈ [0, π). It tends
to infinity if ϕ tends to π, see Fig. 2 for its values up to ϕ = 1.8.

c(ϕ)

0 π/2 1.8
ϕ

3
2
1

5.3331

11.95

Fig. 2. The graph of c(ϕ).

Proof. For ϕ = 0 we have a straight line segment, and the theorem is obvious.
So let us assume 0 < ϕ < π from now on.

Let f be a ϕ-self-approaching curve from A to Z. W.l.o.g., we may assume
that f does not cross the segment AZ. Otherwise we apply the bound c(ϕ)
successively to each subcurve between to successive curve points on AZ and add
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up the results. Due to the self-approaching property the curve points on AZ
appear in the same order as on f , so the overall bound is less than or equal
to c(ϕ).

Assume w. l. o. g. that the curve starts by leaving A on the left side of the
directed line AZ. Let AC be the right tangent from A to the curve, touching the
curve in the point C. (The curve is on the left side of AC.) We select C as far
as possible from A, and we denote the angle ACZ by β, see Fig. 3. (For C = Z
we set β = 0.) Note that β ≤ ϕ holds, otherwise there is a point C0 before C
on f such that the angle CC0Z is also greater than ϕ which contradicts the
self-approaching property at C0.

β′ ≈ 12.5◦

ϕ = 80◦

Z
A

βC
C′

C′′

B′
B

B′′

ϕ

T

T ′

B1

f

π
S′

sin(β′)

cos(β′)

Fig. 3. A ϕ-self-approaching curve must lie in this area. The angle β′ shown
here maximizes h(ϕ, β).

Let B denote the first point of intersection of the curve with r(C,Z). (For
C = Z we take B = A.) Since the curve neither crosses r(A,C) nor the segment
AZ, Z must lie between B and C. We apply Lemma 3a to the arc f [B . . C],
considering Z as the origin, and we get

CZ ≤ BZ · e−π cotϕ .

The application of the lemma is justified because, by Lemma 2, C is the first
point of intersection of the curve with r(Z,C). Applying the lemma to f [A . . B]
with C as the origin, we get

CB ≤ CA · e−β cotϕ .

All in all, since CB = CZ +BZ, we obtain

CA ≥ CZ · (1 + eπ cotϕ)eβ cotϕ . (1)
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Now we select a point C′ on r(A,C) with C′A ≥ CA such that the equation

C′A = C′Z · (1 + eπ cotϕ)e � AC
′Z·cotϕ (2)

is fulfilled. Such a point C′ exists, since, as we move C′ further away from A,
the ratio C′A : C′Z converges to 1, the angle β′ := � AC′Z decreases towards 0
and hence eβ

′ cotϕ also converges to 1, whereas 1 + eπ cotϕ is a constant bigger
than 1. Therefore the inequality (1) changes direction as AC′ → ∞. We have
β′ ≤ β ≤ ϕ, and also C′ �= Z.

In the following let B′ be the point on r(C′, Z) with B′Z = C′Z ·eπ cotϕ and
� C′ZB′ = π, see Fig. 3.

Lemma 4. A ϕ-self-approaching curve from A to Z is contained in the convex
region bounded by the following three curves, see Fig. 3:

(1) a ϕ-logarithmic spiral from A to B′ of polar angle β′ with pole C′;
(2) a ϕ-logarithmic spiral from B′ to C′ of polar angle π with pole Z;
(3) the segment AC′.

Proof. Let B′′ be the first intersection point of f with r(C′, Z). By Lemma 3a
applied to the pole C, the arc f [A . . B′′] lies inside the ϕ-logarithmic spiral
S with pole C with polar angle β starting at A. The ϕ-logarithmic spiral S′

with pole C′ through A is obtained from S by stretching it about the center A,
and hence f [A . . B′′] is also contained inside S′, and in part (1) of the region
boundary. In particular, B′′Z ≤ B′Z. It follows with the help of Lemma 2 that,
between the rays r(Z,A) and r(Z,B′), no point of the whole curve f can lie
outside S′.

Now let C′′ be the first intersection point of f with r(Z,C′). By Lemma 3a
applied to the pole Z, the arc f [B′′ . . C′′] lies inside the ϕ-logarithmic spiral
T around pole Z with polar angle π starting at B′′. Since B′′Z ≤ B′Z, the arc
lies inside the logarithmic spiral T ′ which forms part (2) of the region boundary.
Again, it follows with the help of Lemma 2 that, below the line C′B′, no point
of the whole curve f can lie outside T ′.

Finally, in the region between the rays ZC′ and ZA, the curve cannot escape
across the segment AC′, and the proof is complete. �	

Now we can prove Theorem 2. We treat only the case ϕ �= π/2, where we
have proper spirals. The case ϕ = π/2, where we have circular arcs, has already
been treated in [6].

We choose a scale such that C′Z equals 1. Now AC′ = (1+eπ cotϕ)eβ
′ cotϕ and

B′Z = eπ cotϕ holds by construction. Therefore the lengths of the three curves
in Lemma 4, using the formula for the arc length of a ϕ-logarithmic spiral, are
given by

L1 :=
1

cosϕ
(AC′ −B′C′) =

1
cosϕ

(
(1 + eπ cotϕ)eβ

′ cotϕ − (1 + eπ cotϕ)
)

L2 :=
1

cosϕ
(B′Z − C′Z) =

1
cosϕ

(eπ cotϕ − 1)

L3 := AC′ = (1 + eπ cotϕ)eβ
′ cotϕ ,
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and for the distance of the endpoints of f we have

AZ =
√
((1 + eπ cotϕ)eβ′ cotϕ − cosβ′)2 + sin2 β′ .

Altogether we conclude from Theorem 1

length(f)
AZ

≤ L1 + L2 + L3

AZ
· 1
1 + cosϕ

.

The right term can be transformed to

(1 + eπ cotϕ)eβ
′ cotϕ − 2

1+cosϕ

cosϕ
√
((1 + eπ cotϕ)eβ′ cotϕ − cosβ′)2 + sin2 β′

. �	

5 Tightness of the upper bound

Theorem 3. The upper bound c(ϕ) given in Theorem 2 for the detour of ϕ-self-
approaching curves is tight.

Proof. We construct a ϕ-self-approaching curve f from A to Z as in the proof
of Lemma 4, the construction is shown in Fig. 4. The curve starts with two

Z

ϕ

C ′

ϕ = 2 ≈ 115◦

β ≈ 5.5◦Z̄
C̄

C̄ ′

B1

B̄

Ā

Fig. 4. The construction of the ϕ-self-approaching curve with maximal detour
for ϕ=2.

logarithmic spirals similar to part (1) and part (2) in the proof of Lemma 4,



Generalized Self-Approaching Curves 325

except that part (2) is split into two parts. The segment C′Z of length 1 is
replaced by a ϕ-self-approaching zigzag curve of length L′

3 = 2
1+cosϕ from C′

H = r(1− cos 2ϕ) = 8r sin2 ϕ
2 cos2 ϕ

2

L = 8r sin2 ϕ
2

Z
ϕ

C ′

H

L
= cos2

ϕ

2
=

1 + cosϕ
2

r

Z̄
2rC̄

W

HC̄ ′

Fig. 5. A sequence of cycloid parts forming a ϕ-self-approaching curve inside a
thin rectangle.

to Z, which moves inside a thin rectangle along the segment C′Z. This last
part of the curve between Z and C′, see Fig. 5, is obtained by “stacking” small
cycloids (x, y) = (r(α− sinα), r(1− cosα)), for 0 ≤ α ≤ 2ϕ. One piece of cycloid
has “height” H = r(1 − cos 2ϕ) = 8r sin2 ϕ cos2 ϕ and length L = 8r sin2 ϕ

2 . We
must choose the size parameter r in such a way that 1/H is an even integer n;
then the curve will precisely connect the points C′ and Z. The length of the curve
is then L/H = 2

1+cosϕ , which is what we need. The width of the construction is
W = r(2ϕ−sin 2ϕ). We arrange the cycloid pieces on the left side of the segment
C′Z, as indicated in Fig. 5; then the curve is contained in a rectangle C̄′ZZ̄C̄
of width W = ZZ̄. The long side ZC̄′ slightly extends the segment ZC′ by the
amount 2r −H .

Now we can describe the whole construction of the curve, in reverse direction.
The curve consists of the following parts (numbered in accordance with Lemma 4,
using the notation from there):

(3′) The curve ends with the ϕ-self-approaching curve from C′ to Z described
above, whose length is 2

1+cosϕ ;
(2) before, there is a ϕ-logarithmic spiral of polar angle π/2 with pole Z

connecting C′ to some point B1.
(2′) then, a ϕ-logarithmic spiral of polar angle π/2 with pole Z̄ connecting

B1 to B̄;
(1′) the curve starts with a ϕ-logarithmic spiral of polar angle β with pole C̄

between a point Ā and B̄, where β ≤ ϕ is the value for which the
maximum in the definition of c(ϕ) is attained.
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It can be checked that the parts which are logarithmic spirals are always ϕ-self-
approaching, as the line from any point X to the current pole contains the whole
curve on one side. So obviously the whole curve is ϕ-self-approaching. Since r
can be made as small as we like, we have C̄ → C′, Z̄ → Z, Ā → A, B̄ → B′

as r → 0, and the logarithmic spirals that we use will approach the “ideal”
logarithmic spirals that appear in Lemma 4, see Fig. 3. This means that

length(f)
ĀZ

→ L1 + L2 + L′
3

AZ
=

(1 + eπ cotϕ)eβ cotϕ − 2 + 2
1+cosϕ · cosϕ

cosϕ
√
((1 + eπ cotϕ)eβ cotϕ − cosβ)2 + sin2 β

which equals c(ϕ). �	

6 Conclusions

Here we analyze the maximum length of curves with an upper bound on the
angular wedge at A. This condition is not symmetric since it distinguishes the
source and the target of the curve. One might also consider a symmetric situa-
tion, where curves are ϕ-self-approaching in both directions.

Generalizations to three dimensions are also completely open.
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