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Abstract. For a d-dimensional lattice Λ and a d-dimensional vector a we consider the
sequence of point sets

An := { ia + x | x ∈ Λ, 0 ≤ i < n }
for increasing values of n. For the values of n when a new shortest nonzero vector appears
in An+1, the set An has a structure of a perturbed lattice, i. e., each point is in some small
neighborhood of a (unique) lattice. We use this structure for a recursive approach to finding
best approximations in fixed dimensions, with applications to integer programming.
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1.1 Introduction

Integer Programming is of course closely connected to integer lattices and the ge-
ometry of numbers. Especially the algorithms in small dimensions which have the-
oretical performance guarantees are based on shortest vectors and good bases for
integer lattices or at least approximations of them. The most notable instance is the
polynomial-time algorithm of H. W. Lenstra [9] for integer programming in fixed
dimensions.

For integer programming in two dimensions, there are a number of different al-
gorithms, the nicest (from a geometric viewpoint) being perhaps the algorithm of
Kanamuru, Nishizeki and Asano [5]. All these algorithms, in one way or another,
eventually boil down to some sort of continued fraction expansion or greatest com-
mon divisor computation. This is no surprise, since the greatest common divisor of
two numbers a and b can be formulated as an integer programming problem

min{ ax + by | ax + by ≥ 1, x, y ∈ Z }
On the other hand, it has been shown that integer programming in two variables
is no more difficult than greatest common divisor computation, at least as far as
the “number-theoretic” complexity is concerned, the dependence on the size of the
input numbers. (This does not account for the “combinatorial” (or “geometric”)
complexity due to the fact that the problem may have a large number of constraints
and the feasible region may be a complicated polytope, in higher dimensions.)

Eisenbrand and Rote [3] introduced a novel parametric approach to integer pro-
gramming in two variables. They reduced it to the following key problem.

The Parametric Shortest Vector Problem.
Let a two-dimensional lattice Λ and a parameter ε be given. Find the small-
est factor l such that scaling the y-coordinate by l produces a lattice whose
shortest vector (in the max-norm) has length ε.

Of course, the problem has no solution if the x-axis contains a vector shorter than ε.
Otherwise, it is easy to see that l can be calculated by solving the following problem,
see Figure 1.1.
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Fig. 1.1. The Best Approximation Problem for a two-dimensional lattice Λ

Let a two-dimensional lattice Λ be given. Find the lowest lattice point of
the upper half-plane inside a given vertical strip of width 2ε that is centered
at the origin.

In [3], the problem is solved by direct application of an algorithm of Schön-
hage [12] for best rational approximation.

This paper arose from an effort to extend this approach to higher dimensions.
We will discuss the higher-dimensional version of the problem and derive some
structural properties. We will also give an algorithm, although its running time is
not competitive with the best other algorithms [4].

We formulate the higher-dimensional problem a follows.

The Best Approximation Problem.
Let a (d+1)-dimensional lattice Λ̃ ⊂ R

d+1 and an error tolerance ε be given.
Find the lattice point with smallest positive xd+1-coordinate that lies within
a distance ε of the xd+1-axis.

The distance from the xd+1-axis can be measured by some arbitrary norm, but we
will stick mostly to the usual Euclidean norm

This problem is just a reformulation of the classical Diophantine approxima-
tion problem: We want to approximate a set of d numbers α1, . . . , αd by rational
numbers x1/Q, . . . , xd/Q with a common denominator Q. If we multiply the ap-
proximating numbers by Q, we see that this problem amounts to finding an inte-
ger vector (x1, . . . , xd, Q) ∈ Z

d that lies close to the line generated by the vector
(α1, . . . , αd, 1). We just have to transform this line into the xd+1-axis leaving the
other axes fixed, and measure the “distance” from the axis appropriately, namely
in the max-norm, to get our formulation of the Best Approximation Problem.

We can split the lattice into layers as follows, see Figure 1.1. We assume that the
sublattice Λ := { x ∈ Λ̃ | xd+1 = 0 } is d-dimensional. This is no loss of generality if
Λ̃ consist of rational points. Let ã be a vector which, together with Λ, generates Λ̃.
Then Λ̃ consists of horizontal level Λ + iã, for i ∈ Z. We write ã = (a, ad+1) with
a ∈ R

d, and assume ad+1 > 0. Then the Best Approximation Problem amounts to
the following problem:

Find the lowest level Λ + iã (i ≥ 1) which contains a point within ε of the
xd+1-axis.

Since the xd+1-coordinate is irrelevant for measuring the distance from the xd+1-
axis, we obtain the following equivalent formulation in R

d.

Find the smallest i ≥ 1 such that Λ + ia contains a point within ε of the
origin.
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We denote the union of the first n − 1 layers by

An := { ia + x | x ∈ Λ, 0 ≤ i < n }

Hence we arrive at the following problem formulation, which is the one we will use
in the paper.

Find the smallest n ≥ 1 such that An contains a nonzero point of length
less than ε.

(This formulation is not completely equivalent, because Λ might already contain a
point of length at most ε, or the desired short point at level i might be the zero
vector. These cases have to be checked separately.)

1.1.1 Related Work

The Shortest Vector Problem. We solve the Best Approximation Problem in a se-
quence of rounds, repeatedly increasing n and looking for a vector in An that is
shorter than the previously found shortest vector. Thus, during the course of the
algorithm, we will also find the shortest non-zero vector of Λ̃: Either this vector lies
in Λ, or it lies in one of the other levels Λ + ai. In that level, it must clearly be the
closest point to the xd+1-axis, and there can be no point which is as close to the
xd+1-axis in any of the levels below the i-th level. The process can be stopped as
soon as the distance from the hyperplane of the current level to the origin is larger
than the shortest vector found so far.

The shortest vector problem, and the related problem of finding a good lattice
basis, are important for other areas like algebraic number theory or the analysis
of pseudo-random number generators. The best general algorithm in arbitrary di-
mension d is the algorithm of Lovász [8], which computes in polynomial time a
vector which is at most 2

d−1
2 times longer than the shortest vector. This algorithm

starts with some lattice basis, and repeatedly performs lattice reductions in the
two-dimensional lattice spanned by pairs of basis vectors.

Schnorr [11] has extended this algorithm so that it looks at k-tuples of vectors
and reduces the corresponding k-dimensional sublattices. The algorithm runs in a
polynomial number of iterations for fixed k and achieves an approximation factor
of (6k2)

d
2k . Thus, any progress in lattice reduction algorithms for fixed dimension k

has an impact on algorithms for arbitrary dimensions.
In fixed dimension, the problems of best approximation, of computing a short

lattice vector, of computing a “good” lattice basis or even of enumerating all re-
duced lattice basis (in a very weak sense) are all computationally equivalent, see [4,
Section 6]. There running time is within a constant factor of each other.

Continued Fractions. Multi-dimensional continued fraction are also related to best
approximations, see [1] for an overview. However, in this area, it is customary to
define some procedure (like the classical Jacobi-Perron algorithm), and then try to
analyze its behavior. In contrast to this, the algorithm that we describe is found by
specifying its behavior clearly in geometric terms.

Quasiperiodic tilings. From the above description, the set An arises as a section
of the (d + 1)-dimensional lattice Λ̃ between two parallel hyperplanes, projected
to a d-dimensional space. Such projections of slices of higher-dimensional lattices
are also used to generate quasiperiodic point sets, tilings, and quasicrystals by the
cut-and-project method, see [13,10].
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1.1.2 Overview.

In Section 1.2 we will discuss how the set An evolves as n increases. In particular,
we will be interested in the points when a new shortest nonzero vector appears,
because this is a candidate for the solution of the Best Approximation Problem. In
particular, we will define the structure of a fractured lattice. In Section 1.3 we will
use the properties that we have found for defining an algorithm that solves the Best
Approximation Problem recursively by reducing it to lower-dimensional problems.

1.2 The Structure of An

In the following, the concepts will be illustrated with examples in the plane, but
unless otherwise stated, they hold in any dimension. We will use the language that
is appropriate for the planar case; for example, we will speak of disks when balls
would be the proper term for higher dimensions.)

Figure 1.2 shows the set A27 for the two-dimensional lattice Λ generated by the
vectors (1, 0) and (0, 1) and for the vector a indicated in the figure. Since the point
set is periodic with the period of Λ, we only show the range [−0.5, 0.5]2 around the
origin. The last point added is point 26, and it is the nearest neighbor of the origin
among the points added so far.
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Fig. 1.2. The point set A27. The point labeled i is ia mod Λ

We will regard An as a set of n vectors 0, a, 2a, . . . , (n − 1)a modulo Λ. The
vector x mod Λ will denote the congruence class x + Λ and we can perform vector
additions and multiplications by integer scalars with these congruence classes as
with usual vectors. We denote congruence by x ≡ y (mod Λ), and we will usually
omit (modΛ) because the lattice Λ is clear from the context.

It is visually apparent that the point set in Figure 1.2 has a somewhat lattice-
like regular structure. This structure is shown in Figure 1.3. We call this a fractured
lattice. A fractured lattice is determined by a fracture vector f , and instead of d basis
vectors, it is characterized by d pairs of “basis vectors” {u1, u1+f}, . . . , {ud, u1+f}.
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Fig. 1.3. The point set A26 and the fractured lattice

Lemma 1. Assume that the vectors 0, a, 2a, . . . , (n − 1)a are distinct modulo Λ.
Then the set An has the structure of a fractured lattice, in the following sense: For
every x and for every i = 1, . . . , d, the following holds.

• x + ui ∈ An or x + (ui + f) ∈ An, but not both.
• x − ui ∈ An or x − (ui + f) ∈ An, but not both.

We call these 2d points the neighbors of x. Moreover, An is connected by this neigh-
borhood relation.

For f = 0, this definition coincides with the usual concept of a lattice.

Proof. Let z1, . . . , zd be positive integers less than n with gcd(z1, . . . , zd, n) = 1.
Then the vectors ui ≡ zia and f ≡ −na will form the fractured lattice. To see this,
let x ≡ ja ∈ An, for some 0 ≤ j < n. If j + zi < n, then (j + zi)a ≡ x + ui ∈ An.
Otherwise, 0 ≤ j + zi − n ≤ n, and (j + zi − n)a = x + (ui + f) ∈ An. Both
possibilities cannot hold simultaneously. Otherwise we would have two vectors in
An whose difference is f : ja + f ≡ j′a, with 0 ≤ j, j′ < n. If j < j′ it follows
that (n − 1)a ≡ (j′ − j − 1)a, contrary to the assumption that all points in An are
distinct. If j > j′, then 0 ≡ (j′ − j + n)a ∈ An, again a contradiction. The case
where we want to subtract ui or ui + f from x works similarly.

To show that any two vectors ja, j′a ∈ An are connected, note that the equation

j + k1z1 + k2z2 + · · · kdzd ≡ j′ (mod n)

has an integer solution (k1, . . . , kd) by assumption. Thus we can transform ja into
j′a by repeatedly adding or subtracting ui of ui + f (as appropriate), the given
number of times |ki|. The result is a vector j′′a ∈ An with 0 ≤ j′′ < n and j′′ ≡ j′

(mod n), and hence it must be j′a. ut
This proof is quite trivial. Note that we did not exclude the possibility z1 = z2 =
· · · = zd, and hence the basis vectors ui need not even be distinct. However, the
lemma might not give what is suggested by the picture in Figure 1.3. The fracture
vector f ≡ −na mod Λ might be very long compared to the “basis vectors” ui, and
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hence the structure is not really visible. However, when na is a best approximation,
then we may choose some “good” basis vectors and the structure becomes apparent.

When na is a best approximation, then the set An is also a perturbed lattice,
in the sense that the points can be moved slightly so that they form a real lattice.
Figure 1.4 shows this lattice for the point set of Figure 1.3.
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Fig. 1.4. The point set A26 is approximated by the lattice Λ̂ shifted by f ′, which is
indicated by the grid of lines. The little disks indicate the largest perturbation error ε

This lattice has been introduced by Larcher [7], and the following theorem is
essentially given in [2] (apart from the statement about the bijection).

First we state an easy observation.

Lemma 2. The length of the shortest vector of An is a lower bound for the distance
between two points of An

Proof. The distance between two points ja and j′a is ‖ja− j′a‖ = |j − j′|a, which
is the length of some vector of An. ut

Let n0 = 1 < n1 < n2 < · · · < nt−1 be the sequence of indices n when An+1

contains a non-zero vector which is shorter than the previous shortest vector (a best
approximating vector). We define the last index nt as the first level Λ + ia which
contains the zero vector; the set An will remain stable for n ≥ nt. This last index
must exist when the data are rational. If a or Λ are not rational, then the sequence
n0, n1, . . . may be infinite.

Theorem 1. For n = n1, n2, . . ., let f ≡ na be the shortest non-zero vector in
An+1. (For n = nt, let f = 0.) Then there is a d-dimensional lattice Λ̂ and a
bijection π between An and Λ̂ such that

‖x̂ + f ′ − x‖ ≤ ε, (1.1)

for all x ∈ An and x̂ = π(x), with

f ′ = f · n − 1
2n

and ε = ‖f‖.
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Moreover, the given value ε is the smallest value for which such a lattice exists, and
the lattice Λ̂ is the unique lattice that fulfills (1.1) for any ε < ‖f‖.
Proof. Λ̂ is generated by Λ and the vector â := a − f/n. Since nâ = na − f ≡ 0,
it is indeed a discrete lattice, with at most n congruence classes modulo Λ. The
mapping π : An → Λ̂ is given by π(ja) := jâ, and we get x − x̂ ≡ ja − jâ = jf/n,
for j = 0, 1, . . . , n − 1. To balance this error between the two extreme cases j = 0
and j = n − 1, we shift x̂ by f ′ = 1

2 · (n − 1)f/n:

x̂ + f − x ≡ (n−1
2 − j)f/n,

for some 0 ≤ j ≤ n − 1, and the length of this vector is at most ε. (This is true for
any norm.)

The mapping π must be injective, since two points ja and j′a that are mapped
to the same point are within distance ε of a common point, and hence ‖ja− j′a‖ ≤
2ε < ‖f‖. By Lemma 2, this contradicts the assumption that f is the shortest
vector. ut
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Fig. 1.5. The point set A79. Each point x = 0, a, 2a, . . . , 25a has received two neighbors
x + f and x + 2f , and point 0 has just received its third neighbor

1.3 Inductive construction of good fractured lattice bases

We will now see how a good “basis” for a fractured lattice or for Λ̂ can help us to
understand the further evolution of the set An. Consider the situation in Figure 1.2.
Point 0 has just received a new nearest neighbor f ≡ na. The next point (n+1)a =
28a will be a neighbor of a, and then the points 2a, 3a, and so on will get neighbors,
by the relation (n + j)a ≡ ja + f , see Figure 1.5. Once all points 0, . . . , (n − 1)a
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Fig. 1.6. The point set A150

have received their neighbors, point 0 will receive a second-degree neighbor 52a,
which is a neighbor of 26a, and similarly for the other points. Then there will be
third-degree neighbors, and so on. Although this structure has some regularity, it
does not approximate a lattice. Only when a new nearest neighbor appears (this is
149a in Figure 1.6), another approximate lattice structure emerges.

Now let us imagine that we stand at the origin and wait until a point arrives
which has a smaller length than f = na, the shortest vector so far. A typical
situation is shown in Figure 1.7. All points of An start “shooting” in the direction
of f , by successively generating neighbors at distance f, 2f, 3f, . . .. We are interested
in the first point which hits the small disc of radius ‖f‖ around the origin. The set
An can be divided into (d− 1)-dimensional layers according to the fractured lattice
structure. If the layers are sufficiently well “separated”, as in Figure 1.7, we can ask
for the first layer whose shooting ray in direction f hits the small disk. A schematic
picture is shown in Figure 1.8. The shooting direction is vertical downward, we have
arranged each layer on a horizontal line and placed the layers on successive levels.
The origin with the target disc lies on the horizontal ground line.

Now, the points in this drawing form a lattice: The difference vectors between
neighbors are of the form ±ui or ±(ui + f), by the fractured lattice structure. The
irregularity introduced by the fracture vector f is projected away in this process,
since we are only interested in rays parallel to f through the points. This observation
is the main geometric insight on which our algorithm is based.

The situation in Figure 1.8 is now almost the same as the picture of the Best
Approximation Problem in two dimensions shown in Figure 1.1. In other words, the
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Fig. 1.7. The points of An are arranged in successive layers and shoot in direction f

problem that we face is of the same kind as the original problem, but one dimension
lower.

0

Fig. 1.8. A schematic picture of the shooting process

There are some differences, however. If we ask which ray in direction f is the
first one that hits the disk, we can replace the disk by its intersection with the
ground line (the thick segment in Figure 1.8). In higher dimensions, this target
is not a segment but a (d − 1)-dimensional ball. Thus we would get exactly the
Best Approximation Problem in one dimension lower. However, the neighbors are
generated for the points of An in discrete steps and don’t fill a ray densely. It may
happen that some ray in direction f passes through the disc but none of the points
fall in the disk, see Figure 1.9a. We call this a phase error because it depends on
the locations of the equidistantly placed points on the ray.
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Fig. 1.9. (a) A phase error. The first point whose ray in direction f hits the disk is j1,
but the points j1 + n, j1 + 2n, . . . miss the disk. The first point that really falls in the disk
comes later from j2. (b) A sequence error. The point j1 lies on a lower layer than j2 but
the sequence of points starting at j2 hits the disk first

There is another source of error, a sequence error. It may happen that the levels
are not so clearly separated, and a point on a later layer hits the disk first, see
Figure 1.9b. This phenomenon may occur when the layers form a small angle with
the shooting direction. It may also happen that sequences of points emanating from
two points on the same layer of An hit the disk in the wrong order.

To deal with these problems, we sometimes have to continue the procedure even
after finding the “first” ray that hits the horizontal segment, in order to build a
safety margin. The Repeated Best Approximation Problem is like the Best Approx-
imation Problem defined in Section 1.1, but after the lowest lattice point within
a distance ε of the xd+1-axis is found, we may also ask for the second-lowest, the
third-lowest, and so on (up to some constant bound that depends only on the di-
mension).

The Repeated Best Approximation Problem
Enumerate the points ia + x, i > 0, x ∈ Λ, with ‖ia + x‖ < ε in order of
increasing i.

In our application of this problem, we will have ε ≤ min{ ‖x‖ | x ∈ Λ, x 6= 0 }.
Then the number of points with the same value of i is bounded by a constant that
depends only on the dimension, by Lemma 2.

Lemma 3. In each dimension, there is some constant bound C1
d on the number of

times that a phase error can occur.

Proof. This is a volume packing argument. For each ray that hits the vertical pro-
jection of the disk, there must be a point generated that falls into the bounding box
vertical cylinder circumscribed about the disk. (This appears as a circumscribed
square in Figure 1.9a). By Lemma 2, these points must have a minimum distance
of ‖f‖ as long as no point lies within the disk. The box can only contain a constant
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Input: A lattice basis u1, . . . , ud, a vector a, and a threshold ε.
Output: A sequence of points x = z1u1 + · · · + zdud + ia for the Repeated Best
Approximation Problem.
Initialization: Set f := a;
Main loop:

Select one vector of the current basis. (For convenience, let us assume it is ud.)
Let u′

1, . . . , u
′
d denote the projection of u1, . . . , ud onto the hyperplane perpen-

dicular to f .
Solve the (d − 1)-dimensional Repeated Best Approximation Problem for
u′

1, . . . , u
′
d−1, a′ := u′

d and ε′ := ‖f‖.
This will enumerate the successive points

y = z1u
′
1 + · · · + zdu

′
d

with ‖y‖ < ‖f‖ in order of increasing zd > 0.
For each point y, find all i ∈ Z such that

x = z1u1 + · · · + zdud + if

satisfies ‖x‖ < ‖f‖.
If enough points have been generated to be sure that the point x with minimum
i has been found, then let f be this vector.
If ‖f‖ > ε, update the basis u1, . . . , ud and repeat the loop.

Output the generated points x with ‖x‖ < ε in order of increasing i.

Fig. 1.10. The recursive algorithm for the Repeated Best Approximation Problem

number of points with minimum separation ‖f‖. (This argument can be adapted to
other metrics. In the (d− 1)-dimensional problem one works with a projection of a
d-dimensional unit ball, or with a suitable enclosing body that is easier to handle.)
ut

The recursive algorithm is schematically shown in Figure 1.10.
To take care of the sequence error, we have to relate the order of the points

x = z1u1 + · · · zdud + if

with ‖x‖ < ‖f‖ according to zd, in which the points are generated, to the desired
order according to i. We use the following lemma.

Lemma 4. Let x = z1u1 + · · · + zdud + if and x′ = z′1u1 + · · · + z′dud + i′f be
two points with ‖x‖ ≤ ‖f‖ and ‖x′‖ ≤ ‖f‖, and let z′d ≥ zd. Then i′ ≥ i − C for
C = 3‖u∗

d‖ · ‖f‖, where u∗
1, . . . , u

∗
d is a basis of the dual lattice.

Proof. Let y = z1u1 + · · · + zdud and y′ = z′1u1 + · · · + z′dud be the corresponding
points of the lattice. Then we have zd = 〈y, u∗

d〉 and z′d = 〈y′, u∗
d〉, and if − i′f =

(x − y) − (x′ − y′) = (x − x′) − (y − y′). By taking the inner product with u∗
d, we

obtain i − i′ ≤ zd − z′d + ‖x − x′‖ · ‖u∗
d‖. We have ‖x − x′‖ ≤ 2‖f‖, and we have

to add ‖f‖ because of the error bound between the point set An and the lattice
(Theorem 1). ut
Since f is shorter than the shortest vector of the lattice, the product ‖u∗

d‖ · ‖f‖ is
bounded by a constant which depends only on the dimension.

It follows that, in fixed dimension, the algorithm has to wait only a constant
number of rounds after the first point x = z1u1+ · · ·+zdud+if with ‖x‖ ≤ ‖f‖ (the
point x with smallest zd) has been found before it can start to output x. Thus the
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algorithm has to accommodate a buffer for a limited number of points. In addition,
for some points y which are generated, there may be no integer value i such that
‖z1u1+ · · ·+zdud+if‖ < ‖f‖. The occurrence of these phase errors is also bounded,
by Lemma 3. Thus we can conclude:

Lemma 5. In one iteration of the main loop, there is a constant number of calls
to the (d − 1)-dimensional Repeated Best Approximation Problem. ut
The number of iterations is equal to the number of best approximations, which is
known to be logarithmic in the size of the input numbers [6].

Theorem 2. For fixed d, the algorithm reduces the d-dimensional Repeated Best
Approximation Problem with input numbers of s bits to O(s) instances of the (d−1)-
dimensional Repeated Best Approximation Problem.

Therefore, the d-dimensional Repeated Best Approximation Problem is solved in
O(sd) steps. ut

1.4 Conclusion

The algorithm that we have given is not competitive with the fastest theoretical al-
gorithm in fixed dimension [4], which reduced the problem to only O(logd s) greatest
common divisor computations. However, the simple and in some sense, canonical
structure may be the key to an algorithm in the style of Schönhage’s algorithm for
the two-dimensional problem [12], which solves the problem only approximately for
the leading half of the bits of the numbers, and then extends this solution to the
full numbers (the “half-GCD” approach). A canonical procedure like the continued
fraction expansion (the Euclidean algorithm) seems crucial for the success of this
approach.

We have not analyzed the constants in the algorithm. They depend on relations
between a lattice and its dual lattice and on packing arguments, for which precise
estimates are hard to obtain, even in three dimensions.
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