
ar
X

iv
:0

90
3.

21
84

v1
  [

m
at

h.
C

O
] 

 1
2 

M
ar

 2
00

9

Flip Graphs of Degree-Bounded (Pseudo-)Triangulations

?

Oswin Aihholzer

1

, Thomas Hakl

1

, David Orden

2

, Pedro Ramos

2

,

G�unter Rote

3

, Andr�e Shulz

3

, and Bettina Spekmann

4

1

Institute for Softwaretehnology, Graz University of Tehnology

[oaih|thakl℄�ist.tugraz.at

2

Departamento de Matem�atias, Universidad de Alal�a

[david.orden|pedro.ramos℄�uah.es

3

Institute of Computer Siene, FU Berlin

[rote|shulza℄�inf.fu-berlin.de

4

Department of Mathematis and Computer Siene, TU Eindhoven

spekman�win.tue.nl

Abstrat. We study ip graphs of (pseudo-)triangulations whose maximum vertex degree is bounded

by a onstant k. In partiular, we onsider (pseudo-)triangulations of sets of n points in onvex position

in the plane and prove that their ip graph is onneted if and only if k > 6; the diameter of the ip

graph is O(n

2

). We also show that for general point sets ip graphs of minimum pseudo-triangulations

an be disonneted for k � 9, and ip graphs of triangulations an be disonneted for any k.

1 Introdution

An edge ip is a ommon loal and onstant size operation that transforms one triangulation into another.

It exhanges a diagonal of a onvex quadrilateral, formed by two triangles, with its ounterpart. The ip

graph F

T

(S) of triangulations of a planar point set S has a vertex for every triangulation of S, and two

verties are onneted by an edge if there is a ip that transforms the orresponding triangulations into eah

other. One of the �rst and most fundamental results onerning edge ips in triangulations is the fat that

ips an be used repeatedly to onvert any triangulation into the Delaunay triangulation [7, 9℄. This implies

immediately that F

T

(S) is onneted for any planar point set S.

The ip distane between two triangulations is the minimum number of ips needed to onvert one

triangulation into the other. The diameter of F

T

(S) is an upper bound on the ip distane. For a set S of n

points in the plane it is known that the diameter of F

T

(S) is �(n) if S is in onvex position, and �(n

2

) if

S is in general position. However, the omputational omplexity of omputing the ip distane between two

partiular triangulations is not known, even for onvex sets [5℄. In higher dimensions the ip graph does not

even have to be onneted [8℄.

Of growing interest are also subgraphs of ip graphs whih orrespond to partiular lasses of triangu-

lations. Houle et al. [4℄ onsider triangulations whih ontain a perfet mathing of the underlying point

set. They show that this lass of triangulations is onneted via ips, that is, the orresponding subgraph of

the ip graph is onneted. Related results exist for order-k Delaunay graphs, whih onsist of a subset of

k-edges, where a k-edge is an edge for whih a overing disk exists whih overs at most k other points of

the set. For general point sets the graph of order-k Delaunay graphs is onneted via edge ips for k � 1,

but there exist examples for k � 2 that an not be onverted into eah other without leaving this lass [1℄. If

the underlying point set is in onvex position, then [1℄ also shows that the resulting ip graph is onneted

?
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for any k � 0. The ip operation has been extended to other planar graphs, see [3℄ for a very reent and

extensive survey.

Pseudo-triangulations are a generalization of triangulations. A pseudo-triangle is a planar polygon with

exatly three internal angles less than �. A pseudo-triangulation of a point set S is a partition of the onvex

hull of S into pseudo-triangles whose vertex set is S. Of partiular interest are the so-alled minimum

pseudo-triangulations whih have exatly 2n � 3 edges. Contrary to triangulations eah internal edge of a

pseudo-triangulation an be ipped. A ip in a pseudo-triangulation exhanges the diagonal of a pseudo-

quadrilateral with its unique ounterpart. The ip graph F

PT

(S) of minimum pseudo-triangulations of a

point set S is onneted and Bereg [2℄ showed that its diameter is O(n logn).

There are point sets for whih every triangulation has a vertex of degree n � 1. But for pseudo-

triangulations it is known [6℄ that any point set in general position has a pseudo-triangulation of maximum

vertex degree 5. For point sets in onvex position every pseudo-triangulation is in fat a triangulation and

indeed, onvex point sets always have triangulations of maximum vertex degree 4. Hene the question arises

if the ip graphs of (pseudo-)triangulations whose maximum vertex degree is bounded by a onstant k are

onneted for ertain values of k.

Results. The majority of our results onern (pseudo-)triangulations of point sets in onvex position. So

let S be a set of n points in onvex position in the plane. In Setion 2 we show that the ip graphs of

triangulations of S of maximum vertex degree k = 4, k = 5, and k = 6 are not onneted. Then we prove

that the ip graphs are onneted for any k > 6 and argue that they have diameter O(n

2

). In Setion 3 we

briey onsider point sets in general position and show that ip graphs of minimum pseudo-triangulations

an be disonneted for k � 9, and ip graphs of triangulations an be disonneted for any onstant k.

2 Point sets in onvex position

In this setion we study the ip graphs of degree-bounded triangulations of a set S of n points in onvex

position in the plane. As mentioned above, arbitrary point sets do not neessarily have a triangulation of

bounded vertex degree, but point sets in onvex position always have a zigzag triangulation of maximum

vertex degree 4. Let k denote the maximum vertex degree of a triangulation T on S. If S has n � 5

points, then k must be at least 4. Every point set S in onvex position has in fat �(n) di�erent zigzag

triangulations. It is easy to see, though, that one an not ip even a single edge in suh a zigzag triangulation

without exeeding a vertex degree of 4 (see Fig. 1(a)).

For k = 5 onsider the triangulation depited in Fig. 1(b). Only the dashed edges an be ipped, but

there are �(n) rotationally symmetri versions of these triangulations, none of whih an be reahed from

any other without exeeding a vertex degree of 5. For k = 6 onsider the triangulation depited in Fig. 1().

No edge of this triangulation an be ipped but again there are �(n) rotationally symmetri versions of this

triangulation, none of whih an be reahed from any other without exeeding a vertex degree of 6.

De�nitions and notation. Let S be a set of n points in onvex position in the plane, let T be a triangulation

of S, and let D be the dual graph of T . Clearly, D is a tree. We distinguish three di�erent types of triangles

in T : ears, whih have two edges on the onvex hull of S, path triangles, whih have one edge on the onvex

hull of S, and inner triangles, whih have no edge on the onvex hull of S. The tip of an ear is the vertex that

(a) (b) (c)

Fig. 1. Triangulations with vertex degree k = 4 (a), k = 5 (b), and k = 6 ().
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is adjaent only to two onvex hull verties. The ears of T are dual to the leaves of D and inner triangles of

T are dual to branhing verties of degree three. A path in D is any onneted sub-graph of D that onsists

only of verties of degree two, so in partiular, any vertex of a path is dual to a path triangle. Note that

verties of degree one (leaves) an not be part of a path with this de�nition. The length of a path is its

number of verties. A path that is adjaent to at least one leaf is alled a leaf path. All other paths are alled

inner paths. An inner triangle that is adjaent to at least two leaf paths is referred to as merge triangle.

Consider a path in D of length at least two. If the onvex hull edges of its dual path triangles are adjaent

on the onvex hull of S, then we say that they form a fan. The triangles of a fan all share one ommon

vertex, the fan handle. The degree in T of a fan handle is always at least �ve. The size of a fan is the degree

of the fan handle minus two, that is, the number of diagonals of the triangles that make up the fan. Path

triangles suh that the onvex hull edges of every seond path triangle are adjaent on the onvex hull are

said to form a zigzag. Flipping every seond edge of a zigzag is alled an inversion of the zigzag.

A triangulation of S is alled a zigzag triangulation if it has preisely two ears whih are onneted by a

zigzag. Clearly, the maximum vertex degree of a zigzag triangulation is four and its dual graph is a path. A

zigzag triangulation is uniquely de�ned (up to inversion) by the loation of one of its ears. We all the zigzag

triangulation that has the tip of one of its ears on the left-most vertex of S the left-most zigzag triangulation

of S. Finally, a fringe triangulation is a triangulation whih has no fans of size greater than four, where eah

fan is adjaent to an inner triangle, and where every leaf path is dual to a zigzag. In partiular, every zigzag

triangulation is a fringe triangulation.

Algorithmi outline. Let T be a triangulation of S with maximum vertex degree k > 6. In the following

we show how to ip from T to the left-most zigzag triangulation of S without ever exeeding vertex degree

k. In partiular, we show in Subsetion 2.1 how to �rst onvert T into a fringe triangulation with O(n) ips.

In Subsetion 2.2 we prove that eah fringe triangulation always has a light merge triangle, that is, a merge

triangle with two verties of degree < k. We then show how to remove this light merge triangle by merging

its adjaent zigzags with O(n) ips, resulting in a fringe triangulation that has one less inner triangle. After

repeating this step O(n) times we have onverted T into a zigzag triangulation. Finally, in Subsetion 2.3

we demonstrate how to \rotate" T into any other zigzag triangulation of S, again with O(n) ips.

Theorem 1. Let S be a set of n points in onvex position and let T be a triangulation of S with maximum

vertex degree k > 6. Then T an be ipped into the left-most zigzag triangulation of S in O(n

2

) ips while

at no time exeeding a vertex degree of k.

Corollary 1. Let S be a set of n points in onvex position. Then for any k > 6 the set of (pseudo-

)triangulations of S with maximum vertex degree k is onneted by ips. The diameter of the orresponding

ip graph is O(n

2

).

2.1 Creating a fringe triangulation

Reall that a fringe triangulation has no fans of size greater than four, eah fan is adjaent to an inner

triangle, and every leaf path is dual to a zigzag. If T is not a fringe triangulation, then it has at least one

fan F . Let 3 � f � n� 2 be the size of F and let v

1

: : : v

f

denote the \non fan handle" verties of the edges

of F ordered ylially around the fan handle v

0

(see Fig. 2(a)).

(a) (b)

vf

v0

v2v1 vf

v0

v2v1

Fig. 2. A fan adjaent to a zigzag. Inverting the zigzag (ipping the dashed edges to the dotted edges) redues the

degree of the fan.
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(b) (c)

v1 vf

1

v0

2 3

v2 vf−1

(a)

v1 vf

1

v0

2 3
4 5

+2 +1

Fig. 3. Handling fans: The boxed numbers show the degree hange, the other numbers indiate the order in whih

ips are performed.

If a zigzag Z, whih is dual to a leaf path, is adjaent to F , then one inversion of Z an derease f

by one (see Fig. 2(b)). After the inversion the redued fan is again adjaent to a zigzag whih is dual to a

leaf path. Repeated inversion of the (stepwise expanded) zigzag will eventually remove the fan at a ost of

�(f � (~n+ f)) ips where ~n is the length of the dual path of Z. In the following we present a more eÆient

method to remove or redue fans.

Consider the fan depited in Fig. 3(a). If one of v

1

and v

f

has degree less than k and the other one less

than k � 1, then we an onvert the fan to an inner triangle and a zigzag (whih might be empty) ending

in an ear, see Fig. 3(a). The degree requirement for v

1

and v

f

is always satis�ed, unless v

1

or v

f

is the fan

handle of another fan or is adjaent to an inner triangle.

In the �rst ase the ommon diagonal of the two fans an be ipped to reate two fans separated by

a zigzag while dereasing the fan degrees by one eah, see Fig. 3(b) (the dashed edge shows the situation

before, the dotted edge after the ip). In the seond ase we distinguish two sub ases.

If f � 5, then we onvert the fan without the diagonals inident to points of too high degree (v

1

and/or

v

f

) to an inner triangle and a zigzag, as before. If, for example, both, v

1

and v

f

, have degree k, then the

new inner triangle will be spanned by v

0

, v

2

, and v

f�1

, see Fig. 3(). If f < 5, then we an only remove this

(onstant sized) fan if it is adjaent to a zigzag Z dual to a leaf path. As desribed above, we an invert Z

at most three times to remove the fan.

Lemma 1. Let S be a set of n points in onvex position and let T be a triangulation of S with maximum

vertex degree k > 6. Then T an be transformed into a fringe triangulation of S with maximum vertex degree

k in O(n) ips, while at no time exeeding a vertex degree of k.

Proof. We �rst separate any fans whose handles are onneted by an edge with one ip per pair. Then we

turn any fan that satis�es the degree ondition into an inner triangle and a zigzag. This requires a number

of ips linear in the sizes of the onverted fans. The remaining fans are neessarily adjaent to an inner

triangle. We either remove them or redue them to a fan of size at most four, again with a number of ips

linear in their sizes. If one of the remaining, onstant size, fans is adjaent to a zigzag that is dual to a leaf

path, then we remove this fan by inverting the zigzag at most three times. Sine eah zigzag dual to a leaf

path an be adjaent to at most one onstant size fan, the bound follows. ut

2.2 Merging zigzags

Reall that a merge triangle is an inner triangle that is adjaent to at least two leaf paths. In a fringe

triangulation, all leaf paths are dual to a zigzag. In the following we �rst prove that eah fringe triangulation

has a light merge triangle, that is, a merge triangle with two verties of degree < k. Then we show how to

remove a light merge triangle by merging two of the adjaent zigzags.

Let T be a fringe triangulation with maximum vertex degree k > 6. If T is not a zigzag triangulation,

then T has at least one merge triangle 4. 4 is adjaent to two zigzags Z

1

and Z

2

whih are dual to leaf

paths. Either or both of these zigzags an be empty, that is,4 an be adjaent to one or two ears. W.l.o.g. we

assume that both zigzags are non-empty { empty zigzags ontribute less edges and hene are never involved

4



in worst ase situations for our proofs. We all the vertex v

tip

of 4 that is also a vertex of Z

1

and Z

2

the tip

of 4. The edge e of 4 that is not adjaent to v

tip

is the base edge of 4. Observe that the degree of v

tip

is

at most 6: Two edges from 4, two onvex hull edges, and at most one edge eah from Z

1

and Z

2

.

Lemma 2. Let S be a set of n points in onvex position and let T be a fringe triangulation of S with

maximum vertex degree k > 6. Then T has a light merge triangle.

Proof. Sine T is not a zigzag triangulation it has at least one merge triangle 4 whih is adjaent to two

zigzags Z

1

and Z

2

whih are dual to leaf paths. Sine the tip v

tip

of eah merge triangle has degree at most

6 we have to prove that there exists a merge triangle whose base edge e has a vertex with degree < k.

If there is a merge triangle where v

tip

has degree < 6, then we an invert either Z

1

or Z

2

and so derease

the degree of one endpoint of e. Sine all verties of a zigzag, exept v

tip

and the endpoints of e, have degree

at most 4, this inversion maintains the degree bound. Hene we an assume that the tip of eah merge

triangle has degree 6. Let D be the dual graph of T . We reate the graph D

0

by removing all leafs and leaf

paths from D. Observe that eah triangle 4

0

whih is dual to a leaf vertex of D

0

is a merge triangle in T .

We now reate a seond graph D

00

by removing eah leaf of D

0

(see Fig. 4).

w

v

△
′′

△
′

u

w

v

△
′′

△
′

(a) (b) (c)

Fig. 4. The graphs D, D

0

, and D

00

(a); a leaf of D

00

with one/two hildren in D

0

(b)/().

Sine D is a tree, both D

0

and D

00

are trees as well. Hene D

00

has at least two leafs. Let 4

00

be dual

to a leaf of D

00

and let 4

0

be a hild of 4

00

in D

0

. Consider the vertex v whih is a vertex of both 4

00

and

4

0

, but not a vertex of the parent of 4

00

in D

00

(see Fig. 4(b) and ()). By assumption the tip w of 4

0

has

degree 6, whih implies that the zigzag adjaent to the edge (v; w) has no edge with endpoint v. Hene, if

4

00

has only one hild in D

0

(see Fig. 4(b)) then v has at most degree 6. If 4

00

has two hildren in D

0

(see

Fig. 4()) then also onsider the tip u of 4

0

s sibling. Sine u also has degree 6, we again know that the zigzag

adjaent to the edge (u; v) has no edge with endpoint v. So also in this ase we an onlude that v has at

most degree 6. ut

Lemma 2 states that eah fringe triangulation has a light merge triangle 4. We now show how to remove 4

by merging its adjaent zigzags Z

1

and Z

2

. Let us denote the edge of 4 that is adjaent to Z

1

with e

1

and

the one adjaent to Z

2

with e

2

. Further, let us denote the vertex of 4 that is shared by e and e

1

by v

1

and

the one shared by e and e

2

by v

2

(see Fig. 5(a)). We an assume w.l.o.g. that v

tip

has degree 6, that v

1

has

degree k, and that v

2

has degree k � 1.

(c)(a) (b)

vtip

ev1 v2

e1 e2

△

Z1 Z2

vtip

e
v1 v2

△
′

vtip

e
v1 v2

Q

dQ

Fig. 5. Merging two zigzags: Start on�guration (a) and �rst steps (b), ().
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(a) (b)

vtip

v
′

tip
vtip

v
′

tip

dQ

Fig. 6. The repeating ase: Start on�guration (a), Z

0

and Z

t

meet (b).

We want to merge Z

1

and Z

2

together with 4 into a new zigzag Z

0

that starts at e. We start by ipping

�rst e

1

and then e

2

. These ips reate the �rst two edges of Z

0

and do not violate the degree bound (see

Fig. 5(b)). Now there is a new triangle 4

0

that lies between (the remains of) Z

1

and Z

2

, similar to 4 before.

We ontinue by ipping the two edges of 4

0

that are part of Z

1

and Z

2

, respetively (see Fig. 5()). Now we

reated a quadrilateral Q with a diagonal d

Q

that separates four zigzags: The shrinking zigzags Z

1

and Z

2

,

the zigzag Z

0

growing from e, and a temporary zigzag Z

t

growing from v

tip

(see Fig. 5()).

We ontinue to take turns ipping edges ommon to Q and Z

1

and Z

2

. This alternatingly adds two edges

to Z

0

and to Z

t

and requires at most one additional ip of d

Q

per ip. The maximal vertex degree reahed

during all ips ours at the verties of Q, whih an have maximal degree at most 7 � k: two onvex hull

verties, at most two edges eah from both adjaent zigzags, and d

Q

.

If both Z

1

and Z

2

have equal size { the symmetri ase { then Z

0

and Z

t

ultimately grow into eah other,

forming one zigzag. In this ase at least every seond ip adds a new edge to Z

0

whih is never ipped again.

Let m be the total number of verties involved in the merge. Then the merge in the symmetri ase an by

exeuted with at most 2m ips.

If Z

1

and Z

2

do not have equal size, onsider the loation of Z

0

at the end of the merge, whih is uniquely

determined by e, independent of how the merge is exeuted. Z

0

will end at an ear that has a tip v

0

tip

, whih

might lie to the right or to the left of v

tip

. (v

tip

and v

0

tip

are idential i� Z

1

and Z

2

have equal length.) We

distinguish two sub ases, depending on the interation of Z

t

with v

0

tip

. The �rst is the repeating ase, whih

ours if Z

0

and Z

t

meet before Z

t

reahes v

0

tip

(see Fig. 6), and the seond is the reursive ase, whih

ours if Z

t

reahes v

0

tip

before it meets Z

0

(see Fig. 7).

In the repeating ase we are in the same situation as the one we started from, just with smaller zigzags.

We have to merge two zigzags { the remainder of either Z

1

or Z

2

and Z

t

{ and we have a light merge triangle

to merge them at: The last edge of Z

0

(d

Q

in Fig. 6(b)) beomes our new base edge e

0

and both endpoints of

e

0

have degree at most 6 < k (two onvex hull edges and at most two edges eah from both adjaent zigzags).

We an now ontinue ipping in suh a way that Z

0

is ontinued. Unlike in the symmetri ase, the edges

of Z

t

are ipped again. However, reall that our ips alternatingly add two edges to Z

t

and to Z

0

. Hene

we an harge eah edge of Z

0

{ whih is never ipped again { with an additional two ips to aount for

ipping the edges of Z

t

again, whih implies that the total number of ips in the repeating ase is also linear

in m.

(b)(a)

vtip

v
′

tip

dQ

(c)

vtip

v
′

tip
vtip

v
′

tip

Fig. 7. The reursive ase: Start on�guration (a), Z

t

reahes v

0

tip

(b), after merging reursively ().
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In the reursive ase d

Q

beomes the base edge of a new light merge triangle, at whih two zigzags {

the remainder of either Z

1

or Z

2

and Z

t

{ have to be merged. Possibly after inverting one or both zigzags

the new v

tip

has again degree 6 and both end-points of the new base edge also have at most degree 6 < k

(see Fig. 7(b)). After solving this instane reursively, the remaining problem is in the symmetri ase (see

Fig. 7()). Let m again be the total number of verties involved in the merge and let m

0

be the number of

verties in Z

0

when we reurse. The total number of ips satis�es the following reursion:

T (m) = �(m

0

) + T

�

m

2

�

m

0

2

�

+�(m�m

0

) � O(m) + T

�

m

2

�

= O(m) :

Thus also in the reursive ase, the number of ips is linear in the size of the two zigzags whih are merged.

Lemma 3. Let S be a set of n points in onvex position, let T be a fringe triangulation of S with maximum

vertex degree k > 6, let 4 be a light merge triangle of T , and let m be the total number of verties of 4 and

its two adjaent zigzags that end in ears. 4 and both zigzags an be merged into one zigzag ending in an ear

in O(m) time, while at no time exeeding a vertex degree of k.

Sine the light merge triangle4 is an inner triangle of a fringe triangulation, it might be adjaent to a fan of

size at most four, whih in turn is adjaent to a zigzag Z

00

, followed by another fan of size at most four, whih

is adjaent to the next inner triangle. After removing 4 by merging it with its two adjaent zigzags into one

new zigzag Z

0

, we might have to invert Z

0

and Z

0

+ Z

00

a onstant number of times to remove the fans and

ensure that the new triangulation is again a fringe triangulation. The inversions of Z

0

an be harged to the

merge operation and the inversions of Z

00

an be harged to Z

00

{ sine any inner path beomes a leaf path

only one, the total osts for all these inversions is O(n).

2.3 Rotating a zigzag triangulation

Reall that a zigzag triangulation is uniquely de�ned (up to inversion) by the loation of one if its ears. In

this setion we show how to ip or \rotate" any zigzag triangulation of S into any other zigzag triangulation

of S. We distinguish the rotations by the \angle" between the soure and target ears. Spei�ally, onsider

the line `

s

through the ears of the soure zigzag and the line `

t

through the ears of the target zigzag. If these

lines partition the verties of S into four equal sets (plus or minus one) then we say that they form a 90

Æ

angle. Note that this angle de�nition is not geometri but relies solely on the distribution of the points of S.

If S forms a regular onvex n-gon then the regular geometri and our ombinatori angle de�nition are the

same.

First, as a basi step, we desribe a rotation by 90

Æ

. In this speial ase the tips of the ears u and v of the

target zigzag are onneted by an edge of the soure zigzag (see Fig. 8(a)). Flipping the edge between u and

v reates a diagonal d

Q

, ipping the remaining edges adjaent to u and v reates a splitting quadrilateral

Q between the shrinking soure and the growing target zigzags (see Fig. 8(b)-()). We an now ip to

alternatingly add edges to the zigzags growing from u and v, just as desribed before in the symmetri ase

of the merge. Hene a rotation by 90

Æ

an be exeuted with a linear number of ips. The maximal vertex

degree reahed during all ips ours again at the verties of Q, whih an have maximal degree at most

7 � k: two onvex hull verties, at most two edges eah from both adjaent zigzags, and d

Q

.

Next, we onsider rotations by 45

Æ

, that is, rotations where 1/8 of the verties lie between the soure

and target ears in either lokwise or ounter-lokwise diretion (see Fig. 9(a)). The two target ears u and

(a) (b) (c)

u v1
3

2

u vdQ
Q

u v

Fig. 8. Zigzag rotation by 90

Æ

: Start on�guration (a), �rst steps (b), ().
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(a) (b) (c)

u v

u
′

v
′

u v

u
′

v
′

u v

u
′

v
′

Fig. 9. Zigzag rotation by 45

Æ

: Start on�guration (a), �rst steps (b), the zigzags growing from u, u

0

, v, and v

0

meet

().

v are no longer onneted by an edge of the soure zigzag. We selet two temporary tips u

0

and v

0

whih are

onneted to u and v, respetively, and whih have the same distane (in verties) to the ears of the soure

zigzag as u and v (see Fig. 9(b)). We now grow zigzags from u, u

0

, v, and v

0

as desribed before for the 90

Æ

rotation. When these four zigzags meet (see Fig. 9()) then we an �nish the rotation as in the 90

Æ

setting.

Using the same arguments as before (twie) we an onlude that also the rotation by 45

Æ

an be exeuted

with a linear number of ips, while at no time exeeding a vertex degree of 7 � k.

The �nal ase whih we onsider are rotations between 45

Æ

and 90

Æ

. All other rotations an be omposed

of a rotation by 90

Æ

followed by a rotation between 45

Æ

and 90

Æ

. We selet two temporary tips u

0

and v

0

as

before and start growing four zigzags, also as before (see Fig. 10(a) and (b)). But in this ase, when two of

the growing zigzags meet, they do not form a 90

Æ

setting (see Fig. 10(b)). But we an exeute two merges

at two light merge triangles 4

u

and 4

v

, eah time involving one of the zigzags growing from a temporary

tip and a tip from the soure zigzag. After the two merges, we are again in the 90

Æ

setting and an �nish

the rotation (see Fig. 10()). With the same arguments as before we an onlude that also rotations by any

angle between 45

Æ

and 90

Æ

an be exeuted with a linear number of ips, while at no time exeeding a vertex

degree of 7 � k.

(a)

u v

u
′

v
′

(b) (c)

u v

u
′

v
′

△u

△v

u v

u
′

v
′

Fig. 10. Zigzag rotation between 45

Æ

and 90

Æ

: Start on�guration (a), the zigzags growing from u, u

0

, v, and v

0

meet

(b), after the merge ().

Lemma 4. Let S be a set of n points in onvex position and let T be any zigzag triangulation of S. T an

be rotated into any other zigzag triangulation of S with O(n) ips, while at no time exeeding a vertex degree

of k.

3 Point sets in general position

In this setion we study ip graphs of bounded degree triangulations and pseudo-triangulations of a set S

of n points in general position in the plane. There are point sets for whih every triangulation must have a

vertex of degree n�1. Nevertheless we an ask the following question: If there are two triangulations T

1

and

T

2

of a point set S, both of whih have maximum vertex degree k, is it possible to ip from T

1

to T

2

while

at no time exeeding a vertex degree of k? For pseudo-triangulations it is know [6℄ that any point set S in

general position has a pseudo-triangulation of maximum vertex degree 5. Hene the question arises if there

is a k � 5 suh that the ip graph of pseudo-triangulations with maximum vertex degree k is onneted.
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(a) (b)

Fig. 11. Two triangulations whih annot be ipped into eah other.

For any k there is a point set whih has two triangulations T

1

and T

2

of maximum vertex degree k whih

annot be ipped into eah other without exeeding a vertex degree of k. Consider the example for k = 8

depited in Fig. 11. The shaded parts indiate zigzag triangulations and the dark verties have degree 8. In

the left triangulation only edges of the zigzags an be ipped without exeeding vertex degree 8, hene it

is impossible to reah the triangulation on the right. This example an be easily modi�ed for any onstant

k > 3.

We do not know if there is a k suh that the ip graph of pseudo-triangulations with maximum vertex

degree k is onneted, but we do know that k, if it exists, needs to be larger than 9. Consider the pseudo-

triangulation P depited in Fig. 12. P has maximal vertex degree 9, but no edge of P an be ipped. However,

P is learly not the only pseudo-triangulation of this point set with maximum vertex degree 9.

Fig. 12. The \triangular edges" in the left drawing onsist of the struture shown on the right, with the indiated

orientation. Dark verties have degree 9.
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