Fixed-parameter tractability and lower bounds
for stabbing problems
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Abstract

In this paper we study the parameterized complexity
of several “stabbing” problems.

For a general class of objects in R?, we show that
the (decision) problem of stabbing a set of translates
of such an object with k axis-parallel lines is WJ[1]-
hard with respect to k, and thus, not fixed-parameter
tractable, unless W[1]=FPT. When the lines can have
arbitrary directions, it is even W[1]-hard for disjoint
objects. Nevertheless, for some special cases such as
stabbing disjoint unit squares with axis-parallel lines,
we show that the problem is fixed-parameter tractable
by giving an algorithm that runs in O(nlogn) time
for every fixed k.

We also show that deciding whether n given unit
balls in R? can be stabbed by one line (the decision
version of the minimum enclosing cylinder problem)
is W[1]-hard with respect to the dimension d.

1 Introduction

We study several instances of the following general
stabbing problem: Given a set S of n translates of an
object in R? (e.g., squares or circles in the plane), find
a set of k lines with the property that every object
in S is ”stabbed” (intersected) by at least one line.
All these problems are known to be NP-hard and for
most of them only polynomial time constant-factor
approximation algorithms are known. We study these
problems from a parameterized complexity point of
view: We examine whether algorithms that run in
O(f(k,d) - n°) time on inputs of size n (where ¢ is a
constant independent of k, d, n) do exist; see [2] for an
introduction to parameterized complexity theory.

Results. For a general class of objects in R?, we show
that the problem of stabbing with (even axis-parallel)
lines is W([1]-hard with respect to k, and thus, not
fixed-parameter tractable, unless W[1]=FPT.

Theorem 1 Let O be a connected object in the plane
(which is not a point). (i) The problem of stabbing a

*Institut fir Informatik, Freie Universitat Berlin, Takus-
traBe 9, D-14195 Berlin, Germany, {panos, knauer, rote,
dwerner }@inf.fu-berlin.de.

TThis research was supported by the German Science Foun-
dation (DFG) under grant Kn 591/3-1.

Christian Knauer*f

Gilnter Rote* Daniel Werner*

set of translates of O is W[1]-hard with respect to the
parameter k if the stabbing lines are to be parallel to
two different directions u, v, unless O is contained in a
line parallel to u or v. (ii) Stabbing disjoint translates
of O with k lines in arbitrary directions is W[1]-hard
with respect to the parameter k.

Corollary 2 Stabbing a set of disjoint rectangles in
the plane by k axis-parallel lines is W/[1]-hard with
respect to k.

Let D be a set of directions. A line with a direction
from D is called a D-line. A set of objects with the
property that the maximum number of objects that
can be simultaneously intersected by two D-lines with
different directions is bounded by ¢ € N is called ¢—
shallow for D.

Theorem 3 Stabbing sets that are O(1)-shallow for
D with k D-lines can be decided in O(nlogn) time
for every fixed k.

Finally, we prove that the minimum enclosing cylin-
der of n points in R% can probably not be computed
by an algorithm with a running time of the form
O(f(d) - n°), by showing the corresponding decision
problem to be W[1]-hard:

Theorem 4 Stabbing unit balls in R? with a line is
W/1]-hard with respect to the parameter d.

Our reduction also implies that for this problem
and, consequently, for the problem of computing the
minimum enclosing cylinder of n points in R¢, no
n°@_time algorithm exists, unless the Exponential
Time Hypothesis (which asserts that n-variable 3SAT
cannot be solved in 2°(")-time) fails to hold [4].

Related Results. Langerman and Morin [5] showed
that an abstract N P-hard covering problem that
models a number of concrete geometric (as well as
purely combinatorial) covering problems is in FPT.

Stabbing unit balls in unbounded dimension was
shown to be NP-hard by Megiddo [6]. Hasin and
Megiddo [3] developed constant factor approximations
for special instances of the stabbing problem.

In a recent work, and independently of our results,
Dom et al. [1] also show that the problem of stab-
bing (overlapping) rectangles with axis-parallel lines



is W[1]-hard (by a different and more complicated re-
duction from the multi-colored k-clique problem) but
in FPT for disjoint unit squares.

2 Stabbing with & lines

2.1 Hardness Results

We first prove that stabbing axis-parallel unit squares
with k axis-parallel lines is W[1]-hard with respect to
k by an fpt-reduction from the W[1]-complete k-clique
problem in directed graphs (c.f. [2]). For proving The-
orem 1, we modify our construction in order to handle
general objects and lines of arbitrary direction. In this
section we consider all objects to be open.

Let [n] = {1,...,n} and G = ([n], E) be a simple
directed graph with no self edges. From G we con-
struct a set S of axis-parallel squares in R? such that
S can be stabbed by 6k axis-parallel lines if and only
if G has a clique of size k.

We first create instances S*(G, k) with squares of
two different sizes. There will be k horizontal and
k vertical “double strips” S}L, R S,’f and S},..., Sk,
respectively, to choose lines from (c.f. Fig. 1). Out of
each of those strips, two “consistent” lines will have
to be chosen in order to get a solution of the speci-
fied size. Around every intersection of a vertical and
a horizontal double strip, we place a gadget consist-
ing of a set of squares within a region of suitable size.
The gadgets represent the adjacency relation of the
graph. We will ensure that (P0): Any selection of 2k
such line pairs corresponds to a set C' of vertices of
G. (P1): Two orthogonal line pairs in strips S}, SJ
with 7 # 7 will intersect all the squares in these strips
iff these line pairs correspond to vertices that are con-
nected in G. (P2): Two orthogonal line pairs in strips
Si, 8¢ will intersect all the squares in these strips iff
these line pairs correspond to the same vertex. The
2k line pairs intersect all the squares iff C' forms a
k—clique. We will need 2k more lines to guarantee the
consistency of such a selection.

Let O;(x,y) denote the axis-parallel square with

side length ! and lower left corner (z,y). A gadget
T will consist of a collection of axis-parallel squares.
T(x,y) denotes a copy of T whose squares are placed
relative to (z,y).
The A-gadget (adjacency). A-gadgets represent
the adjacency relation of the graph G. Each consists
of the set A := {0,-1(¢,7) | (i,5) ¢ E}. There are
2n wv(ertex)—strips strips in each direction to chose
(combinatorially) different axis-parallel lines through
an A—gadget from. If a line [ goes through the i-th
v—strip of the gadget we say that it represents the
vertex rep(l) := ¢ modn of G. If 0 < i < n the
line [ is called negative, otherwise it is called positive.
Two lines are called antipodal if one is positive and
the other is negative.
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Figure 1: Double strips and a Crp—gadget (n = 4).

The construction ensures that if we have two an-
tipodal horizontal lines that represent vertex ¢ and
two antipodal vertical lines that represent vertex j,
then they intersect all the squares inside A iff ¢ and j
are adjacent in G, which will ensure (P1).

The D—gadget (diagonal). This type of gadget is
an A-gadget for the graph with adjacency defined by
the identity,i.e., D := {O,-1(4,5) | 1 < i # j < n}.
The only line pairs allowed are those that correspond
to the same vertex, which will ensure property (P2).
The F-gadget (forcing). This type of gadget will
be used to force the existence of horizontal (or ver-
tical) lines in a specified strip in any solution of size
6k. We define them as Fj, := {O,(—i-n,0) | 1 <4<
6k + 1} and F, ;= {0,(0,—i-n) | 1 <i < 6k + 1}.

To intersect all squares of an Fj—gadget with only

vertical lines requires at least 6k + 1 such lines, thus
in any solution with < 6k lines there must be a hori-
zontal line intersecting the gadget.
The C—gadget (consistency). This type of gad-
get is used to guarantee a certain distance between
two lines of the same direction corresponding to the
same double—strip of an A—(or D)-gadget. With this
it will be possible to identify such line pairs with the
vertices (P0). It will consist of three F-gadgets and
2(n — 1) additional squares. We describe the Cp—
gadget for horizontal lines only (C,—gadgets are de-
fined analogously). C}, consists of the union of the
two sets {0,-1(1—¢,i—n+1)|1<i<n-—1} and
{Op—1(n+1—d,n+i—1)]2 <i<n} together with
three F—gadgets that force the existence of lines in
the regions H~ = R x (0,n), H" = R x (n,2n) and
VY = (0,n) x R. See Figure 1 for an example.

The next lemma states the main property of the
Cr—gadgets (C,—gadgets have a symmetric property):

Lemma 5 Given two antipodal horizontal lines
h=,h*, in H™,HT, respectively, then there exists
a vertical line that together with the others inter-
sects all of the squares belonging to a Cj,—gadget iff
rep(h™) > rep(h™). In fact, we can always assume
that rep(h™) = rep(h™).



Putting it all together. We now describe the place-
ment of the gadgets defined above. The main part,
expressing the adjacency-relation of the graph, will
be a k x k grid of A-gadgets and D—gadgets: A :=
{A@G -3n,7-3n) | 1 < i # j < k} and D :=
{D(@-3n,i-3n) | 1 < i < k}. Around this grid,
we add several C—gadgets to allow only specific so-
lutions: Cp, := {Cp(—i-3n,i-3n) | 1 < i <k} and
Cy :={Cy(i-3n,—i-3n) | 1 <i<k}. The size of the
set S*(G, k) := AUDUC, UC, is O (k*n?).

Lemma 6 S*(G,k) can be stabbed by 6k axis-
parallel lines iff G has a k—clique.

To yield set S(G,k) of unit squares, we shrink
the squares in the F-gadgets by letting Fj :=
{O0,-1(=in,1/2) | 1 <i <6k + 1} (similarly for F,).

Corollary 2 follows by shifting all the squares by a
small amount and replacing all (parallel) diagonals by
very thin pairwise disjoint rectangles.

Arbitrary directions and general objects. First, the
forcing gadgets are modified to contain n? squares;
this will ensure that the chosen lines have to be “al-
most” parallel. Then, the squares are shrinked by
some small value ¢; this ensures that for each almost
parallel line there is a parallel line that intersects the
same squares. Thus, in any solution the lines can ac-
tually be assumed to be axis-parallel, i.e., Lemma 6
holds also for this new set. Again, shifting the squares
a little and replacing the diagonals by rectangles as
above yields a set of disjoint rectangles. This set is
then linearly transformed to yield a combinatorially
equivalent set of disjoint unit squares.

To prove the analogous results for arbitrary, con-
nected objects we simply linearly transform them so
that their axis-parallel bounding box is a unit square.

2.2 Fixed Parameter Tractable Cases

We prove that stabbing disjoint axis-parallel unit
squares in the plane with k axis-parallel lines is fpt
(with respect to k) by combining data reduction with
branching and kernelization techniques. The algo-
rithm can be easily modified to handle the case of
general objects and line directions for Theorem 3. In
this section we consider all sets to be closed.

Let & be a set of n disjoint axis-parallel unit
squares. We want to determine if S can be stabbed by
k axis-parallel lines. It suffices to consider only lines
that support the boundary of a square in S; there are
at most 4n of them. For a line ! let I(I) denote the
set of squares that are stabbed by I. We first apply
the following data reduction rule to S:

DR: For all kK > k 4+ 1 squares with the same x—
coordinates, delete all but k + 1 of them, and also for
Kk >k + 1 squares with the same y—coordinates.

A set on which DR has been applied is called a DR—
set. The algorithm is based on the following lemma.

Lemma 7 Let | be a horizontal line that intersects
k > k unit squares I(1) = {O(z;,y;) | 1 <i <k} CS.
Then in order to stab the set S with k lines, there has
to be a horizontal line I* that intersects at least two
squares from I(l). I* can be chosen from B(I(l)) :=
{ly=vill<i<riU{y=wyi+1|1<i<k}

An analogous lemma holds for vertical lines as well.
Observe that for a DR-set S, if there is an axis-
parallel line [ with |I(I)| > 2k + 1, then there is also a
line I* parallel to [ with k+ 1 < |I(I*)| <2k + 1. For
such a line we use Lemma 7 by branching on all the
|B(I(1))| possible lines. If no such line exists, we end
up with a problem kernel (in each branch): All the
lines now intersect at most k squares, so the SOLVE
function simply rejects if the number of squares left
is more than k? and otherwise uses brute force.

STAB(S, k)
if S =0 “SOLUTION FOUND”
else if £ =0 return
apply DR
if there is a line [ with k+1 < |I(l)] <2k +1
for all lines I’ from the set B(I(l))
STAB(S — I(I'), k — 1)
else SOLVE(S, k)

Lemma 8 If there is a solution of size k, the above
algorithm finds a solution of size k' < k.

The algorithm branches on at most 2(2k + 1) pos-
sibilities at most k times and each call of the STAB
procedure needs O(nlogn) steps. In each branch it
ends up with a problem kernel, which can be solved in

time (4k2)k by exhaustive search, so the total running
time is O(nlogn) for every fixed k.

3 Stabbing balls with one line

We show that the problem of stabbing unit balls in
R? with a line is W[1]-hard with respect to d by an
fpt-reduction from the WJ[1]-complete k-independent
set problem is general graphs [2]. Given an undirected
graph G([n], E) we construct a set B of balls in R?*
such that B can be stabbed by a line if and only if G
has an independent set of size k.

For every ball B € B we will also have —B €
B. This allows us to restrict our attention to lines
through the origin. For a line [, let ['be its unit direc-
tion vector. We view R?* as the product of k orthog-
onal planes F1, ..., B, where each E; has coordinate
axes X;,Y;. The component on X;, Y; of a point p is
denoted by z;(p), yi(p) respectively.

For each plane F;, we define 2n 2k-dimensional
balls, with centers regularly spaced on the unit circle
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Figure 2: Centers of the balls and their respective
half-planes and wedges on a plane F;, for n = 4.

on F; centered at the origin 0. Let ¢;,, € E; be the cen-
ter of the ball By, u € [2n], with z;(cs,) = cos(u—1)%
and y;(ci,) = sin(u—1)%. We define a scaffolding ball
set B = {Bj,,i=1,....,kand u = 1,...,2n}. We
have |[B°| = 2nk. All balls in BY will have the same
radius r < 1, to be defined later.

Two antipodal balls B, — B are stabbed by the same
set of lines. A line [ stabs B° if and only if it satisfies
the system of nk inequalities: (ciu 02> ewl)? =72,
fori=1,...,kand u=1,.

Geometrlcaﬂy7 the 1nequahty assertlng that [ stabs
B, says that the projection l of [ on the plane E;
lies in one of the half-planes H;; = {p € Ejlciu -
p = Vllewll? =r?} or Hy, = {p € Eilci - p <
—+/llciu||? = r2}. Consider the situation on a plane
E;. Line [ stabs all balls B;, (centered on E;)
if and and only if I; lies in one of the 2n wedges
i(Hi_lmHi—g)v (Hz_('n, 1)ﬂHi—~1_z)v and :l:(Hi_lmHi’_fL);
see Fig 2. The apexes of the wedges are regularly
spaced on a circle of some radius A. By choosing
r= \/1 — (1 —cos ) /(2k) we have that A = 1/(Vk).

Since I € R?* is unit, we have that ||lj|| = 1/(Vk),
for every i € {1,. k} Hence, for line ! to stab all
balls in B, every pI‘OJGCthn l must be one of the
apexes in Al. There are 2n choices for each ll, and
the total number of lines that stab B° is n*2F—1,

For a tuple (ui,...,ux) € [2n]*, we denote
by I(uq,...,ux) the line with vector ﬁ(cos(?ul —
1)g- ,sm(2u1 — 1)g=, ..., co8(2up — 1)g-,sin(2ug —

1)5=). Two lines l(uhug,...,uk) and [(v1,va, ..., Uk)
are said to be equivalent if u; = v;( mod n), for all
i. We have n* equivalence classes L(uy, ..., uy), with
(u1,...,ux) € [n)¥, where each class consists of 2¥~1
lines. There is a bijection between the possible equiv-
alence classes of lines that stab B® and [n]*.

Constraint balls. For each pair of distinct indices
i # 7 (1 <i,5 < k) and for each pair of (possibly
equal) vertices u,v € [n], we define a constraint set

of balls B}’ with the property that (all lines in) all
classes L(uy,...,u) stab B} except those with u; =
u and u; = v. The centers of the balls in B%” lie in
the 4-space E; x E;. All lines in a class L(uq, ..., u)
project into only two lines on E; x E;. We use a ball
B} (to be defined shortly) that is stabbed by all lines

l(ui,...,ux) except those with u; = w and u; = v.
Similarly, we use a ball Bgy” that is stabbed by all lines
l(uq,...,ux) except those with w; = w and u; = 7,

where v = v +n. We have, B = {+B}", £B}}.

1] ’
Consider a line [ = l(ul, coyug) with u; = u and
uj = v. The center ¢}

v of B“” will lie on a direction
7€ By x Ej orthogonal to l, but for which I/ - 7 # 0 for
any line I’ = l(u1, ..., ux) with u; # u or u; # v. Let

w be the angle between I/ and Z. We choose Z such

that |cosw| > %, where A < 1 is an appropriate

function of n. This helps us place Bj sufficiently

close to the origin so that it is still intersected by I’.

We can choose any point ¢f’ on z with 7 < [[c}|| <
k/(k— A\?).

We add to B° the 4n(5) balls in By = [JBi, 1 <
u<n,1<1<j <k, to ensure that all components
u; in a solution (class of lines L(uq,...,ux)) are dis-
tinct. For each edge uv € E we also add the balls
in k(k — 1) sets B}, with i # j. This ensures that
the remaining classes of lines L(uy,...,uy) represent
independent sets of size k. In total, the edges are rep-
resented by B = B}, wv € E, 1 <4,j <k, i# j.
The final set B = B°UBy UBg has 2nk+4(g) (n+2|E))
balls. The constraint sets of balls exclude tuples with
two equal indices u; = u; or with indices u;, u; when
u;u; € E, thus, the classes of lines that stab B repre-
sent exactly the independent sets of G.

Lemma 9 Set B can be stabbed by a line if an only
if G has an independent set of size k.
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