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Abstract

In this paper we study the parameterized complexity
of several “stabbing” problems.

For a general class of objects in R2, we show that
the (decision) problem of stabbing a set of translates
of such an object with k axis-parallel lines is W[1]-
hard with respect to k, and thus, not fixed-parameter
tractable, unless W[1]=FPT. When the lines can have
arbitrary directions, it is even W[1]-hard for disjoint
objects. Nevertheless, for some special cases such as
stabbing disjoint unit squares with axis-parallel lines,
we show that the problem is fixed-parameter tractable
by giving an algorithm that runs in O(n log n) time
for every fixed k.

We also show that deciding whether n given unit
balls in Rd can be stabbed by one line (the decision
version of the minimum enclosing cylinder problem)
is W[1]-hard with respect to the dimension d.

1 Introduction

We study several instances of the following general
stabbing problem: Given a set S of n translates of an
object in Rd (e.g., squares or circles in the plane), find
a set of k lines with the property that every object
in S is ”stabbed” (intersected) by at least one line.
All these problems are known to be NP-hard and for
most of them only polynomial time constant-factor
approximation algorithms are known. We study these
problems from a parameterized complexity point of
view: We examine whether algorithms that run in
O(f(k, d) · nc) time on inputs of size n (where c is a
constant independent of k, d, n) do exist; see [2] for an
introduction to parameterized complexity theory.

Results. For a general class of objects in R2, we show
that the problem of stabbing with (even axis-parallel)
lines is W[1]-hard with respect to k, and thus, not
fixed-parameter tractable, unless W[1]=FPT.

Theorem 1 Let O be a connected object in the plane
(which is not a point). (i) The problem of stabbing a
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set of translates of O is W[1]–hard with respect to the
parameter k if the stabbing lines are to be parallel to
two different directions u, v, unless O is contained in a
line parallel to u or v. (ii) Stabbing disjoint translates
of O with k lines in arbitrary directions is W[1]–hard
with respect to the parameter k.

Corollary 2 Stabbing a set of disjoint rectangles in
the plane by k axis-parallel lines is W[1]-hard with
respect to k.

Let D be a set of directions. A line with a direction
from D is called a D-line. A set of objects with the
property that the maximum number of objects that
can be simultaneously intersected by two D-lines with
different directions is bounded by c ∈ N is called c–
shallow for D.

Theorem 3 Stabbing sets that are O(1)-shallow for
D with k D-lines can be decided in O(n log n) time
for every fixed k.

Finally, we prove that the minimum enclosing cylin-
der of n points in Rd can probably not be computed
by an algorithm with a running time of the form
O(f(d) · nc), by showing the corresponding decision
problem to be W[1]-hard:

Theorem 4 Stabbing unit balls in Rd with a line is
W[1]-hard with respect to the parameter d.

Our reduction also implies that for this problem
and, consequently, for the problem of computing the
minimum enclosing cylinder of n points in Rd, no
no(d)-time algorithm exists, unless the Exponential
Time Hypothesis (which asserts that n-variable 3SAT
cannot be solved in 2o(n)-time) fails to hold [4].

Related Results. Langerman and Morin [5] showed
that an abstract NP -hard covering problem that
models a number of concrete geometric (as well as
purely combinatorial) covering problems is in FPT.

Stabbing unit balls in unbounded dimension was
shown to be NP-hard by Megiddo [6]. Hasin and
Megiddo [3] developed constant factor approximations
for special instances of the stabbing problem.

In a recent work, and independently of our results,
Dom et al. [1] also show that the problem of stab-
bing (overlapping) rectangles with axis-parallel lines
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is W[1]-hard (by a different and more complicated re-
duction from the multi-colored k-clique problem) but
in FPT for disjoint unit squares.

2 Stabbing with k lines

2.1 Hardness Results

We first prove that stabbing axis-parallel unit squares
with k axis-parallel lines is W[1]-hard with respect to
k by an fpt-reduction from the W[1]-complete k-clique
problem in directed graphs (c.f. [2]). For proving The-
orem 1, we modify our construction in order to handle
general objects and lines of arbitrary direction. In this
section we consider all objects to be open.

Let [n] = {1, . . . , n} and G = ([n], E) be a simple
directed graph with no self edges. From G we con-
struct a set S of axis-parallel squares in R2 such that
S can be stabbed by 6k axis-parallel lines if and only
if G has a clique of size k.

We first create instances S∗(G, k) with squares of
two different sizes. There will be k horizontal and
k vertical “double strips” S1

h, . . . , Sk
h and S1

v , . . . , Sk
v ,

respectively, to choose lines from (c.f. Fig. 1). Out of
each of those strips, two “consistent” lines will have
to be chosen in order to get a solution of the speci-
fied size. Around every intersection of a vertical and
a horizontal double strip, we place a gadget consist-
ing of a set of squares within a region of suitable size.
The gadgets represent the adjacency relation of the
graph. We will ensure that (P0): Any selection of 2k
such line pairs corresponds to a set C of vertices of
G. (P1): Two orthogonal line pairs in strips Si

h, Sj
v

with i 6= j will intersect all the squares in these strips
iff these line pairs correspond to vertices that are con-
nected in G. (P2): Two orthogonal line pairs in strips
Si

h, Si
v will intersect all the squares in these strips iff

these line pairs correspond to the same vertex. The
2k line pairs intersect all the squares iff C forms a
k–clique. We will need 2k more lines to guarantee the
consistency of such a selection.

Let �l(x, y) denote the axis-parallel square with
side length l and lower left corner (x, y). A gadget
T will consist of a collection of axis-parallel squares.
T (x, y) denotes a copy of T whose squares are placed
relative to (x, y).
The A–gadget (adjacency). A-gadgets represent
the adjacency relation of the graph G. Each consists
of the set A := {�n−1(i, j) | (i, j) /∈ E}. There are
2n v(ertex)–strips strips in each direction to chose
(combinatorially) different axis-parallel lines through
an A–gadget from. If a line l goes through the i-th
v–strip of the gadget we say that it represents the
vertex rep(l) := i mod n of G. If 0 < i < n the
line l is called negative, otherwise it is called positive.
Two lines are called antipodal if one is positive and
the other is negative.
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Figure 1: Double strips and a Ch–gadget (n = 4).

The construction ensures that if we have two an-
tipodal horizontal lines that represent vertex i and
two antipodal vertical lines that represent vertex j,
then they intersect all the squares inside A iff i and j
are adjacent in G, which will ensure (P1).
The D–gadget (diagonal). This type of gadget is
an A–gadget for the graph with adjacency defined by
the identity,i.e., D := {�n−1(i, j) | 1 ≤ i 6= j ≤ n}.
The only line pairs allowed are those that correspond
to the same vertex, which will ensure property (P2).
The F–gadget (forcing). This type of gadget will
be used to force the existence of horizontal (or ver-
tical) lines in a specified strip in any solution of size
6k. We define them as Fh := {�n(−i · n, 0) | 1 ≤ i ≤
6k + 1} and Fv := {�n(0,−i · n) | 1 ≤ i ≤ 6k + 1}.

To intersect all squares of an Fh–gadget with only
vertical lines requires at least 6k + 1 such lines, thus
in any solution with ≤ 6k lines there must be a hori-
zontal line intersecting the gadget.
The C–gadget (consistency). This type of gad-
get is used to guarantee a certain distance between
two lines of the same direction corresponding to the
same double–strip of an A–(or D)–gadget. With this
it will be possible to identify such line pairs with the
vertices (P0). It will consist of three F–gadgets and
2(n − 1) additional squares. We describe the Ch–
gadget for horizontal lines only (Cv–gadgets are de-
fined analogously). Ch consists of the union of the
two sets {�n−1(1− i, i− n + 1) | 1 ≤ i ≤ n− 1} and
{�n−1(n + 1− i, n + i− 1) | 2 ≤ i ≤ n} together with
three F–gadgets that force the existence of lines in
the regions H− = R × (0, n), H+ = R × (n, 2n) and
V = (0, n)× R. See Figure 1 for an example.

The next lemma states the main property of the
Ch–gadgets (Cv–gadgets have a symmetric property):

Lemma 5 Given two antipodal horizontal lines
h−, h+, in H−,H+, respectively, then there exists
a vertical line that together with the others inter-
sects all of the squares belonging to a Ch–gadget iff
rep(h+) ≥ rep(h−). In fact, we can always assume
that rep(h+) = rep(h−).
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Putting it all together. We now describe the place-
ment of the gadgets defined above. The main part,
expressing the adjacency–relation of the graph, will
be a k × k grid of A–gadgets and D–gadgets: A :=
{A(i · 3n, j · 3n) | 1 ≤ i 6= j ≤ k} and D :=
{D(i · 3n, i · 3n) | 1 ≤ i ≤ k}. Around this grid,
we add several C–gadgets to allow only specific so-
lutions: Ch := {Ch(−i · 3n, i · 3n) | 1 ≤ i ≤ k} and
Cv := {Cv(i · 3n,−i · 3n) | 1 ≤ i ≤ k}. The size of the
set S∗(G, k) := A ∪D ∪ Ch ∪ Cv is O

(
k2n2

)
.

Lemma 6 S∗(G, k) can be stabbed by 6k axis-
parallel lines iff G has a k–clique.

To yield set S(G, k) of unit squares, we shrink
the squares in the F–gadgets by letting Fh :=
{�n−1(−in, 1/2) | 1 ≤ i ≤ 6k + 1} (similarly for Fv).

Corollary 2 follows by shifting all the squares by a
small amount and replacing all (parallel) diagonals by
very thin pairwise disjoint rectangles.

Arbitrary directions and general objects. First, the
forcing gadgets are modified to contain n2 squares;
this will ensure that the chosen lines have to be “al-
most” parallel. Then, the squares are shrinked by
some small value ε; this ensures that for each almost
parallel line there is a parallel line that intersects the
same squares. Thus, in any solution the lines can ac-
tually be assumed to be axis-parallel, i.e., Lemma 6
holds also for this new set. Again, shifting the squares
a little and replacing the diagonals by rectangles as
above yields a set of disjoint rectangles. This set is
then linearly transformed to yield a combinatorially
equivalent set of disjoint unit squares.

To prove the analogous results for arbitrary, con-
nected objects we simply linearly transform them so
that their axis-parallel bounding box is a unit square.

2.2 Fixed Parameter Tractable Cases

We prove that stabbing disjoint axis-parallel unit
squares in the plane with k axis-parallel lines is fpt
(with respect to k) by combining data reduction with
branching and kernelization techniques. The algo-
rithm can be easily modified to handle the case of
general objects and line directions for Theorem 3. In
this section we consider all sets to be closed.

Let S be a set of n disjoint axis-parallel unit
squares. We want to determine if S can be stabbed by
k axis-parallel lines. It suffices to consider only lines
that support the boundary of a square in S; there are
at most 4n of them. For a line l let I(l) denote the
set of squares that are stabbed by l. We first apply
the following data reduction rule to S:

DR: For all κ > k + 1 squares with the same x–
coordinates, delete all but k + 1 of them, and also for
κ > k + 1 squares with the same y–coordinates.

A set on which DR has been applied is called a DR–
set. The algorithm is based on the following lemma.

Lemma 7 Let l be a horizontal line that intersects
κ > k unit squares I(l) = {�(xi, yi) | 1 ≤ i ≤ κ} ⊆ S.
Then in order to stab the set S with k lines, there has
to be a horizontal line l∗ that intersects at least two
squares from I(l). l∗ can be chosen from B(I(l)) :=
{y = yi | 1 ≤ i ≤ κ} ∪ {y = yi + 1 | 1 ≤ i ≤ κ}.

An analogous lemma holds for vertical lines as well.
Observe that for a DR–set S, if there is an axis-
parallel line l with |I(l)| > 2k +1, then there is also a
line l∗ parallel to l with k + 1 ≤ |I(l∗)| ≤ 2k + 1. For
such a line we use Lemma 7 by branching on all the
|B(I(l))| possible lines. If no such line exists, we end
up with a problem kernel (in each branch): All the
lines now intersect at most k squares, so the SOLVE
function simply rejects if the number of squares left
is more than k2 and otherwise uses brute force.

STAB(S, k)
if S = ∅ “SOLUTION FOUND”
else if k = 0 return
apply DR
if there is a line l with k + 1 ≤ |I(l)| ≤ 2k + 1

for all lines l′ from the set B(I(l))
STAB(S − I(l′), k − 1)

else SOLVE(S, k)

Lemma 8 If there is a solution of size k, the above
algorithm finds a solution of size k′ ≤ k.

The algorithm branches on at most 2(2k + 1) pos-
sibilities at most k times and each call of the STAB
procedure needs O(n log n) steps. In each branch it
ends up with a problem kernel, which can be solved in
time

(
4k2

)k by exhaustive search, so the total running
time is O(n log n) for every fixed k.

3 Stabbing balls with one line

We show that the problem of stabbing unit balls in
Rd with a line is W[1]-hard with respect to d by an
fpt-reduction from the W[1]-complete k-independent
set problem is general graphs [2]. Given an undirected
graph G([n], E) we construct a set B of balls in R2k

such that B can be stabbed by a line if and only if G
has an independent set of size k.

For every ball B ∈ B we will also have −B ∈
B. This allows us to restrict our attention to lines
through the origin. For a line l, let ~l be its unit direc-
tion vector. We view R2k as the product of k orthog-
onal planes E1, . . . , Ek, where each Ei has coordinate
axes Xi, Yi. The component on Xi, Yi of a point p is
denoted by xi(p), yi(p) respectively.

For each plane Ei, we define 2n 2k-dimensional
balls, with centers regularly spaced on the unit circle
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Figure 2: Centers of the balls and their respective
half-planes and wedges on a plane Ei, for n = 4.

on Ei centered at the origin o. Let ciu ∈ Ei be the cen-
ter of the ball Biu, u ∈ [2n], with xi(ciu) = cos(u−1)π

n
and yi(ciu) = sin(u−1)π

n . We define a scaffolding ball
set B0 = {Biu, i = 1, . . . , k and u = 1, . . . , 2n}. We
have |B0| = 2nk. All balls in B0 will have the same
radius r < 1, to be defined later.

Two antipodal balls B, −B are stabbed by the same
set of lines. A line l stabs B0 if and only if it satisfies
the system of nk inequalities: (ciu ·~l)2 ≥ ||ciu||2 − r2,
for i = 1, . . . , k and u = 1, . . . , n.

Geometrically, the inequality asserting that l stabs
Biu says that the projection ~li of ~l on the plane Ei

lies in one of the half-planes H+
iu = {p ∈ Ei|ciu ·

p ≥
√
||ciu||2 − r2} or H−

iu = {p ∈ Ei|ciu · p ≤
−

√
||ciu||2 − r2}. Consider the situation on a plane

Ei. Line l stabs all balls Biu (centered on Ei)
if and and only if ~li lies in one of the 2n wedges
±(H−

i1∩H+
i2), . . . ,±(H−

i(n−1)∩H+
in), and ±(H−

i1∩H−
in);

see Fig 2. The apexes of the wedges are regularly
spaced on a circle of some radius λ. By choosing
r =

√
1− (1− cos π

n )/(2k) we have that λ = 1/(
√

k).
Since ~l ∈ R2k is unit, we have that ||~li|| = 1/(

√
k),

for every i ∈ {1, . . . , k}. Hence, for line l to stab all
balls in B0, every projection ~li must be one of the
apexes in Ai. There are 2n choices for each ~li, and
the total number of lines that stab B0 is nk2k−1.

For a tuple (u1, . . . , uk) ∈ [2n]k, we denote
by l(u1, . . . , uk) the line with vector 1√

k
(cos(2u1 −

1) π
2n , sin(2u1 − 1) π

2n , . . . , cos(2uk − 1) π
2n , sin(2uk −

1) π
2n ). Two lines l(u1, u2, ..., uk) and l(v1, v2, ..., vk)

are said to be equivalent if ui ≡ vi( mod n), for all
i. We have nk equivalence classes L(u1, . . . , uk), with
(u1, . . . , uk) ∈ [n]k, where each class consists of 2k−1

lines. There is a bijection between the possible equiv-
alence classes of lines that stab B0 and [n]k.

Constraint balls. For each pair of distinct indices
i 6= j (1 ≤ i, j ≤ k) and for each pair of (possibly
equal) vertices u, v ∈ [n], we define a constraint set

of balls Buv
ij with the property that (all lines in) all

classes L(u1, . . . , uk) stab Buv
ij except those with ui =

u and uj = v. The centers of the balls in Buv
ij lie in

the 4-space Ei ×Ej . All lines in a class L(u1, . . . , uk)
project into only two lines on Ei ×Ej . We use a ball
Buv

ij (to be defined shortly) that is stabbed by all lines
l(u1, . . . , uk) except those with ui = u and uj = v.
Similarly, we use a ball Buv̄

ij that is stabbed by all lines
l(u1, . . . , uk) except those with ui = u and uj = v̄,
where v̄ = v + n. We have, Buv

ij = {±Buv
ij ,±Buv̄

ij }.
Consider a line l = l(u1, . . . , uk) with ui = u and

uj = v. The center cuv
ij of Buv

ij will lie on a direction
~z ∈ Ei×Ej orthogonal to ~l, but for which ~l′ ·~z 6= 0 for
any line l′ = l(u1, . . . , uk) with ui 6= u or uj 6= v. Let
ω be the angle between ~l′ and ~z. We choose ~z such
that | cos ω| > λ√

k
, where λ < 1 is an appropriate

function of n. This helps us place Buv
ij sufficiently

close to the origin so that it is still intersected by l′.
We can choose any point cuv

ij on z with r < ||cuv
ij || <

r
√

k/(k − λ2).
We add to B0 the 4n

(
k
2

)
balls in BV =

⋃
Buu

ij , 1 ≤
u ≤ n, 1 ≤ i < j ≤ k, to ensure that all components
ui in a solution (class of lines L(u1, . . . , uk)) are dis-
tinct. For each edge uv ∈ E we also add the balls
in k(k − 1) sets Buv

ij , with i 6= j. This ensures that
the remaining classes of lines L(u1, . . . , uk) represent
independent sets of size k. In total, the edges are rep-
resented by BE =

⋃
Buv

ij , uv ∈ E, 1 ≤ i, j ≤ k, i 6= j.
The final set B = B0∪BV ∪BE has 2nk+4

(
k
2

)
(n+2|E|)

balls. The constraint sets of balls exclude tuples with
two equal indices ui = uj or with indices ui, uj when
uiuj ∈ E, thus, the classes of lines that stab B repre-
sent exactly the independent sets of G.

Lemma 9 Set B can be stabbed by a line if an only
if G has an independent set of size k.
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