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Abstract

We �nd the shortest non-zero vector in the lattice of all integer multiples of the vector

(a; b) modulo m, for given integers 0 < a; b < m. We reduce the problem to the

computation of a Minkowski-reduced basis for a planar lattice and thereby show that

the problem can be solved in O(logm(log logm)2) bit operations.

1 Introduction

Let 0 < a; b < m be integers. We de�ne the lattice Lm((a; b)) generated by the vector

(a; b) modulo m as the set of vectors f (tamod m; tbmod m) j 0 � t < m g, which forms

a group under componentwise addition modulo m. For clari�cation, we emphasize that

x mod d denotes the unique integer in the interval [0;m�1] which is congruent to x. Thus

we regard Lm((a; b)) as a subset of [0;m� 1]2. By the length k(a; b)k of a vector (a; b) we
will always mean its Euclidean length

p
a2 + b2, no matter whether (a; b) is considered as

a vector modulo m or as a usual vector in the plane.

Lempel and Paz [1994] considered the computation of the shortest non-zero vector

in Lm((a; b)). They pointed out that this problem is di�erent from the computation of

the shortest non-zero vector in a planar lattice in the usual sense, for which there is a

classical algorithm of Gau�, which takes O(logm) arithmetic steps. Hence they developed

a completely new algorithm taking also O(logm) arithmetic steps.

The purpose of this paper to show that this problem can be reduced to the classical case

very easily, and therefore it is possible to apply results from the literature, in particular

the lattice reduction algorithm of Yap [1992], which, in terms of bit complexity, takes only

O(log logm) times as many steps as one integer multiplication.

We will brie
y review the basics of reduced lattice bases to make the paper self-

contained. The two crucial geometric observations, which are stated in lemmas 2 and

3, are completely elementary, and the algorithm directly follows from them.

2 Preliminaries

A two-dimensional lattice is the set of all integer linear combinations of two linearly in-

dependent vectors x and y. These two vectors are said to generate L(x; y) and they are

called a basis of the lattice.

�Institut f�ur Mathematik, Technische Universit�at Graz, Steyrergasse 30, A-8010 Graz, Austria; electronic

mail: rote@opt.math.tu-graz.ac.at

1



It is obvious that the set Lm((a; b)) is essentially the same as the lattice L := L((a; b);

(m; 0); (0;m)) generated by the vectors (a; b), (m; 0) and (0;m): If we restrict L to

[0;m � 1]2, we get Lm((a; b)), and by adding to Lm((a; b)) all integer multiples of the

vectors (m; 0) and (0;m) we obtain L.

Lempel and Paz [1994] showed by an example that the shortest non-zero vector in

Lm((a; b))may di�er from the shortest non-zero vector in L. However, we have the following

relation.

Lemma 1 The shortest non-zero vector in Lm((a; b)) is the shortest non-zero vector in L

inside the �rst quadrant Q = f (x; y) j x; y � 0 g.
Proof: If a+b > m, then the vector (a0; b0) = (m; 0)+(0;m)�(a; b)2 L ful�lls a0+b0 < m.

Thus either the point (a; b) or the point (a0; b0) lies in the �rst quadrant Q and below or

on the line x+y = m. If follows that the shortest non-zero vector in L\Q has length less

than m, and therefore it must belong to L \ [0;m� 1]2 = Lm((a; b)).

3 Finding a basis

Before we look for shortest vectors in the lattice L = L((a; b); (m;0); (0;m)) we have to

�nd a basis, i. e., a set of only two vectors f and g which generate L. It is well-known

how this can be done in general: Let u, v, and w be three vectors which generate some

two-dimensional lattice. Since they are linearly dependent and rational, we can write

t1u+ t2v+ t3w = 0;

for some integers t1; t2; t3 with gcd(t1; t2; t3) = 1. (In our case, we can directly set t1 = m,

t2 = �a, t3 = �b and divide these numbers by their greatest common divisor.) We extend

the vector (t1; t2; t3) to an integer matrix

A =

0
@ t1 �1 �1
t2 �2 �2
t3 �3 �3

1
A

with detA = 1. We show below how to �nd such a matrix. Now a basis consists of the

vectors f = �1u+ �2v+ �3w and g = �1u + �2v+ �3w, or in matrix notation,

(u; v;w)A= (0; f; g);

where the vectors u, v, w, f, and g are written as column vectors. Since f and g are given

by integer linear combinations of u, v, and w, it is clear that L(f; g) � L(u; v;w). On the

other hand, we have

(u; v;w) = (0; f; g)A�1

with an integer matrix A�1. Thus u, v, and w can also be expressed as integer linear

combinations of f and g, and L(u; v;w) � L(f; g). Therefore f; g is really a basis of

L(u; v;w).

It remains to select numbers �i and �i so that the matrix A has determinant 1, see for

example Theorem 14.2.3 of Hua [1982, p. 376]. The extended Euclidean algorithm yields

integers �1, �2, �3, and 
 with

d := gcd(t1; t2) = �2t1 � �1t2; (1)

1 = gcd(d; t3) = �3d � 
t3: (2)

We set �3 = 0, �1 = t1=d � 
, and �2 = t2=d � 
. The equation detA = 1 can be checked

easily using (1) and (2), for example by expanding the third row of A.
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4 Basis reduction

A reduced basis for a lattice (in the sense of Minkowski) consists of two vectors x1; x2 with

the following properties.

1. x1 is a shortest non-zero lattice vector.

2. x2 is a shortest vector among the lattice vectors which are not parallel to x1.

It follows that x1 and x2 form a basis of the lattice.

For the purpose of the proofs of the following two lemmas we may assume without

loss of generality that kx2k � kx1k = 1. For the inner product we have then the bound

�1=2 � hx1; x2i � 1=2, because otherwise one of the vectors x2� x1 would be shorter than

x2. By possibly switching the sign of x2 we can additionally achieve hx1; x2i � 0.

Lemma 2 Let x1 and x2 be a reduced basis, and assume without loss of generality that

hx1; x2i � 0. Then the following holds.

1. x1 and �x1 are two shortest non-zero vectors.

2. x2 and �x2 are two shortest vectors among the those vectors which are not parallel

to x1.

3. x3 := x2 � x1 and �x3 together with x2 and �x2 are four shortest vectors among the

those vectors which are not parallel to x1.

Proof: Only the third statement does not follow immediately from the de�nition. Any

lattice point x which is not parallel to x1 can be uniquely represented as x = �x1 + �x2
with two integers � and � 6= 0. Let w = x2 � hx1; x2i � x1 be the component of x2 which is

orthogonal to x1. Then x can be written as a sum of two orthogonal components:

x = �w+ hx; x1ix1

For a �xed �, the length of x is therefore minimized when jhx; x1ij is minimized. Let us

�rst consider the points x with � = 1. The set of all values hx; x1i = hx2 + �x1; x1i for
� 2 Zforms an in�nite arithmetic progression with increment 1. The two values which

are smallest in absolute value are clearly hx2; x1i 2 [0; 1=2] and hx3; x1i = hx2; x1i � 1 2
[�1;�1=2]. Thus the vectors x2 and x3, together with their inverses �x2 and �x3, form a

set of four candidates for the four shortest vectors among the lattice vectors not parallel

to x1. We have �nished the proof if we can show that all vectors x with j�j � 2 are longer

than x3. The distance of the line f �x1+�x2 j � 2 Rg from the origin is j�j � kwk � 2kwk.
This is a lower bound for the length of any vector x on this line. By the Pythagorean

theorem we have

kwk2 = kx2k2 � hx2; x1i2 = kx2k2 �
�hx2; x1i

kx2k
�2

kx2k2 � kx2k2(1� 1=4);

and thus 2 kwk �
p
3 kx2k is a lower bound for kxk. On the other hand, kx3k2 = kwk2 +

hx3; x1i2 � kx2k2 + 1 � 2 kx2k2; and therefore, with kx3k �
p
2 kx2k, x3 is shorter than x.
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Lemma 3 Under the assumptions of the previous lemma, the vectors x1; x2; x3;�x1;�x2;
�x3 form a hexagon surrounding the origin, and the angle between any two successive

vectors is at most 90�.

Proof: This is immediate for the angles between x1 and x2 and between x3 and �x1 (and
their inverse vectors). Only for x2 and x3 we need a little computation.

kx2k � kx3k � cos(\x2x3) = hx3; x2i = hx2 � x1; x2i = hx2; x2i � hx1; x2i � 1� 1=2 > 0:

(In fact, it can be shown that this angle is at most 60�.)

5 The Algorithm

Now it is clear how to proceed. By the previous lemma, one of the six vectors is contained

in the �rst quadrant Q. If neither x1 nor �x1 is in Q, no vector parallel to x1 is in Q and

it su�ces to check the remaining vectors. The four shortest ones among them are x2, �x2,
x3, and �x3, and by just checking them in this order we �nd the shortest vector in Q.

Here is a precise summary of the algorithm.

1. Find a basis for the lattice L generated by the vectors (a; b), (m; 0), and (0;m).

2. Find a reduced basis x1; x2 for this lattice L. Ensure that hx1; x2i � 0 by changing

the sign of x2 if necessary.

3. (a) If x1 or �x1 lies in the �rst quadrant Q, then this is the shortest vector in

Lm((a; b)).

(b) Otherwise, if x2 or�x2 belongs toQ, then this is the shortest vector in Lm((a; b)).

(c) Otherwise, either x2 � x1 or �(x2 � x1) belongs to Q, and this is the shortest

vector in Lm((a; b)).

Step 1 involves four computations of a greatest common divisor of two integers which

are at mostm, for which there is an algorithm takingO(log logm�M(logm)) bit operations,

whereM(n) denotes the bit complexity of multiplying two n-bit integers [Sch�onhage 1971].

Step 2 is is a generalization of the greatest common divisor computation. Extending the

technique of Sch�onhage, Yap [1992] showed that a reduced basis can be computed in the

same time bound. Therefore, Step 2 can also be carried out in O(log logm �M(logm))

time. The rest is just a constant number of arithmetic operations on integers of absolute

value at most m. On a random access machine (RAM) model with logarithmic cost (see

Aho, Hopcroft, and Ullman [1974, p. 12] for a de�nition of this model), we have M(n) =

O(n logn) [Sch�onhage 1980, Theorem 7.1]. Therefore, the overall bit complexity of our

procedure is O(logm(log logm)2).

6 Generalizations. Higher dimensions

We will brie
y discuss the extension of our approach to the higher-dimensional version of

the problem, as well as other possible generalizations.

Lemmas 2 and 3 provide an explicit list of linear combinations of the basis vectors

of a reduced basis, which is guaranteed to contain the shortest lattice vector in a given
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quadrant. One may ask whether such a list exists in higher dimensions, or even for other

cones than an orthant.

If this is true in higher dimensions, then the problem of the shortest vector in a d-

dimensional modular lattice can be reduced to �nding a reduced lattice basis in a d-

dimensional lattice, a well-studied problem which can be solved satisfactorily in theory

(see [Kannan 1987] and [Helfrich 1985]) as well as in practice [Finke and Pohst 1985]. In

higher dimensions, a reduced lattice basis can be taken in any of several di�erent meanings,

see for example [Vall�ee 1989] for an overview.

It seems likely that analogs of Lemmas 2 and 3 hold in any dimension, although the re-

quired list of linear combinations will probably grow at least exponentially as the dimension

increases.
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