
Lines: 499

Finding a Shortest Curve that Separates Few
Objects from Many

Abstract1

We present a fixed-parameter tractable (FPT) algorithm to find a shortest curve that encloses a set2

of k required objects in the plane while paying a penalty for enclosing unwanted objects.3

The input is a set of interior-disjoint simple polygons in the plane, where k of the polygons are4

required to be enclosed and the remaining optional polygons have non-negative penalties. The goal is5

to find a closed curve that is disjoint from the polygon interiors and encloses the k required polygons,6

while minimizing the length of the curve plus the penalties of the enclosed optional polygons. If7

the penalties are high, the output is a shortest curve that separates the required polygons from the8

others. The problem is NP-hard if k is not fixed, even in very special cases. The runtime of our9

algorithm is O(3kn3), where n is the number of vertices of the input polygons.10

We extend the result to a graph version of the problem where the input is a connected plane11

graph with positive edge weights. There are k required faces; the remaining faces are optional and12

have non-negative penalties. The goal is to find a closed walk in the graph that encloses the k13

required faces, while minimizing the weight of the walk plus the penalties of the enclosed optional14

faces. We also consider an inverted version of the problem where the required objects must lie outside15

the curve. Our algorithms solve some other well-studied problems, such as geometric knapsack.16

2012 ACM Subject Classification Theory of computation → Computational geometry; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Enclosure, curve, separation, weakly simple polygon, Euler tour

1 Introduction17

We investigate the separation problem of finding a shortest curve that encloses a subset of18

objects while excluding other objects. A very basic setting is for points in the plane: given n19

points in the plane and a subset of size k, find a minimum-perimeter polygon containing the20

specified k points and excluding the other n − k points. This problem is NP-hard when k21

may be large, as proved by Eades and Rappaport [13] for the case k = n/2 via a simple22

reduction from the Travelling Salesman Problem.23

As a special case of our main result, we give the first algorithm for this problem that24

is fixed-parameter tractable (FPT) in k. Our result is far more general and applies in two25

settings, a geometric setting and a graph-theoretic setting.26

Geometric-Enclosure-with-Penalties. Here we generalize from objects that are points to27

objects that are interior-disjoint simple polygons in the plane, and we generalize to a weighted28

form of exclusion.29

Input. The input is a set of simple interior-disjoint polygons partitioned into a set R30

of k required polygons and the remaining set O of optional polygons. Each optional31

polygon P ∈ O comes with a non-negative penalty πP where we allow πP = +∞.32

Output. The goal is to find a weakly simple polygon W that does not intersect the38

interior of any input polygon and encloses all polygons of R while minimizing the cost c(W),39

which is defined to be the Euclidean length of W plus the penalties of the polygons of O that40

are inside W . See Figure 1 for an example. A polygon with penalty +∞ must be excluded.41

A polygon with penalty 0 may be included or excluded without making a difference, so it42

only acts as an obstacle to the solution curve. As Figure 1 illustrates, the problem would be43

© Anonimous author(s);
licensed under Creative Commons License CC-BY 4.0

41st International Symposium on Computational Geometry.
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Finding a Shortest Curve that Separates Few Objects from Many

P

Figure 1 The Geometric-Enclosure-with-Penalties problem. Objects in R are yellow
(hatched) and objects in O are gray, darker for objects with larger penalties. A weakly simple
solution polygon W is shown in red (bold). For visual clarity, W is drawn with an offset where
it would otherwise touch the objects or itself. For example, the penalty πP of the object P ∈ O

inside W is smaller than the detour that W would have to make in order to have P outside.

33

34

35

36

37

ill-defined if we required the solution curve W to be a simple polygon. The natural condition44

is that W should be a weakly simple polygon, whose boundary may touch or overlap itself45

but not cross itself. We give a precise definition in Section 2.1. An important property is46

that a weakly simple polygon encloses a well-defined region. Our first main result is:47

▶ Theorem 1. Geometric-Enclosure-with-Penalties for k required polygons can be48

solved in O(3kn3) time and O(2kn2) space, if the input polygons have n vertices in total.49

If all objects are points, this can be handled by approximating each point by a small triangle.50

An exact solution for an arbitrary mix of point and polygon objects appears in Appendix I.51

Graph-Enclosure-with-Penalties. In this setting, the objects are faces of a plane graph.52

Input. The input is a simple connected plane graph G and positive edge weights. The55

bounded faces of G are partitioned into a set R of k required faces and the remaining set56

O of optional faces. Each optional face F has a penalty πF from R≥0 ∪ {+∞}.57

Output. The goal is to find a weakly simple closed walk W in G such that faces of R58

are inside W while minimizing the cost c(W) which is defined to be the sum of the weights59

of the edges of W plus the penalties of the faces of O that are inside W . See Figure 2 for an60

example. Intuitively, a weakly simple closed walk is one without crossings; we give a more61

precise definition in Appendix A. For a weakly simple closed walk, the notions of inside and62

outside are well-defined. Our second main result is:63

▶ Theorem 2. Graph-Enclosure-with-Penalties can be solved in O(3kn3) time and64

O(2kn2) space, where k is the number of required faces and n is the number of vertices of G.65

A common framework. Although the two settings described above seem different, we resolve66

them into a common geometric framework, which we call Enclosure-with-Penalties. Our67

algorithm applies to this general problem. The basic idea is to transform the graph problem68

into a geometric problem by taking a straight-line embedding of the graph. The bounded faces69

of the graph become polygons slightly more general than simple polygons. We also consider70

Finding a Shortest Curve that Separates Few Objects from Many 42:3

Figure 2 The Graph-Enclosure-with-Penalties problem. The colors have the same meaning
as in Figure 1. A weakly simple closed walk W which is a solution for the instance is red (bold).

53

54

the outer face as an unbounded polygon. Then the “free space” between the polygons consists71

only of the graph edges. This gives us a geometric problem, albeit with arbitrary positive72

edge weights defined on edges that have a polygon on each side. In Section 3 we define the73

Enclosure-with-Penalties problem by generalizing the Geometric-Enclosure-with-74

Penalties problem to include these instances.75

We remark that the resulting algorithm for Theorem 2 makes essential use of the straight-76

line embedding of the input graph. In particular, the subproblems that we solve depend on77

the embedding. This imposition of geometry seems artificial, but oddly enough, we do not78

know how to formulate our algorithm in a purely combinatorial setting.79

Our approach. We use dynamic programming (Section 4) to build a polygon W that is80

locally correct—we use segments that do not intersect the interior of any object and we81

account for required objects and tally the penalties as we add triangles to W . We will prove82

that the cost computed by the algorithm is correct, but this is tricky because W itself will83

not necessarily be weakly simple. “Inside” is no longer well-defined. Instead, we use winding84

numbers to give a measure of the cost of W that matches the cost computed by the algorithm.85

In Section 5 we give an algorithm to uncross W to a weakly simple polygon without86

increasing its cost, which provides our final output. Correctness of the whole algorithm is87

proved in Section 6.88

The run-time for the uncrossing algorithm is dominated by the run-time for the dynamic89

program. To obtain our claimed run-time we speed up the dynamic program in Section 7.90

Lower bounds. To complement our algorithms we prove that, under the Exponential Time91

Hypothesis (ETH), the Geometric- and Graph-Enclosure-with-Penalties problems92

cannot be solved in 2o(k) · nO(1) time, implying that the linear dependence on k in the93

exponent of the running time of our algorithms is the best possible assuming ETH. The94

proof is a reduction from unweighted Planar Steiner Tree, which admits a lower bound95

by a result by Marx, Pilipczuk, and Pilipczuk [19, Theorem 1.2]. See Appendix K.96

Swapping the inside with the outside. We extend our algorithm to an inverted version of97

the Enclosure-with-Penalties problem where the required objects have to be outside W ,98

SoCG (submit ted)

42:4 Finding a Shortest Curve that Separates Few Objects from Many

and the objective is to minimize the length of W plus the penalties of the polygons of O99

that are outside W . The runtime remains the same, see Section 8. This algorithm provides a100

new faster solution to the geometric knapsack problem discussed below.101

Negative penalties. We can allow some number ℓ of objects with negative penalties102

(rewards); in this case, the runtime is increased by a factor of 3ℓ. See Appendix J.103

1.1 Related work104

Cut problems and separator problems in graphs have a long history, and separation problems105

in geometric settings are a natural and well studied counterpart.106

Geometric knapsack problem. Geometric separation problems were first explored by107

Eades and Rappaport [13] (as discussed above) and by Arkin, Khuller, and Mitchell, who108

introduced the geometric knapsack problem [4], which corresponds to the inverted version of109

the Geometric-Enclosure-with-Penalties problem in the special case where there are110

no required objects. (In their equivalent formulation, each object has a finite nonnegative111

value, and the goal is to compute a curve that maximizes the total value of the enclosed objects112

minus its length.) They gave an algorithm with running time O(n4) [4, Theorem 6]. Since113

there are no required objects, our algorithm for the inverted problem solves the geometric114

knapsack problem in time O(n3).115

Relation to homotopy and homology. Our problem has a topological flavor and is therefore,116

in principle, amenable to homotopy and homology techniques. However, these techniques117

are unlikely to lead to algorithms that are FPT in k, even assuming only infinite penalties.118

In particular, enumerating a set of candidate homotopy classes, the ways how a solution119

winds around the objects to enclose the required objects and avoid the most undesirable120

ones, is possible using a technique by Chambers, Colin de Verdière, Erickson, Lazarus, and121

Whittlesey [7], but its size will be exponential in K, the number k of required objects plus122

the number of objects with nonzero penalty. The technique of homology covers, by Chambers,123

Erickson, Fox, and Nayyeri [8], is applicable, but again with an exponential dependence on K.124

If there are many objects with nonzero penalty, our algorithm with runtime O(3kn3) is faster.125

Specifying only the number of objects to be enclosed. If we are just given a set of n126

points in general position and the exact number k ≤ n of points to be enclosed, a minimum-127

perimeter polygon enclosing at least k points is convex, contains exactly k points, and can be128

found in polynomial time by an algorithm of Eppstein, Overmars, Rote, and Woeginger [14,129

Corollary 5.3, Case 3]. This algorithm could for example be used to identify an unusual130

cluster in an otherwise uniformly distributed point set. However, if the input consists of131

polygons instead of points, we are not aware of a better method than guessing the k polygons132

to be enclosed and applying our main result, resulting in an algorithm of running time133

O(
(

N
k

)
3kn3) = O(Nkn3) if there are N objects.134

More variations. Separation problems using fences (which form an arbitrary plane graph,135

not necessarily a cycle), or by selecting a minimum subset of input shapes, have been studied136

recently, respectively by Abrahamsen, Giannopoulos, Löffler, and Rote [1] and by Chan, He,137

and Xue [9]. While we study a problem in the same spirit, a key difference is that we require138

a (weakly) simple cycle, which makes the techniques of these articles not applicable for us.139

Finding a Shortest Curve that Separates Few Objects from Many 42:5

(a) (b) (c)

Figure 3 (a) A weakly simple polygon drawn via its ε-approximation. (b) The edges, after
subdividing at interior vertices, are partitioned into interior faces. Four faces are corridors and five
are chambers. The largest chamber (in yellow) is almost-simple but not simple. (c) Non-uniqueness
of the faces for a weakly simple polygon that traverses a line segment four times. In the top figure
the two vertices on the left are transition vertices; this is reversed in the bottom figure.

163

164

165

166

167

2 Preliminaries140

2.1 Weakly simple polygons141

A polygon is weakly simple if it has fewer than three vertices, or it has at least three vertices142

and for any ε > 0, the vertices can be perturbed by at most ε to yield a simple polygon [2, 10].143

We traverse a weakly simple polygon counterclockwise, i.e., with the interior to the left of144

each edge. Our proof uses a combinatorial characterization of a weakly simple polygon in145

terms of a non-crossing Euler tour in a plane multigraph (Lemma 16 in Appendix A). This146

allows us to partition the edges of a weakly simple polygon into boundary walks of interior147

faces, see Figure 3. Note that we first subdivide an edge when a vertex lies in its interior.148

A vertex of a weakly simple polygon with incoming edge e and outgoing edge f is a149

transition vertex if e and f belong to different interior faces. An interior face of two edges150

is a corridor and an interior face of more than two edges is a chamber. A chamber is not151

necessarily a simple polygon, but it is almost simple. More formally, a bounded almost-152

simple polygon is the boundary walk of an interior face of a connected straight-line graph153

drawing in the plane. We also allow an unbounded almost-simple polygon by traversing154

the boundary of the outer face clockwise. An almost-simple polygon has a connected interior155

and a bounded almost-simple polygon can be triangulated. Almost-simple polygons play two156

roles: the bounded ones arise as chambers; and our general Enclosure-with-Penalties157

problem allows almost-simple input polygons (including a single unbounded one).158

All these concepts are made rigorous in Appendix A. We note that the partition of the159

edges of a weakly simple polygon into interior faces (and hence the definition of corridors and160

transition vertices) is not unique, see Figure 3(c). This non-uniqueness, which is inherent in161

the ε-approximation definition of weakly simple polygons, does not affect our proofs.162

2.2 Winding number and winding parity168

Our algorithm will construct intermediate polygons that are not necessarily weakly simple,169

so we will find it useful to generalize “enclosed by” in terms of winding numbers. Let W be a170

polygon and let x be a point not lying on W . The winding number wind(W, x) of x with171

respect to W is defined as follows. Take a ray ρ from x that avoids vertices of W . If an edge172

of W crosses ρ from right to left, we count this as +1; a crossing from left to right is counted173

as −1, and the total count gives the winding number. This is well-defined independent of174

SoCG (submit ted)

42:6 Finding a Shortest Curve that Separates Few Objects from Many

the choice of ρ. The winding number is undefined for points x on W . Observe that, for a175

weakly simple polygon W traversed counterclockwise, point x lies in the interior of W if and176

only if wind(W, x) = 1. The winding parity of x with respect to W is wind(W, x) mod 2.177

3 Our Common Framework: Enclosure-with-Penalties178

In this section we formally define the Enclosure-with-Penalties problem that provides a179

common framework for both the geometric and graph settings.180

Input:181

A set of interior-disjoint almost-simple polygons in the plane. We allow a single polygon182

to be unbounded. We subdivide polygon edges to ensure that no polygon vertex lies183

in the interior of an edge of another polygon. The free space is the plane minus the184

interiors of the polygons.185

A partition of the input polygons into a set R of k required polygons and the remaining186

set O of optional polygons. If there is an unbounded polygon, it must lie in O.187

For each polygon P ∈ O, a penalty πP ∈ R≥0 ∪ {+∞}.188

The weight wab of a line segment ab in the free space is its Euclidean length, except for189

squeezed edges. A squeezed edge is a polygon edge that is incident to polygons on both190

sides. We may specify an arbitrary positive weight for a squeezed edge. Subsegments191

of a squeezed edge get proportional weight, and combinations of different squeezed or192

non-squeezed segments have their weights added.193

Output: A weakly simple polygon W that lies in the free space and contains all polygons194

of R while minimizing the cost c(W), which is defined as195

c(W) := w(W) + π(W), (1)196

where w(W) is the sum of the weights of the edges of W , and π(W) is the sum of the197

penalties of the polygons of O that are inside W . Our main result is:198

▶ Theorem 3. Enclosure-with-Penalties for k required polygons can be solved in O(3kn3)199

time and O(2kn2) space, if the input polygons have n vertices in total.200

Theorem 1 is an immediate consequence of Theorem 3. Theorem 2 follows from Theorem 3201

via a straight-line embedding of the graph, as outlined in Section 1 and detailed in Appendix B.202

Note that the Enclosure-with-Penalties problem as defined above does not allow203

point objects (they are not almost-simple). Appendix I shows how to deal with point objects.204

4 Dynamic Programming Algorithm205

The algorithm builds a polygon composed of free-space edges, where a free-space edge is a206

minimal segment in the free space whose endpoints are vertices of the input polygons. We207

prove in Section 6 that this restriction to free-space edges is valid. We refer to a solution208

interchangeably as a polygon or as a closed walk in the graph of free-space edges.209

The intuition for the algorithm is based on the decomposition of a weakly simple polygon210

W into corridors and chambers joined at “cutpoints”, see Figure 3. A cutpoint separates W211

into subpolygons and partitions the set of enclosed objects. Our first type of subproblem212

finds polygons that enclose a specified subset of R and go through a specified vertex.213

A corridor is a digon, and a chamber can be triangulated by adding chords, where a214

chord may cut through polygons. We therefore use digons and triangles as the basic building215

Finding a Shortest Curve that Separates Few Objects from Many 42:7

blocks to construct our solutions. A chord cuts off part of the solution. Our second type of216

subproblem finds polygons that use a walk of free-space edges between two given vertices p217

and q together with the chord pq (called the mouth) to enclose a specified subset of R.218

Since a mouth may cut through polygons, we choose a reference point rP in the interior219

of every input polygon P , and aim to enclose rP for P ∈ R. Observe that a weakly simple220

polygon W in the free space encloses P if and only if rP lies in the interior of W .221

The dynamic programming algorithm explicitly keeps track of the subset of required222

objects that are enclosed by partial solutions (2k possibilities). However, when combining223

two partial solutions, the algorithm cannot afford to check whether they cross. Thus, we224

allow self-crossing solutions. In particular, our use of the word “enclosing” is aspirational,225

and will only be made precise in terms of winding numbers, see Section 4.2. When we state226

the algorithm, we invite the reader to think about a weakly simple solution without crossings.227

Types of subproblems. A subproblem of type C (“closed”) is rooted at a vertex p, and we228

build a closed walk that goes through p and is composed of free-space edges. A subproblem229

of type M (“mouth”) is rooted at a segment pq between vertices of input polygons, called230

the mouth, and we build an open walk of free-space edges from p to q; adding segment qp231

closes the walk. In addition to the root, each subproblem has two more parameters, B and t:232

The set B ⊆ R specifies the subset of required objects that are enclosed, and the integer233

t ≥ 0 is an upper bound on the number of edges of the walk.234

4.1 Dynamic programming recursion235

We now give recursive formulas for C and M , preceded in each case by an explanation of the236

formulas. The formulas with the respective partitions of the walk are illustrated in Figure 4.237

M(pq, t, B):

qp

C(p, t, B):

p p

M1 M2

C2C1

M(pr, t1, B1) +M(rq, t2, B2) + π(∆)

qp

∆

r

qp

C(p, t− 1, B) + wpq

wpq +M(qp, t− 1, B) C(p, t1, B1) + C(p, t2, B2)if B = ∅

Figure 4 Cases of the recursion. Solid edges are free space edges; dashed edges are mouths.

238

239

240

For C(p, t, B) we have two base cases: if B = ∅, then the shortest closed walk is just241

the point p and its cost is 0 (Equation (2)); and if B ̸= ∅ and t ≤ 1, there is no solution,242

and we set the cost to ∞ (Equation (3)). Otherwise we have two general cases: the closed243

walk uses an edge pq of the free space (for some q) plus a solution M(qp, t − 1, B) (Equation244

SoCG (submit ted)

42:8 Finding a Shortest Curve that Separates Few Objects from Many

(4)); or the closed walk is composed of two smaller closed walks that both go through p245

(Equation (5)). The notation ⊔ means disjoint union: we partition the objects in B into two246

sets, each “enclosed” by one of the two closed walks.247

The base cases define C(p, t, B) for B = ∅ and for t ≤ 1:248

C(p, t, ∅) := 0, for t ≥ 0 (2)249

C(p, t, B) := ∞, for B ̸= ∅ and t ≤ 1 (3)250

In the general case, for B ̸= ∅ and t ≥ 2, we set251

C(p, t, B) := min{C1, C2}, where252

C1 := min
{

wpq + M(qp, t − 1, B)
∣∣ pq is a free space edge

}
(4)253

C2 := min
{

C(p, t1, B1) + C(p, t2, B2)
∣∣ t = t1 + t2; B = B1 ⊔ B2; B1, B2 ̸= ∅

}
(5)254

For M(pq, t, B) there are two possibilities: if pq is a free space edge, we can use a closed255

walk at p plus the edge pq (Equation (6)); or we can attach a triangle ∆ = prq to the mouth pq256

(Equation (7)). In the first case we add the weight of the edge pq. In the triangle case we take257

into account the polygons with reference points in ∆, where we consider ∆ to be closed on258

pr and rq and open on pq. Define R(∆) to be the polygons of R with reference points in ∆,259

and define π(∆) to be the sum of the penalties of polygons of O with reference points in ∆.260

M(pq, t, B) is defined only for t ≥ 1:261

M(pq, t, B) := min{M1, M2}, where262

M1 :=
{

C(p, t − 1, B) + wpq if pq is a free space edge
∞, otherwise

(6)263

264

M2 := min
{

M(pr, t1, B1) + M(rq, t2, B2) + π(∆)
∣∣ (7)265

∆ = prq is a counterclockwise triangle,266

t = t1 + t2, t1 ≥ 1, t2 ≥ 1, B = B1 ⊔ B2 ⊔ R(∆)
}

267

As we shall see later in Lemma 13, the optimal walk has at most 6n edges. Thus, we define268

the solution to the whole problem as269

cDP := min{ C(p, 6n, R) | p a vertex }. (8)270

When we allow point objects, the algorithm needs a few refinements, see Appendix I. In271

the following sections we prove that cDP is the correct value. Although not required by our272

proof, we note for completeness in Appendix L that the class of polygons over which the273

algorithm optimizes is the class of immersed or self-overlapping weakly simple polygons.274

Runtime and Space. A routine analysis shows that the runtime of the dynamic program275

is O(3kn5), see Appendix C.1. A more efficient version of the dynamic program, given in276

Section 7, eliminates the parameter t and runs in time O(3kn3).277

4.2 Extracting the solution278

With every finite value computed in the dynamic program we can naturally associate an279

open or closed walk of free-space edges. (For more details, see Appendix C.2). We will prove280

in Section 6 that cDP is finite; so the associated closed walk exists:281

▶ Definition 4. WDP is the polygon associated with the optimum solution value cDP in (8).282

Finding a Shortest Curve that Separates Few Objects from Many 42:9

pq

∆

r

Figure 5 Gluing together closed walks, which may cross each other and are possibly self-crossing.298

The polygon WDP uses free-space edges, but it might not be weakly simple, and there is283

no notion of enclosed objects. Instead, we use winding numbers: we show that the reference284

point of any object in R has winding number 1 in WDP, and we define a cost measure for285

WDP in terms of winding numbers and prove equality with cDP.286

▶ Definition 5. For any polygon W in the free space, define the cost to be287

c(W) := w(W) +
∑
P∈O

wind(W, rP) · πP .288

When W is a counterclockwise weakly simple polygon, this matches the previous definition289

c(W) = w(W) + π(W), see Equation (1). We prove the following properties of WDP.290

▶ Lemma 6.291

(A) cDP = c(WDP);292

(B) for all P ∈ R, wind(WDP, rP) = 1;293

(C) for all points x that do not lie on WDP, wind(WDP, x) ≥ 0.294

Lemma 6 is proved in Appendix C.2 by induction as the dynamic program builds solutions295

to subproblems by gluing together open/closed walks. The induction must apply also to open296

walks, and we use the fact that winding numbers add when gluing walks together, see Figure 5.297

5 Uncrossing Algorithm and Final Output WALG299

The final step of our algorithm “uncrosses” the closed walk WDP produced by the dynamic300

program and turns it into a weakly simple polygon WALG without increasing the cost. To do301

so, we cut it into subpaths, eliminate some, and reorder the rest.302

Our algorithm uses a known result about taking a plane multigraph (specified via its303

rotation system) and finding a non-crossing Euler tour in which successive visits to a304

vertex do not cross each other. (See Appendix A for more detailed definitions.) The existence305

of such a tour in an Eulerian plane multigraph is an easy exercise, see [21] or [23, Lemma306

3.1], and a linear-time algorithm was given by Akitaya and Tóth [3]. We summarize it in the307

following proposition, and give a self-contained proof in Appendix D.308

SoCG (submit ted)

42:10 Finding a Shortest Curve that Separates Few Objects from Many

▶ Proposition 7 (Uncrossing Eulerian plane multigraphs). Given a plane connected Eulerian309

multigraph H with m edges, specified by its combinatorial map, we can, in O(m) time,310

compute a non-crossing Euler tour of H.311

We now sketch our algorithm to uncross any polygon W to a weakly simple polygon W ′.312

An interior crossing is a point that is in the interior of two non-collinear edges.313

▶ Algorithm 8 (Uncrossing Algorithm).314

1. Subdivide every edge of W at every interior vertex and interior crossing.315

2. In the resulting multiset of edges (line segments in the plane) reduce multiplicities to 1316

or 2 by repeatedly discarding pairs of equal line segments. The result is a plane connected317

Eulerian multigraph.318

3. Apply Proposition 7 to find a non-crossing Euler tour. This corresponds to a weakly319

simple polygon W ′.320

In Appendix D we give further details of the algorithm and an implementation with321

runtime O(t log t + s) where t is the number of edges of W and s ∈ O(t2) is the number of322

interior crossing points of W . For input WDP we show that there are no interior crossings,323

so the runtime is O(n log n).324

We use the following important property of the uncrossing algorithm.325

▶ Lemma 9. Every point x in the plane that does not lie on W has the same winding parity326

in W and in W ′.327

Proof. For any ray r from x to infinity that avoids vertices of W , the parity of the number328

of edges it crosses is the same for W and W ′ since we have discarded pairs of equal line329

segments. Edge directions do not matter since 1 and −1 have the same parity. ◀330

▶ Definition 10. WALG is the output of the uncrossing algorithm on input WDP, oriented in331

thecounterclockwise direction.332

▶ Lemma 11. WALG is a weakly simple polygon in the free space. WALG encloses R and333

c(WALG) ≤ cDP.334

Proof. Consider a polygon P ∈ R. By Lemma 6(B), wind(WDP, rP) = 1. By Lemma 9,335

rP has the same winding parity in WALG. Since WALG is weakly simple, every point has336

winding number 0 or 1. Thus wind(WALG, rP) = 1 and WALG encloses P .337

Next we consider costs. The definition of the costs in Equation (1) gives338

c(WALG) = w(WALG) + π(WALG),339

where π(WALG) is the sum of the penalties of objects of O enclosed by WALG.340

By Lemma 6(A) and the definition of c(WDP),341

cDP = c(WDP) = w(WDP) +
∑
P∈O

wind(WDP, rP) · πP .342

The uncrossing algorithm ensures that w(WALG) ≤ w(WDP). It remains to compare the343

penalties. Let P be a polygon of O enclosed by WALG, i.e., with wind(WALG, rP) = 1.344

By Lemma 9, the representative point rP has the same winding parity in WDP, and by345

Lemma 6(C), wind(WDP, rP) ≥ 0. Thus 1 ≤ wind(WDP, rP) and346

π(WALG) =
∑
P∈O

wind(WALG, rP) · πP ≤
∑
P∈O

wind(WDP, rP) · πP347

Therefore c(WALG) ≤ cDP. ◀348

Finding a Shortest Curve that Separates Few Objects from Many 42:11

6 Correctness Proof349

In defining WALG, we relied on the assumption that cDP is finite. In this section we prove350

this fact, which implies that WALG exists, and we prove our main correctness result:351

▶ Theorem 12. WALG is an optimum solution to the Enclosure-with-Penalties problem.352

We defined the Enclosure-with-Penalties problem over the continuous space of all353

weakly simple polygons, but our algorithm only explores the discrete space of weakly simple354

polygons composed of at most 6n free-space edges. So we first prove that there is an optimum355

solution in this discrete space. A feasible solution is a weakly simple polygon that lies in the356

free space and encloses R.357

▶ Lemma 13. For the Enclosure-with-Penalties problem, there exists an optimum358

solution WOPT of finite cost that consists of at most 6n free-space edges.359

Proof idea (Details in Appendix E). Let S be the discrete set of feasible solutions that360

consist of free-space edges each traversed at most twice. Because a planar graph on n vertices361

has at most 3n edges, any solution in S has at most 6n free-space edges.362

We next prove that S contains a feasible solution that encloses R and excludes O, and363

thus has finite cost. The idea is to take the cycle boundaries of polygons in R and join them364

by paths traversed twice.365

Since S is finite and nonempty, this implies that, among the solutions in S, there is a366

solution W ∗ of minimum cost.367

Finally, we prove that any feasible solution not in S can be homotopically shortened and368

then uncrossed to get a solution in S of no greater cost. Thus W ∗ is an optimum solution. ◀369

We prove that the solution WOPT from Lemma 13 is one of the candidate solutions over370

which the dynamic program optimizes. As a consequence:371

▶ Lemma 14. cDP ≤ c(WOPT).372

Theorem 12 then follows: Lemmas 13 and 14 establish that cDP is finite. Thus WALG373

exists. By Lemma 11, WALG is a feasible solution and c(WALG) ≤ cDP. Combining with374

Lemma 14 yields c(WOPT) ≤ c(WALG) ≤ cDP ≤ c(WOPT). Thus WALG is optimal.375

We say a few words about the proof of Lemma 14. By the of definition cDP, it suffices to376

show that C(p, 6n, R) ≤ c(WOPT) for a vertex p on WOPT. We give an inductive proof of the377

more general statement that C(p, t, B) is at most the cost of any weakly simple polygon W378

with at most t free-space edges that encloses B and goes through p. Since WOPT has at most379

6n edges, this implies Lemma 14. The following lemma, which is proved in Appendix E,380

includes an analogous inductive statement for M(pq, t, B), with a suitable definition of the cost381

c(W0) of an open walk W0. It refers to transition vertices, which were defined in Section 2.1.382

▶ Lemma 15. (A) Let W be a weakly simple polygon with ℓ free-space edges, going through383

vertex p, and let B be the objects of R enclosed by W. Then, for all t ≥ ℓ, C(p, t, B) ≤ c(W).384

(B) Let W0 be an open walk with ℓ free-space edges from p to q such that the polygon385

W = W0 +qp is weakly simple and q is not a transition vertex of W. Let B be the objects of R386

whose reference points lie inside W and not on pq. Then, for all t ≥ ℓ, M(pq, t, B) ≤ c(W0).387

7 Reducing the Runtime388

The runtime of our algorithm to solve the Enclosure-with-Penalties problem can be389

reduced by a Θ(n2) factor, leading to the bound of Theorem 3.390

SoCG (submit ted)

42:12 Finding a Shortest Curve that Separates Few Objects from Many

The dynamic programming algorithm in Section 4 is guided by a parameter t, which391

limits the number of edges of the walk. We have proved (Lemma 13) that there is an optimal392

solution with at most 6n edges. Hence, the solution cannot be improved by allowing larger393

values of t; the iteration stabilizes, and the algorithm can stop when t reaches 6n. The394

parameter t is useful for ensuring that the quantities in dynamic programming algorithm are395

well-defined, and it is essential as an induction variable for the proofs. We will now show396

that it can be eliminated, and the recursion can be solved in the style of Dijkstra’s algorithm397

for shortest paths. Such a generalization of Dijkstra’s algorithm was proposed by Knuth [18],398

and it can be applied to our problem.399

More specifically, we define C(p, B) := C(p, 6n, B) and M(pq, B) := M(pq, 6n, B) in400

terms of the quantities from Section 4. By the above observations, C(p, B) = C(p, t, B)401

and M(pq, B) = M(pq, t, B) for all t ≥ 6n. Therefore, the limit quantities C(p, B) and402

M(pq, B) fulfill a variation of the recursions (2–7) where the parameter t is eliminated. The403

resulting system of equations (13–19) is shown in Appendix F.1. This system involves cyclic404

dependencies. Nevertheless, we can show that it has a unique solution (Lemma 22). The405

reason is that on the right-hand side of the equations, the result of any expression combining406

some quantities of the form C(p, B) and M(pq, B) is always larger than these quantities.407

Similar to Dijkstra’s shortest-path algorithm, our algorithm maintains tentative values408

C(p, B) and M(pq, B). The smallest of the tentative values is made permanent, and all409

right-hand side expressions where this value appears are evaluated and used to update the410

corresponding tentative left-hand side values. The algorithm that carries out this idea is411

shown in Appendix F.2 (Algorithm 1).412

The most numerous quantities are the O(n22k) values M(pq, B), and hence the space413

complexity is O(n22k). Compared to the running time for the dynamic programming414

algorithm in Section 4, we save a factor n2: The elimination of t reduces the number of415

recursions by a factor Θ(n), and we save another factor Θ(n) because we need not go through416

all decompositions t = t1 + t2 on the right-hand side. The analysis of the full algorithm is417

given in Appendix F.3. The total running time is O(n33k), as claimed in Theorem 3.418

8 The Inverted Problem419

For the inverted problem, the approach for the original problem has to be adapted, as the421

region of interest is now outside the weakly simple polygon W . To derive a suitable dynamic422

programming formulation, we decompose the outside of W into elementary pieces, as shown423

in Figure 6: We form the convex hull of W and extend vertical rays upward and downward424

from the convex hull vertices. This leads to two additional types of regions:425

a left and a right half-plane, each bounded by a vertical line through an object vertex;426

vertical planks, that is, regions bounded by a line segment and two vertical upward rays427

or two vertical downward rays. We discuss such regions in Appendix F.4.428

We stick to the convention that the interior of the region of interest lies on the left side of W .439

Accordingly, the solution polygon W is now ordered clockwise.440

In the algorithm, we build the region of interest outside-in, see Figure 7, starting from441

a left half-plane bounded by two vertical rays through an object vertex. We add planks442

from left to right along common rays, and, as in Section 4, we may also attach triangles443

along common edges and digons along common vertices. In addition to the usual bounded444

walks, we now also consider polygonal walks W ↕ that start from the endpoint of a vertical445

downward ray and end at a vertical upward ray. More precisely, for each pair of vertices p, q,446

we consider a subproblem of type U (“unbounded”), which considers regions bounded by a447

Finding a Shortest Curve that Separates Few Objects from Many 42:13

S↓(p3p4)

S↑(p7p6)

H←(p1)

p1

p7
p6

p5

p4

p3

p2

Qf

Qe

Qd

Qc

Qb

Qa

H→(p5)

Figure 6 Partition of the outside into pockets Qa, . . . , Qf , two half-planes, and seven planks.420

vertical ray down from p, a walk W from p to q, and a vertical ray up from q, see Figure 7448

for an example; p = q is allowed. Accordingly, the algorithm computes quantities U(p, q, t, B)449

for all B ⊆ R and t ≤ 6n. The two unbounded rays jointly play the role of the mouth.450

8.1 The dynamic programming recursion451

For simplicity, we assume that distinct vertices and distinct reference points have distinct452

x-coordinates; this can be achieved by a rotation. We denote by H←(q) and H→(q) the left453

and right half-plane bounded by the vertical line through q. S↓(pq) S↑(pq) are the planks454

with boundary segment pq. By convention, p is always left of q.455

The recursion considers three cases, as illustrated in Figure 8. The easy case (U←) is a459

left half-plane, which applies only for p = q. The other two cases are symmetric to each other;460

we discuss here only U↓. This is similar to the term M2 for M(pq, t, B) in recursion (7),461

except that the plank S↓(rp) plays the role of the triangle ∆ = prq. One of the subproblems,462

with mouth pr, is an “ordinary” subproblem of type M , the other subproblem is of type U .463

U(p, q, t, B) = min{U←, U↓, U↑}, where464

U← =
{

π(H←(p)), if p = q and B = R(H←(p))
∞, otherwise

(9)465

466

U↓ = min{ M(pr, t1, B1) + U(r, q, t2, B2) + π(S↓(rp)) | (10)467

r left of p, t = t1 + t2, B = R(S↓(rp)) ⊔ B1 ⊔ B2
}

468

U↑ = min{ U(p, r, t1, B1) + M(rq, t2, B2) + π(S↑(rq)) | (11)469

r left of q, t = t1 + t2, B = R(S↑(rq)) ⊔ B1 ⊔ B2
}

470

R(Ω) and π(Ω) (for some region Ω) generalize the earlier notations R(∆) and π(∆) and471

denote the required objects and the sum of penalties of optional objects whose reference point472

lies inside Ω. Reference points that lie on pq are treated as belonging to S↓(pq) and S↑(pq).473

No reference points lie on other boundaries of planks and half-planes by our initial rotation.474

SoCG (submit ted)

42:14 Finding a Shortest Curve that Separates Few Objects from Many

1

2 3 4

5 6

8

9

12

p

q

r

s

v

x

10

11

7
W l

W l

W l

W l

Figure 7 A weakly simple polygon W (red/bold) that has the four required objects
(yellow/hatched) on the outside. The penalties of two optional (grey) objects is added to the
length when the cost is computed. We grow the outer region triangle by triangle, considering also
“triangles” that extend to −∞ or +∞ (vertical planks), or both, like the left half-plane (number 1).
The union of the shaded blue regions is bounded by vertical rays from p downward and from q

upward plus a weakly simple walk between p and q. The extended walk W ↕ is a candidate solution
considered for the subproblem U(p, q, B, t), when t ≥ 13 and B consists of the three leftmost required
objects. (The fourth required object has its reference point (thick dot) outside the region.) Two
more planks, spanned by ps and qs, plus the right half-plane through s, would complete the outside
region of W .

429

430

431

432

433

434

435

436

437

438

The overall solution is475

c′DP := min{ U(p, p, R(H←(p)), 6n) + π(H→(p)) | p is a vertex }476

The first term, with B = R(H←(p)), makes sure that all required objects with the reference477

point to the left of p are covered. The remaining objects are then automatically covered by478

the right half-plane H→(p). Appendix G describes how the correctness proof of Section 6479

for the non-inverted problem must be adapted for the inverted problem.480

9 Conclusion481

Splitting a surface. Our result may shed some light on the following open problem by482

Bulavka, Colin de Verdière, and Fuladi [6, Conclusion]: given an orientable combinatorial483

surface of genus g, and an integer g′, 1 ≤ g′ < g, is it FPT in g′ to compute a shortest484

weakly simple closed curve that cuts off a surface of genus g′? The problem is FPT in g [7,485

Theorem 6.1]. Our algorithm for Graph-Enclosure-with-Penalties shows that the486

answer is yes when restricting to some (admittedly very special) instances, see Appendix H,487

and thus provides some hope for a positive answer in general, although this remains open.488

Finding a Shortest Curve that Separates Few Objects from Many 42:15

q

p
r

M(rp, t1, B1) + U(r, q, t2, B2) + π(S↓(rp))

S↓(rp)

U↓

q

p

r

S↑(rq)

U↑

p

H←(p)

U←

π(H←(p))

if B = R(H←(p))
U(p, r, t1, B1) +M(qr, t2, B2) + π(S↑(qr))

Figure 8 The recursion for the inverted problem. Free space edges are solid; mouths are dashed.

456

457

458

Curved objects and line segments. We believe that our approach carries over to more489

general objects. Curved objects that are sufficiently well behaved can be treated by considering490

all bitangents as free-space edges. We can already handle point objects, as described in491

Appendix I; line segments without other vertices in their interior should also be doable.492

However, extending to weakly simple polygon objects seems difficult. Even for a path object493

consisting of two line segments joined at point p it is a challenge to prevent a solution from494

cutting through the path at p.495

Recognizing weakly simple self-overlapping polygons. As mentioned, our dynamic program496

optimizes over the class of weakly simple self-overlapping polygons, see Appendix L. Weakly497

simple polygons can be recognized in O(n log n) time [2], and self-overlapping polygons in498

time O(n3) [20]. Can weakly simple self-overlapping polygons be recognized efficiently?499

References500

1 M. Abrahamsen, P. Giannopoulos, M. Löffler, and G. Rote. Geometric multicut: shortest501

fences for separating groups of objects in the plane. Discrete Comput. Geom., 64:575–607,502

2020. doi:10.1007/s00454-020-00232-w.503

2 H. A. Akitaya, G. Aloupis, J. Erickson, and C. D. Tóth. Recognizing weakly simple polygons.504

Discrete & Computational Geometry, 58(4):785–821, 2017. doi:10.1007/S00454-017-9918-3.505

3 H. A. Akitaya and C. D. Tóth. Reconstruction of weakly simple polygons from their edges.506

International Journal of Computational Geometry & Applications, 28(02):161–180, 2018.507

doi:10.1142/S021819591860004X.508

4 E. M. Arkin, S. Khuller, and J. S. Mitchell. Geometric knapsack problems. Algorithmica,509

10(5):399–427, 1993. doi:10.1007/BF01769706.510

5 T. Biedl. Small drawings of outerplanar graphs, series-parallel graphs, and other planar graphs.511

Discret. Comput. Geom., 45(1):141–160, 2011. doi:10.1007/S00454-010-9310-Z.512

6 D. Bulavka, É. Colin de Verdière, and N. Fuladi. Computing shortest closed curves on non-513

orientable surfaces. In W. Mulzer and J. M. Phillips, editors, 40th International Symposium514

on Computational Geometry (SoCG 2024), volume 293 of Leibniz International Proceedings in515

SoCG (submit ted)

https://doi.org/10.1007/s00454-020-00232-w
https://doi.org/10.1007/S00454-017-9918-3
https://doi.org/10.1142/S021819591860004X
https://doi.org/10.1007/BF01769706
https://doi.org/10.1007/S00454-010-9310-Z

42:16 Finding a Shortest Curve that Separates Few Objects from Many

Informatics (LIPIcs), pages 28:1–28:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,516

2024. arXiv:2403.11749, doi:10.4230/LIPIcs.SoCG.2024.28.517

7 E. W. Chambers, É. Colin de Verdière, J. Erickson, F. Lazarus, and K. Whittlesey. Splitting518

(complicated) surfaces is hard. Comput. Geom., 41(1–2):94–110, 2008. doi:10.1016/j.comgeo.519

2007.10.010.520

8 E. W. Chambers, J. Erickson, K. Fox, and A. Nayyeri. Minimum cuts in surface graphs. SIAM521

J. Comput., 52(1):156–195, 2023. doi:10.1137/19M1291820.522

9 T. M. Chan, Q. He, and J. Xue. Enclosing points with geometric objects. In W. Mulzer and523

J. M. Phillips, editors, 40th International Symposium on Computational Geometry (SoCG524

2024), volume 293 of Leibniz International Proceedings in Informatics (LIPIcs), pages 35:1–525

35:15, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. arXiv:526

2402.17322, doi:10.4230/LIPIcs.SoCG.2024.35.527

10 H.-C. Chang, J. Erickson, and C. Xu. Detecting weakly simple polygons. In Proceedings of528

the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1655–1670,529

2015. arXiv:1407.3340, doi:10.1137/1.9781611973730.110.530

11 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT531

Press, 3rd edition, 2009.532

12 G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic digraphs.533

Theor. Comput. Sci., 61:175–198, 1988. doi:10.1016/0304-3975(88)90123-5.534

13 P. Eades and D. Rappaport. The complexity of computing minimum separating polygons.535

Patt. Recog. Lett., 14(9):715–718, 1993. doi:10.1016/0167-8655(93)90140-9.536

14 D. Eppstein, M. Overmars, G. Rote, and G. Woeginger. Finding minimum area k-gons.537

Discrete Comp. Geom., 7:45–58, 1992. doi:10.1007/BF02187823.538

15 P. Evans and C. Wenk. Combinatorial properties of self-overlapping curves and interior539

boundaries. Discrete & Computational Geometry, 69(1):91–122, 2023. doi:10.1007/540

s00454-022-00416-6.541

16 M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network542

optimization algorithms. J. ACM, 34(3):596–615, 1987. doi:10.1145/28869.28874.543

17 S. K. Ghosh and D. M. Mount. An output-sensitive algorithm for computing visibility graphs.544

SIAM Journal on Computing, 20(5):888–910, 1991. doi:10.1137/0220055.545

18 D. E. Knuth. A generalization of Dijkstra’s algorithm. Information Processing Letters, 6(1):1–5,546

1977. doi:10.1016/0020-0190(77)90002-3.547

19 D. Marx, M. Pilipczuk, and M. Pilipczuk. On subexponential parameterized algorithms for548

Steiner tree and directed subset TSP on planar graphs. In Proc. 59th Ann. IEEE Symp.549

Foundat. Comput. Sci. (FOCS), pages 474–484, 2018. doi:10.1109/FOCS.2018.00052.550

20 P. W. Shor and C. J. Van Wyk. Detecting and decomposing self-overlapping curves.551

Computational Geometry: Theory and Applications, 2(1):31–50, 1992. doi:10.1016/552

0925-7721(92)90019-O.553

21 D. Singmaster and J. W. Grossman. Solution to problem E2897: An Eulerian circuit with554

no crossings. The American Mathematical Monthly, 90(4):287–288, 1983. URL: http://www.555

jstor.org/stable/2975767, doi:10.2307/2975767.556

22 R. Tamassia and I. G. Tollis. A unified approach a visibility representation of planar graphs.557

Discret. Comput. Geom., 1:321–341, 1986. doi:10.1007/BF02187705.558

23 M.-T. Tsai and D. B. West. A new proof of 3-colorability of Eulerian triangulations. Ars559

Mathematica Contemporanea, 4:73–77, 2011. doi:10.26493/1855-3974.193.8e7.560

24 J. H. van Lint and R. M. Wilson. A course in combinatorics. Cambridge University Press,561

second edition, 2001.562

https://arxiv.org/abs/2403.11749
https://doi.org/10.4230/LIPIcs.SoCG.2024.28
https://doi.org/10.1016/j.comgeo.2007.10.010
https://doi.org/10.1016/j.comgeo.2007.10.010
https://doi.org/10.1016/j.comgeo.2007.10.010
https://doi.org/10.1137/19M1291820
https://arxiv.org/abs/2402.17322
https://arxiv.org/abs/2402.17322
https://arxiv.org/abs/2402.17322
https://doi.org/10.4230/LIPIcs.SoCG.2024.35
https://arxiv.org/abs/1407.3340
https://doi.org/10.1137/1.9781611973730.110
https://doi.org/10.1016/0304-3975(88)90123-5
https://doi.org/10.1016/0167-8655(93)90140-9
https://doi.org/10.1007/BF02187823
https://doi.org/10.1007/s00454-022-00416-6
https://doi.org/10.1007/s00454-022-00416-6
https://doi.org/10.1007/s00454-022-00416-6
https://doi.org/10.1145/28869.28874
https://doi.org/10.1137/0220055
https://doi.org/10.1016/0020-0190(77)90002-3
https://doi.org/10.1109/FOCS.2018.00052
https://doi.org/10.1016/0925-7721(92)90019-O
https://doi.org/10.1016/0925-7721(92)90019-O
https://doi.org/10.1016/0925-7721(92)90019-O
http://www.jstor.org/stable/2975767
http://www.jstor.org/stable/2975767
http://www.jstor.org/stable/2975767
https://doi.org/10.2307/2975767
https://doi.org/10.1007/BF02187705
https://doi.org/10.26493/1855-3974.193.8e7

Finding a Shortest Curve that Separates Few Objects from Many 42:17

594

1

1

1

1
1

2

4
2

1

3

3

3

a

b

c

d

e

f
g

h 0
0

a

b
c

d

e

f
g

h

595 (a) (b)

Figure 9 (a) A simple plane graph G. The edges of a closed walk W = abcdcdaededadefgfbcfhcba
are drawn in black and labeled with their multiplicities. (b) A non-crossing Euler tour in an
expansion M(G, W) of W . Vertices of M(G, W) are represented as large disks. The Euler tour is
shown in red and certifies that the walk W from (a) is weakly simple.

596

597

598

599

A Details for Section 2: Weakly Simple Polygons or Walks563

We characterize weakly simple polygons/walks in terms of non-crossing Euler tours.564

A connected plane graph or multigraph is specified via its combinatorial map (or rotation565

system) that specifies the counterclockwise cyclic order of edges around each vertex. If there566

are parallel edges, they have distinct identities and must be explicitly ordered in the rotation567

system. One face is designated as the outer face.568

A non-crossing Euler tour of a plane multigraph is a closed walk that traverses each569

edge exactly once and has no vertex crossing. A vertex crossing occurs when the tour570

visits some vertex v twice, entering once on edge e and leaving on edge f , and entering again571

on edge g and leaving on edge h, such that e, f and g, h interleave in the cyclic ordering of572

edges around v, i.e., they appear in the order e, g, f, h or e, h, f, g.573

Let G be a plane multigraph with a non-crossing Euler tour T . Then the vertices of G574

have even degrees, so the faces of G can be 2-colored such that the two faces incident to an575

edge have different colors [24, Theorems 34.2 and 34.4]. Suppose the two colors are grey and576

white with the outer face colored white. We will traverse T so that a grey face lies to the577

left of the first edge of the tour. Then, because the tour is non-crossing, every edge of the578

tour has a grey face to the left. We call this a counterclockwise traversal of T , and we579

define the interior faces of T to be the grey faces. Note that the interior faces determine a580

partition of the edges of G.581

Weakly simple walks in plane graphs. A walk W of length n in a simple plane graph G582

is a sequence (v0, v1, . . . , vn) of vertices, such that each vivi+1 is an edge of the graph. A583

vertex/edge of G may appear multiple times in the sequence. If v0 = vn this is a closed584

walk; otherwise it is an open walk.585

Intuitively, a closed walk W is weakly simple if multiple traversals of an edge of G can be586

resolved to avoid vertex crossings. We make this more formal by way of a non-crossing Euler587

tour that provides a certificate that W is weakly simple.588

For edge e of G, define the multiplicity m(e) of e in W , to be the number of times W589

traverses e (in either direction). An expansion of W is a plane multigraph M(W, G) that590

replaces each edge e = ab of G by a bundle of m(e) parallel edges, each identified with a591

unique edge of W , and replaces e in the rotation systems of a and b by an ordered sequence592

of the edges in the bundle. Then W corresponds to an Euler tour in M(W, G).593

SoCG (submit ted)

42:18 Finding a Shortest Curve that Separates Few Objects from Many

A closed walk W in a plane graph G is weakly simple if it has an expansion M(W, G) in600

which W corresponds to a non-crossing Euler tour. We call such an M(W, G) a certificate601

that W is weakly simple. Note that certificates are not unique; in particular they can have602

different rotation systems. For example, see Figure 3(c) when G is a single edge and W603

traverses it four times.604

Let M(W, G) be a certificate that W is weakly simple. Some faces of M(W, G) are digons605

between parallel edges. Each remaining face is a union of faces of G. (If an edge of G606

has multiplicity 0, then the incident faces are merged in M(W, G).) W corresponds to a607

non-crossing Euler tour of M(W, G), which determines the interior faces of M(W, G). We608

say that a face of G is interior to W if it corresponds to an interior face of M(W, G). See609

Figure 9. (Observe that the interior faces of G are well-defined independent of choice of610

certificate because, in a 2-coloring of the faces of M(W, G), the color of a face of G does not611

depend on the choice of rotation system for M(W, G)—the two faces incident to edge e of G612

have the same color if m(e) is even, and opposite colors if m(e) is odd.)613

Weakly simple polygons. A polygon P is a sequence (p0, p1, . . . , pn−1) of points (the614

vertices of P) together with the line segments pipi+1 mod n (the edges of P). We do not615

allow edges of length 0. As a degenerate case, we allow a polygon with a single vertex and616

no edges. A polygon is simple if the vertices are distinct points and no two edges intersect617

except that consecutive edges intersect at their common vertex.618

For a general non-simple polygon, a point of the plane may correspond to multiple polygon619

vertices, and polygon edges may overlap or cross. An interior crossing of P is a point that620

is in the relative interiors of two (or more) edges that are not collinear. A fork is a vertex621

that lies in the interior of an edge. Both interior crossings and forks can be eliminated by622

subdividing edges, albeit possibly with a quadratic blow-up in the number of vertices of the623

polygon.624

The standard definition [2, 10] is that a polygon is weakly simple if it has fewer than625

three vertices, or it has at least three vertices and for any ε > 0, the vertices can be perturbed626

by at most ε to yield a simple polygon. The intuition is that a weakly simple polygon is one627

without crossings, but it is tricky to define crossings, since they need not be local, see the628

discussion by Chang, Erickson, and Xu [10].629

In our proofs we find it useful to characterize weakly simple polygons in terms of the630

purely combinatorial notion of non-crossing Euler tours in an associated multigraph. Let P631

be a polygon without interior crossings. Expanding on definitions from [2, 10], we define the632

image graph of P to be a plane straight-line graph G formed as follows. First subdivide633

edges of P at interior vertices (i.e., at forks). Next replace every set of coincident vertices of634

P by a single vertex of G, and replace every set of equal line segments of P by a single edge635

of G (these are called “segments” in [2, 10]). Then P corresponds to a closed walk WP in636

the plane graph G and we can apply the concept of a certificate for a weakly simple walk637

from above. In this context we call an expansion M(WP , G) an image multigraph of P .638

We use the notation M(P) for an image multigraph of P , since it depends only on P .639

▶ Lemma 16. A polygon P is weakly simple if and only if it has no interior crossings and it640

has an image multigraph in which P corresponds to a non-crossing Euler tour.641

An image multigraph in which P corresponds to a non-crossing Euler tour is called a642

certificate that P is weakly simple. Again, note that a certificate is in general not unique.643

Before turning to the proof of the lemma, we discuss equivalent notions of the interior of644

a weakly simple polygon. The definition of the interior of a non-crossing Euler tour gives645

Finding a Shortest Curve that Separates Few Objects from Many 42:19

one definition of the interior of a weakly simple polygon. This is equivalent to the definition646

of interior in terms of winding numbers. As seen in Figure 3, the edges of a weakly simple647

polygon can be partitioned into boundary walks of the interior faces.648

The O(n log n) time algorithm to recognize weakly simple polygons by Akitaya, Aloupis,649

Erickson, and Toth [2] implicitly proves Lemma 16 (as does the earlier algorithm by Chang,650

Erickson, and Xu [10]). Akitaya et al. use strip systems as their certificates of weak simplicity.651

A strip system is more geometric in nature, but has the advantage of being linear size, which652

is important for their fast algorithm. Our image multigraphs have quadratic size, but more653

immediately give the properties we need.654

We give a direct proof of Lemma 16 that depends only on the characterization of a weakly655

simple polygon as a limit of simple curves as Fréchet distance goes to zero [10, Theorem 2.1],656

which allows adding new vertices to the polygon.657

Proof. Suppose P is weakly simple. By definition, P has no interior crossings. Let P ′658

be the result of subdividing P at interior vertices. By definition, for any ε > 0 there is659

a simple ε-approximation of P , and this determines a simple ε-approximation of P ′, call660

it P ′ε. Any set U of coincident vertices of P ′ lies in a disc D of radius ε in P ′ε, and the edges661

incident to U leave D at distinct points. From P ′ε we construct a plane multigraph M by662

contracting each set U to a single vertex, and ordering the incident edges according to their663

order around D. Then M is a plane Eulerian multigraph that expands the image graph of P ,664

and P corresponds to a non-crossing Euler tour of M .665

For the other direction, suppose P has no interior crossings and suppose P has an image666

multigraph M(P) in which P corresponds to a non-crossing Euler tour W . We use the result667

that a polygon is weakly simple if it is a limit of simple polygons (possibly with more vertices)668

as Fréchet distance goes to zero [10, Theorem 2.1]. For ε small enough, we construct a simple669

polygon Pε within Fréchet distance ε of P . Polygon Pε will have more vertices than P . In670

particular, our construction will subdivide edges of P at interior vertices, and then replace671

each vertex by two vertices and add vertices in the middle of edges. The coordinates of P ’s672

vertices determine a straight-line drawing of P ’s image graph G in the plane. We expand673

this to a 1-bend drawing of M(P) in which the edges in each bundle are spread apart. In674

more detail, each edge e of G corresponds to a bundle of m(e) edges in M(P). We add a675

vertex in the middle of every edge of the bundle and space these vertices along a small line676

segment drawn perpendicular to e at its midpoint using the ordering of the edges in the677

rotation system of M(P).678

We complete the construction of Pε by altering the drawing of M(P) to spread apart679

the coincident vertices of P ′. For each vertex v of M(P), construct a small disc D of radius680

ε centered at v in the drawing. The edges that enter D are incident to v, and they cross681

the boundary of D in rotation system ordering. Let De be the point where edge e enters682

disc D. Suppose the Eulerian tour W visits v, entering on edge e and leaving on edge f . In683

the drawing and in W replace segments Dev and vDf by the chord DeDf . If two of these684

chords of D cross, they would correspond to a vertex crossing in W . Thus the result is a685

simple polygon Pε. ◀686

SoCG (submit ted)

42:20 Finding a Shortest Curve that Separates Few Objects from Many

B Details for Section 3: Common Framework687

Proof of Theorem 2, assuming Theorem 3. Consider an instance of Graph-Enclosure-688

with-Penalties, with simple connected plane graph G, required faces R, and optional689

faces O. We reduce to an instance of Enclosure-with-Penalties.690

Find a straight-line plane embedding G′ of G with the same combinatorial map (i.e.,691

preserving the rotation system). The faces of G′, including the outer face, become the692

polygons for our new instance. Observe that all these polygons are almost-simple. For the693

bounded faces of G′ we preserve the partition into R and O and the penalties. The outer694

face of G′ becomes an unbounded polygon. We put it in the set O with a penalty of 0 (the695

penalty is irrelevant, since no weakly simple polygon W can contain the unbounded polygon).696

The free space of this set of polygons has no interior; it consists only of the edges of G′.697

Each such edge lies between two faces (polygons) so it is a squeezed edge and we assign it698

the weight of the corresponding edge of G.699

This completes the reduction. For a graph on n vertices, the reduction produces a set700

of polygons with O(n) vertices. The number k of required objects remains the same. The701

reduction takes O(n) time. The runtime claim in Theorem 2 follows.702

There is a one-to-one correspondence between weakly simple polygons in the free space and703

weakly simple closed walks in G (as defined in Appendix A), and the interior and the cost are704

preserved. Therefore a solution to the resulting instance of the Enclosure-with-Penalties705

problem provides a solution to the original graph problem. ◀706

C Details for Section 4: Dynamic Programming Algorithm707

C.1 Runtime of the dynamic programming algorithm708

The number of subproblems of type M is O(n32k): there are O(n2) choices for the mouth pq,709

2k choices for the set B, and O(n) choices for the parameter t. The number of subproblems710

of type C is only O(n22k), by the same analysis. Thus, the space requirement is O(n32k).711

The recursion that dominates the runtime is (7) for M2. For fixed parameters pq, t,712

and B, there are at most n choices for the point r, at most t = O(n) possibilities for t1 and713

t2, and at most 2|B| choices for B1 and B2. We run through the possible choices of r in an714

outer loop. Then, for each triangle ∆ = prq, we can determine the reference points that lie715

in ∆ in a straightforward way in O(n) time, and this runtime will be dominated by the inner716

loop. This leads to an overall runtime of717

O(n3) ×
∑

B⊆R

n ×
(
O(n) + O(n) × 2|B|

)
= O(n5)

∑
B⊆R

2|B| = O(n5)
k∑

i=0

(
k

i

)
2i = O(n53k).718

We assume that we can access each of the O(n32k) entries of the dynamic programming719

table in constant time. In particular, a memory word contains at least k bits, and hence set720

operations on subsets of R take constant time.721

The above computation assumes that we can determine in O(1) time, given two input722

vertices p and q, whether pq is a free-space edge. For this purpose, we precompute a Boolean723

array of size n × n, with rows and columns indexed by the vertices, storing this information.724

The array can be determined in O(n2) time from the visibility graph of the input polygons,725

which can be computed in O(n log n + e) = O(n2) time for a visibility graph with e edges [17].726

Finding a Shortest Curve that Separates Few Objects from Many 42:21

C.2 Details for Section 4.2: Extracting the solution727

Defining WDP. With each finite value C(p, t, B) that is computed in the recursions (2)–(5),728

we can naturally associate a polygon W = W (p, t, B), a closed walk of free-space edges that729

goes through p. Similarly, with each finite value M(pq, t, B) computed in the recursions730

(6)–(7), we can associate an open walk of free-space edges W = W (pq, t, B) that goes from p731

to q. For example, in (7), where we form the sum M(pr, t1, B1) + M(rq, t2, B2), the open732

walk W is obtained by concatenating the open walks associated with M(pr, t1, B1) and733

M(rq, t2, B2).734

▶ Definition 17. For an open walk W from p to q, we define W to be the polygon W + qp.735

For a closed walk W , we define W to be the polygon W itself.736

By remembering for each recursion the values t1, t2, B1, B2, etc. from which the minimum737

was obtained, we can recursively reconstruct the associated open/closed walks W and the738

polygons W in O(t) time.739

This formalizes the definition of WDP (Definition 4).740

Proving Lemma 6 about the Properties of WDP. We must extend the definition of cost741

to open walks:742

▶ Definition 18. For an open or closed polygon W in the free space,743

c(W) := w(W) +
∑
P∈O

wind(W, rP) · πP . (12)744

In particular, if W is an open walk, we take winding numbers with respect to its closure W .745

This definition agrees with the previous Definition 5 when W is closed. For a reference point746

rP lying on the mouth qp of an open walk W from p to q, we compute wind(W, rP) as if rP747

were slightly moved to the right of the segment qp, i.e., in the direction where the outside748

would normally be in case of a counterclockwise simple polygon. In case of a weakly simple749

polygon W , this means that points on the mouth are not considered to be enclosed.750

To prove Lemma 6, we need results on winding numbers as walks are glued together. We751

first define gluing more precisely. Two closed walks W1 and W2 can be glued together at752

a common vertex, or along a common edge that is traversed in opposite directions by W1753

and W2.754

More formally: If W1 = (p, q1, q2, . . . , qn) and W2 = (p, p1, p2, . . . , pm), then the result755

of gluing the walks along the common point p is P = (p, q1, q2, . . . , qn, p, p1, p2, . . . , pm).756

If P1 = (p, q, q2, . . . , qn) and P2 = (q, p, p2, . . . , pm) both use the edge pq, but in opposite757

directions, then P = (q, q2, . . . , qn, p, p2, . . . , pm) is the result.758

We have the following easy but key property:759

▶ Lemma 19 (Additivity of Winding Numbers). The winding number is additive with respect760

to the gluing operation: If P is a closed walk obtained by gluing two closed walks P1 and P2761

along a common edge or vertex, then762

wind(P, x) = wind(P1, x) + wind(P2, x)763

for all points x that do not lie on P1 or P2.764

Proof. Let ρ be any ray from x to the unbounded face that avoids the vertices of P and765

intersects the edges of P1 and P2 transversally.766

SoCG (submit ted)

42:22 Finding a Shortest Curve that Separates Few Objects from Many

Assume first that P results from gluing P1 and P2 at a common vertex; then the multiset767

of the directed edges of P is exactly the union of the directed edges of P1 and of P2 (counting768

multiplicities). Let r+, r+
1 , and r+

2 be the number of times an edge of P , P1, and P2,769

respectively, crosses ρ from right to left; we have r+ = r+
1 + r+

2 . Similarly, with the analogous770

notations r−, r−1 , and r−2 counting the number of crossings from left to right, we have771

r− = r−1 + r−2 . Summing up, we obtain the result.772

If P results from gluing P1 and P2 at a common edge pq, the effects of the two oppositely773

oriented edges pq and qp cancel out when the winding number is computed. (They contribute774

to r+
1 and r−2 , or to r−1 and r+

2 , or not at all.) The proof for the first case carries over. ◀775

We now restate and prove Lemma 6.776

▶ Lemma 6.777

(A) cDP = c(WDP);778

(B) for all P ∈ R, wind(WDP, rP) = 1;779

(C) for all points x that do not lie on WDP, wind(WDP, x) ≥ 0.780

Proof. We prove by induction that the properties hold more generally for all subproblems781

solved in the dynamic programming algorithm. To be precise, consider a finite value C(p, t, B)782

or M(pq, t, B) computed in the recursions (2)–(7). Let W = W (p, t, B) or W = W (pq, t, B)783

be the closed or open walk associated with the solution and let W be the associated polygon784

as in Definition 17. We prove by induction on t that:785

(i) C(p, t, B) = c(W (p, t, B)), M(pq, t, B) = c(W (pq, t, B));786

(ii) for all P ∈ B, wind(W, rP) = 1 and for all P ∈ R \ B, wind(W, rP) = 0;787

(iii) for all points x that do not lie on W , wind(W, x) ≥ 0.788

These properties hold in the base case (2), where C(p, t, ∅) = 0 and W is the single789

point p. For the general formulas we heavily rely on the additivity of the winding number790

with respect to gluing, Lemma 19. The cases are as follows, numbered by the equation791

numbers; it may help to refer to Figure 4.792

(4) C = C1 = wpq + M(qp, t − 1, B) where pq is a free space edge.793

By induction, the properties hold for the open walk W0 = W (qp, t − 1, B). Let W be the794

polygon associated with C, i.e., W = pq+W0. Observe that W is the same polygon as W 0.795

This takes care of properties (ii) and (iii). For property (i), note that c(W) = wpq +c(W0).796

By induction, c(W0) = M(qp, t − 1, B). Thus c(W) = wpq + M(qp, t − 1, B) = C, which797

proves property (i).798

(5) C = C2 = C(p, t1, B1) + C(p, t2, B2) where t = t1 + t2, B = B1 ⊔ B2, B1, B2 ̸= ∅.799

By induction, the properties hold for the polygons W1 = W (p, t1, B1) and W2 =800

W (p, t2, B2). The polygon W associated with C is formed by gluing W1 and W2 at801

the common point p. The weights are additive by definition: w(W) = w(W1) + w(W2),802

and by additivity of winding numbers, wind(W, x) = wind(W1, x) + wind(W2, x) for all803

points x not on W . Property (iii) follows immediately, and property (i) follows by the804

definition of the cost, c(W) = w(W) +
∑

P∈O wind(W, rP) · πP .805

Property (ii) propagates from B1 and B2 to their disjoint union B by the additivity806

of winding numbers. More precisely, consider first some P ∈ B. Since B = B1 ⊔ B2,807

the polygon P is in exactly one of these sets. Suppose without loss of generality that808

P ∈ B1. By induction, wind(W1, rP) = 1 and wind(W2, rP) = 0. Thus wind(W, rP) = 1.809

Finally, if P ∈ R \ B, then by induction wind(W1, rP) = 0 and wind(W2, rP) = 0, so810

wind(W, rP) = 0, as required.811

Finding a Shortest Curve that Separates Few Objects from Many 42:23

(6) M = M1 = C(p, t − 1, B) + wpq where pq is a free space edge.812

By induction, the properties hold for the polygon W0 = W (p, t − 1, B). The open walk813

W that is associated with M starts at p, traverses the polygon W0 and then the edge814

pq, ending at q. W is formed by gluing the doubled edge qp to the polygon W0. Thus,815

winding numbers with respect to W are the same as for W0, except that they become816

undefined for points x on pq. This proves properties (ii) and (iii), and also that the817

penalty term in the cost (12) for W is the same as for W0. Since w(W) = w(W0) + wpq,818

property (i) follows.819

(7) M = M2 = M(pr, t1, B1) + M(rq, t2, B2) + π(∆) where ∆ = prq is a counterclockwise820

triangle, t = t1 + t2, t1 ≥ 1, t2 ≥ 1, B = B1 ⊔ B2 ⊔ R(∆).821

By induction, the properties hold for the open walks W1 = W (pr, t1, B1) and W2 =822

W (rq, t2, B2). Let W be the open walk associated with M . Then w(W) = w(W1)+w(W2).823

W is formed by gluing W 1 and W 2 to ∆ on the common edges pr and rq, respectively.824

The argument is analogous to the treatment of (5) above, except that we form the825

combination of three areas, and two gluings are performed, along common edges instead826

of common vertices.827

An important point is therefore the treatment of reference points that lie on these edges:828

By the convention established in connection with Definition 18, the points on the mouths829

pr and rq are not considered to be enclosed by W 1 and W 2, both for determining R(W i)830

and for computing π(W i). However, when determining R(∆) and π(∆), these edges are831

considered to be part of ∆, by our conventions of Section 4.1 (in the paragraph before (6)).832

Thus the points on the mouth are neither overcounted nor undercounted.833

The edge pq is not considered as part of ∆. This is in line with the convention of834

Definition 18 that the mouth pq should not be counted as enclosed by W . ◀835

D Details for Section 5: Uncrossing Algorithm836

We first give more details about the following proposition (restated).837

▶ Proposition 7 (Uncrossing Eulerian plane multigraphs). Given a plane connected Eulerian838

multigraph H with m edges, specified by its combinatorial map, we can, in O(m) time,839

compute a non-crossing Euler tour of H.840

As noted in the main text, a linear-time algorithm for constructing such an Euler tour was841

given by Akitaya and Tóth [3, Corollary 1]. Their algorithm makes the unstated assumption842

that the combinatorial map is given. Their terminology differs from ours, e.g., their input is843

geometric, and their output is a simple polygon that ε-approximates a non-crossing Euler844

tour. We outline the idea of the algorithm using our terminology. For the more general845

setting of graphs on arbitrary surfaces, a linear time algorithm was recently described by846

Bulavka, Colin de Verdière, and Fuladi [6, Lemma 4.2 of the full version on arXiv], expressed847

in the framework of cross-metric surfaces.848

Idea of the proof of Proposition 7. Take a 2-coloring (white and grey) of the faces of H,849

with the outer face colored white. Traverse every grey face counterclockwise to obtain a set850

of edge-disjoint cycles without vertex crossings. The plan is to stitch together these cycles to851

form a non-crossing Euler tour. Initialize T to one of the cycles. While there are other cycles,852

find a vertex v where an edge of T and an edge of another cycle C appear consecutively in853

the cyclic order of edges around v, and merge C into T at this point. This does not create854

vertex crossings in T . The algorithm can be implemented to run in O(m) time. ◀855

SoCG (submit ted)

42:24 Finding a Shortest Curve that Separates Few Objects from Many

We next give more details of our uncrossing algorithm, restated here.856

▶ Algorithm 8 (Uncrossing Algorithm).857

1. Subdivide every edge of W at every interior vertex and interior crossing.858

2. In the resulting multiset of edges (line segments in the plane) reduce multiplicities to 1859

or 2 by repeatedly discarding pairs of equal line segments. The result is a plane connected860

Eulerian multigraph.861

3. Apply Proposition 7 to find a non-crossing Euler tour. This corresponds to a weakly862

simple polygon W ′.863

The definitions and results of Appendix A allow us to clarify this. For Step 1 we generalize864

the notion of an image graph to a polygon that may have interior crossings: first subdivide865

edges at interior crossings and then apply the previous definition of an image graph. In866

Step 1 we compute this image graph together with the multiplicity function. Step 2 simply867

modifies the multiplicities. In Step 3, the claim that a non-crossing Euler tour corresponds868

to a weakly simple polygon W ′ is justified by Lemma 16.869

▶ Lemma 20. The Uncrossing Algorithm can be implemented to run in time O(t log t + s)870

where t is the number of edges of W and s ∈ O(t2) is the number of interior crossing points871

of W . For input WDP the runtime is O(n log n).872

Proof. We first show that the image graph G and multiplicities m(e) can be computed in873

time O(t log t + s). We must be careful to avoid the quadratic blow-up that results if we874

construct G in the obvious way by first subdividing edges of W at forks.875

One approach is to perform a plane sweep and represent overlapping segments in terms876

of multiplicities to avoid explicitly subdividing all edges in an overlapping bundle when one877

of those edges ends at a vertex.878

Another approach (following ideas in [2, 10]) is to compute multiplicities before running879

a plane sweep. Sort by slope to partition the edges into collinear groups. If ℓ is a line that880

contains m edges, we can sort their endpoints along ℓ in time O(m log m) and output a881

corresponding set of O(m) interior-disjoint edges with multiplicities. We then run plane882

sweep on the new edges to compute G and its multiplicities in time O(t log t + s).883

Note that the image graph G (which is a simple plane graph) has at most t + s vertices,884

hence O(t + s) edges. The plane connected Eulerian multigraph M created in Step 2 (with885

edge multiplicities 1 or 2) has O(t + s) edges, and by Proposition 7, a weakly simple Euler886

tour of M can be found in time O(t + s).887

Finally, consider running the algorithm on WDP. WDP has at most 6n edges which gives888

an immediate runtime bound of O(n2). In fact, the runtime is less (though note that the889

runtime of the dynamic program dominates in any case). As a consequence of the optimality890

of WALG we prove (in Corollary 21) that WDP has no interior crossing points. Thus the891

algorithm to uncross WDP runs in time O(n log n). ◀892

We note that Akitaya and Tóth [3, Theorem 4] prove a related uncrossing result. Their893

input polygon has t edges and no interior crossings and they “uncross” to a weakly simple894

polygon with the same multiplicities as W and with O(t) edges, rather than the obvious895

quadratic number. They do not give a runtime. By contrast, we allow interior crossings (at a896

quadratic cost), and we escape the quadratic blow-up due to forks in a simpler way because897

we only care about parity.898

The example of Figure 10 shows that self-crossings are not just a theoretical possibility;899

they actually can occur in an optimal solution to a type-M subproblem. The solutions in900

this example are weakly simple immersed polygons, see Appendix L.901

Finding a Shortest Curve that Separates Few Objects from Many 42:25

q

p

r r

(a) (b)

q

p

Figure 10 (a) The optimum solution with given mouth pq can indeed self-overlap. The yellow
objects are required, and the grey objects have high penalties. The solution with mouth pr is a
simple polygon. Attaching the triangle prq to it yields a self-overlapping polygon. (b) The same
example with point objects. Observe that the solution covers more than 360◦ around r, although
this is not apparent locally from looking at the boundary near r.

902

903

904

905

906

E Details for Section 6: Correctness Proof907

We restate and prove Lemma 13.908

▶ Lemma 13. For the Enclosure-with-Penalties problem, there exists an optimum909

solution WOPT of finite cost that consists of at most 6n free-space edges.910

Proof. Recall that S is the discrete set of feasible solutions that consist of free-space edges911

each traversed at most twice. There are two parts of the proof that warrant more detail912

than was given in the main text: (Part 1) S contains a feasible solution that encloses R and913

excludes O; and (Part 2) if W is a finite cost feasible solution outside S, then there is a914

solution W ′ in S of no greater cost.915

Part 1. We begin with the boundaries of the polygons in R traversed counterclockwise.916

These form a collection of k weakly simple polygons in the free space such that each free-space917

edge is used at most twice. As long as there is more than one polygon, combine polygons as918

follows. If two polygons share an edge, join them by removing that edge. Otherwise, if there919

are polygons that share a vertex, find a vertex v where two polygons appear consecutively in920

the cyclic order of edges around v, and merge the polygons at v. Otherwise, find a shortest921

path among all paths in the free space that connect two vertices of different polygons, and922

combine the two polygons into a single polygon by traversing the path once in each direction.923

After k − 1 steps, the process stops with a single weakly simple polygon, and this polygon924

has the desired properties.925

Part 2. We now prove that if W is a finite cost feasible solution outside S, then there is a926

solution W ′ in S of no greater cost. The idea is to construct a weakly simple polygon W ′ in927

S that encloses the same objects as W and does not increase the sum of edge weights.928

W may have vertices that are not object vertices. Let Wh be the result of homotopically929

shortening (i.e., in the free space) every subpath of W that goes from one object vertex to930

another. (If W contains no object vertex, we homotopically shorten all of W .) Then Wh931

is composed of free-space edges and w(Wh) ≤ w(W)—this holds for edges with Euclidean932

weights and also for squeezed edges. Although Wh need not be weakly simple, every object933

has the same winding number (1 or 0) in W and Wh.934

SoCG (submit ted)

42:26 Finding a Shortest Curve that Separates Few Objects from Many

Let W ′ be the result of applying the Uncrossing Algorithm 8 to Wh. Then W ′ is a weakly935

simple polygon composed of free-space edges each used at most twice, so W ′ lies in S. By936

Lemma 9, W ′ preserves the winding numbers so W ′ encloses the same objects as W . Finally,937

w(W ′) ≤ w(Wh). ◀938

We note the following consequence of the above proof. It is used to analyze the runtime939

of the uncrossing algorithm but nowhere else.940

▶ Corollary 21. WDP has no interior crossing.941

Proof. If WDP had an interior crossing point, then the uncrossing algorithm (Algorithm 8)942

would produce a walk WALG with a vertex at that crossing point, which is not a vertex of an943

input polygon. The homotopic shortening step of Part 2 above would then strictly decrease944

the weight, and thus the cost, of the solution, a contradiction to the optimality of WALG. ◀945

Finally we restate and prove Lemma 15. Recall the concepts of an open walk W0, its946

closure W 0 and cost c(W0) from Definitions 17 and 18.947

▶ Lemma 15. (A) Let W be a weakly simple polygon with ℓ free-space edges, going through948

vertex p, and let B be the objects of R enclosed by W. Then, for all t ≥ ℓ, C(p, t, B) ≤ c(W).949

(B) Let W0 be an open walk with ℓ free-space edges from p to q such that the polygon950

W = W0 +qp is weakly simple and q is not a transition vertex of W. Let B be the objects of R951

whose reference points lie inside W and not on pq. Then, for all t ≥ ℓ, M(pq, t, B) ≤ c(W0).952

Proof. Let M(W) be a certificate that W is weakly simple, i.e., M(W) is an image multigraph953

in which W corresponds to a non-crossing Euler tour, see Appendix A. Via this correspondence,954

each edge of W has an interior face of M(W) to its left, which provides a partition of the955

edges of W into faces of M(W). We use the cyclic order of edges around faces in the proof.956

The reader may find it helpful to refer to Figure 3.957

As in the proof of Lemma 6, we go through each case of the dynamic program recursion.958

The difference is that in Lemma 6 we analyze, in terms of winding numbers, the cost of959

any polygon constructed by the dynamic program (potentially not weakly simple), whereas960

here we will deconstruct any weakly simple polygon into smaller pieces as defined by the961

appropriate recursion formula, and winding numbers do not come into play.962

We prove claims (A) and (B) simultaneously by induction on ℓ. For part (A), see Figure 11.963

qp p pA.2A.1 f
f

e

W1 W2

W0

F

Figure 11 Cases for statement (A) of Lemma 15964

In the base case, ℓ = 0, polygon W degenerates to a single point, so only case (A)965

applies. For objects with interior, W cannot enclose any objects, so B = ∅. By Equation (2),966

C(p, t, B) = 0 ≤ c(W).967

For part (A), the case B = ∅ was just dealt with, and for B ̸= ∅ we distinguish two cases968

depending whether p is a transition vertex in W . Let f = pq be the edge of W that follows p.969

Finding a Shortest Curve that Separates Few Objects from Many 42:27

B.1 B.2 qp

∆

r

qp
F

e

f
f

W1

W1

W2

F FF
e

Figure 12 Cases for statement (B) of Lemma 15988

Case A.1. p is not a transition vertex. Let W0 be the open walk from q to p formed by970

removing the edge f from W . Then W 0 = W and W0 has ℓ − 1 ≤ t − 1 free-space edges. By971

Equation (4), C(p, t, B) ≤ wpq + M(qp, t − 1, B), and by induction M(qp, t − 1, B) ≤ c(W0).972

Thus C(p, t, B) ≤ wpq + c(W0) = c(W), where the last equality comes from the definition of973

the cost of the open walk W0.974

Case A.2. p is a transition vertex. Let F be the face of M(W) incident to edge f = pq975

and let e be the edge of W that precedes f around F . Suppose edge e enters vertex r of W ;976

then vertices r and p are coincident. Cut W into two polygons, where W1 traverses W from977

p to r and W2 traverses W from r to p. Observe that W1 and W2 are both weakly simple,978

and that no point is interior to both. For i = 1, 2, let ℓ1 be the number of edges of Wi. Then979

ℓi > 0 and ℓ1 + ℓ2 = ℓ. Let Bi = {P ∈ O | rP lies inside Wi}. Then B = B1 ⊔ B2.980

Suppose that neither B1 nor B2 is empty. Since t = ℓ1 + (t − ℓ1), Equation (5) yields981

C(p, t, B) ≤ C(p, ℓ1, B1) + C(p, t − ℓ1, B2). By induction, C(p, ℓ1, B1) ≤ c(W1) and C(p, t −982

ℓ1, B2) ≤ c(W2). Thus C(p, t, B) ≤ c(W1)+c(W2) = c(W), where the last equality is because983

W1 and W2 partition the edges and the interior of W .984

On the other hand, if some Bi, say B2, is empty, then B1 = B. By induction, C(p, t, B) ≤985

c(W1) since W1 has ℓ1 < t edges and contains B. Thus C(p, t, B) ≤ c(W1) ≤ c(W), where986

the last inequality is because W1’s edges and interior are contained in those of W .987

For part (B), we distinguish two cases depending whether the interior face F of M(W)989

incident to edge f = qp of W is a corridor or a chamber, see Figure 12. Note that B = ∅ is990

allowed.991

Case B.1. F is a corridor. Suppose q has incoming edge e and outgoing edge f . By992

assumption, q is not a transition vertex. Thus e is incident to face F , and forms the other993

side of the corridor. Since e is a free-space edge, so is f . By Equation (6), M(pq, t, B) ≤994

C(p, t − 1, B) + wpq. Let W1 be the polygon formed by deleting edges e and f from W .995

Then W1 is a weakly simple polygon of ℓ − 1 free-space edges that encloses B. By induction,996

C(q, t − 1, B) ≤ c(W1). Thus M(pq, t, B) ≤ c(W1) + wpq = c(W0), where the last equality is997

by definition of the cost of the open walk W0.998

Case B.2. F is a chamber. Take a triangulation of F (which exists because a chamber is999

an almost-simple polygon) and consider the triangle incident to edge f = pq. The triangle1000

lies inside face F . Let v be the vertex of M(W) that forms the third corner of the triangle.1001

Vertex v may correspond to more than one polygon vertex, but we choose the “right” one as1002

SoCG (submit ted)

42:28 Finding a Shortest Curve that Separates Few Objects from Many

follows. Let e be the edge of face F incoming to v. In W , suppose edge e enters vertex r.1003

Name the triangle ∆ = pqr.1004

Break W into two open walks W1 from q to r and W2 from r to p. Observe that W 1 and1005

W 2 are weakly simple polygons and that r is not a transition vertex of W 1. For i = 1, 2, let1006

ℓi be the number of edges of Wi. Then ℓi > 0 and ℓ1 + ℓ2 = ℓ. Let B1 be the set of polygons1007

P ∈ R with rP in W 1 but not on qr, and let B2 be the set of polygons P ∈ R with rP in1008

W 2 but not on rp. These sets may be empty. Let R(∆) be the set of polygons P ∈ R with1009

rP inside ∆ where we regard ∆ as being closed on edges pr and qr and open on edge pq.1010

Then B = B1 ⊔ B2 ⊔ R(∆).1011

By Equation (7), M(pq, t, B) ≤ M(pr, ℓ1, B1) + M(rq, t − ℓ1, B2) + π(∆). By induction,1012

M(pr, ℓ1, B1) ≤ c(W1) and M(rq, t − ℓ1, B2) ≤ c(W2). Thus M(pq, t, B) ≤ c(W1) + c(W2) +1013

π(∆) = c(W0) where the last equality is because we have partitioned the edges of W0 and1014

the interior of W . ◀1015

F Details for Section 7: Reducing the Runtime1016

F.1 Setting up a system of equations1017

Think of the recursions (2)–(7) when t is so large that it does not impose any constraint on1018

the solution. Formally, we can define C(p, B) := C(p, 6n, B) and M(pq, B) := M(pq, 6n, B),1019

where the right-hand sides of these equalities are the quantities from Section 4. Then t can1020

be eliminated from the recursions (2)–(7), resulting in a system of equations between the1021

quantities C(p, B) and M(pq, B), which express a mutual dependence between them:1022

C(p, ∅) = 0 (13)1023

C(p, B) = min{C1(p, B), C2(p, B)} for B ̸= ∅, where (14)1024

C1(p, B) = min
{

wpq + M(qp, B)
∣∣ pq is a free space edge

}
(15)1025

C2(p, B) = min
{

C(p, B′) + C(p, B′′)
∣∣ B = B′ ⊔ B′′; B′, B′′ ̸= ∅

}
(16)1026

M(pq, B) = min{M1(pq, B), M2(pq, B)}, where (17)1027

M1(pq, B) =
{

wpq + C(q, B), if pq is a free space edge
∞, otherwise

(18)1028

M2(pq, B) = min
{

M(pr, B′) + M(rq, B′′) + π(∆)
∣∣ (19)1029

prq = ∆ is a counterclockwise triangle;1030

B = B′ ⊔ B′′ ⊔ {P ∈ R | rP ∈ ∆}
}

1031

As in Equation (8), we define the solution to the whole problem as1032

cDP := min{ C(p, R) | p is a vertex }. (20)1033

By Lemma 13 and by the definition of C(p, B) and M(pq, B), the value of cDP resulting1034

from equation (20) is the same as the one resulting from equation (8).1035

Observe that, for the recursions (2)–(7), the absence of a cyclic dependence between1036

the quantities C(p, t, B) and M(pq, t, B) is guaranteed by the second parameter t, which is1037

always smaller on the right-hand side than on the left side. For equations (13)–(19), on the1038

other hand, we need to argue differently. In terms of the parameter to represent the set of1039

required objects, the parameter B, B′, or B′′ on the right-hand side is always a subset of1040

the parameter B on the left-hand side. Whenever it is a strict subset, the corresponding1041

equation cannot be part of a cyclic dependence. The recursion is more delicate when the1042

Finding a Shortest Curve that Separates Few Objects from Many 42:29

same set B appears on the right-hand side. To separate these cases, we split M2 into three1043

parts M3, M4 and M5 consisting of those compositions where B′ = B, where B′′ = B, and1044

where both B′ and B′′ are strict subsets of B. Thus, equation (19) becomes:1045

M2(pq, B) = min{M3(pq, B), M4(pq, B), M5(pq, B)}, where (21)1046

M3(pq, B) = min
{

M(pr, B) + M(rq, ∅) + π(∆)
∣∣

∆ = prq is a counterclockwise triangle, R(∆) = ∅
} (22)1047

M4(pq, B) = min
{

M(pr, ∅) + M(rq, B) + π(∆)
∣∣

∆ = prq is a counterclockwise triangle, R(∆) = ∅
} (23)1048

M5(pq, B) = min
{

M(pr, B′) + M(rq, B′′) + π(∆)
∣∣

∆ = prq is a counterclockwise triangle;
B = B′ ⊔ B′′ ⊔ R(∆); B′, B′′ ⊊ B

}
(24)1049

For B = ∅, the equations (22) and (23) coincide, but this redundancy is no problem.1050

Equations (16) and (24), defining the quantities C2(p, B) and M5(pq, B), have on the1051

right-hand side quantities whose parameter, B′ or B′′, is a strict subset of B. Thus they1052

cannot be involved in cyclic dependencies. On the other hand, equations (15), (18), (22), and1053

(23), defining the quantities C1(p, B), M1(pq, B), M3(pq, B), and M4(pq, B), respectively,1054

have on the right-hand side quantities whose parameter B is the same as the one on the1055

left-hand side. By inspecting these equations, one can see that the left-hand quantity that is1056

computed is always strictly bigger than the ingredients on the right-hand side, and hence1057

the recurrences behave like a superior context-free grammar which uses strictly superior1058

functions; see Knuth [18, Section 5]. Knuth proved that, for such a grammar, the minimum1059

value of a string (representing a composition of functions) derived from each terminal symbol1060

exists, is unique, and can be computed efficiently. In our problem, this translates to the fact1061

that all the values C(p, B) and M(pq, B), where p and q are vertices and B is any subset of1062

the input set of required polygons R, exist, are unique, and can be computed efficiently.1063

Knuth’s setup does not directly apply to our problem as far as uniqueness is concerned,1064

because our functions are not strictly superior functions. This is compensated by having1065

positive additive terms in the recursion. Our uniqueness proof below (Lemma 22) is a1066

straightforward adaptation of Knuth’s proof to our situation.1067

We show that the system of O(n22k) equations (13)–(18) and (21)–(24) has a unique1068

solution S = (C, M). (We do not consider the auxiliary quantities C1, C2, M1, M2, M3, M4, M51069

as part of the solution S, because they can be directly expressed in terms of C and M).1070

This, together with the fact that the solution of equations (2)–(7) is a solution to the system,1071

implies that the solution S is the same as the one coming from equations (2)–(7).1072

▶ Lemma 22. The system of equations (13)–(18) and (21)–(24) has a unique solution1073

S = (C, M) with C(p, B) ∈ R≥0 ∪ {∞} and M(pq, B) ∈ R>0 ∪ {∞}.1074

Proof. The existence of a solution follows by substituting the limiting solution of the equations1075

(2)–(7) for large enough t. All quantities M(pq, t, B) in those equations are positive because1076

the quantity M1 (see equation (6)) is at least equal to the weight wpq of the mouth, which is1077

positive, and the other term M2 (see equation (7)) involves the addition of two quantities1078

M(pr, t1, B1) and M(rq, t2, B2) whose second parameter, t1 or t2, is smaller than t.1079

We now prove uniqueness. The crucial fact that allows us to exclude a cyclic dependency1080

is that in the equations (13)–(18) and (21)–(24), the quantities M and C on the right-hand1081

side that could cause such a cyclic dependency (because they use the same set parameter B)1082

must be strictly smaller than the quantities on the left side that are defined through them.1083

SoCG (submit ted)

42:30 Finding a Shortest Curve that Separates Few Objects from Many

Assume, for contradiction, that there are two different solutions S = (C, M) and S′ =1084

(C ′, M ′). Among the quantities where the two solutions differ, select the ones for which1085

the parameter B is minimal, and among those, consider a pair with the smallest value1086

T = min{C(p, B), C ′(p, B)} or T = min{M(pq, B), M ′(pq, B)}.1087

Let us first deal with the case that the smallest difference occurs for C(p, B) ̸= C ′(p, B).1088

Assume without loss of generality that T = C(p, B) < C ′(p, B). By the minimality of B, we1089

have that C(p, B′) = C ′(p, B′) and C(p, B′′) = C ′(p, B′′), for any strict subsets B′ and B′′1090

of B. Hence, equation (16) gives us that C2(p, B) = C ′2(p, B) and thus T = C1(p, B) <1091

C ′1(p, B). By equation (15), we have that C1(p, B) is equal to wpq + M(qp, B) for some1092

free-space edge pq. Since the weight wpq is positive, M(qp, B) is strictly smaller than T , and1093

hence, by the minimality of T , we have M(qp, B) = M ′(qp, B). It follows that1094

C1(p, B) = wpq + M(qp, B) = wpq + M ′(qp, B) ≥ C ′1(p, B),1095

a contradiction.1096

The same argument works for the case in which T = min{M(pq, B), M ′(pq, B)}. Here it1097

is necessary to use the fact that all values M(pq, B) are positive. (Without this assumption,1098

the identically zero solution M(pq, B) ≡ 0 might be an alternative solution, for example.) ◀1099

F.2 The algorithm1100

We now describe the algorithm to compute the values C(p, B) and M(pq, B) for all vertices1101

p and q and all the subsets B ⊆ R of required polygons. The algorithm has an outer loop1102

that goes through all subsets B ⊆ R in order of increasing size |B|, or in any other order1103

that is compatible with set inclusion.1104

When the algorithm needs to compute the values M(pq, B) and C(p, B) for a certain B,1105

the values M(rs, B′) and C(r, B′) have already been computed for all strict subsets B′ ⊂ B,1106

all vertex pairs rs and all vertices r. This allows us to compute the values C2(p, B) for all1107

vertices p, via equation (16), and M5(pq, B) for all vertex pairs pq, via equation (24).1108

The algorithm maintains a set F1 of vertices p for which the value C(p, B) has been1109

determined, and a set F2 of vertex pairs pq for which the value M(pq, B) has been determined.1110

Initially, F1 and F2 are empty. The algorithm also maintains tentative values M(pq, B)1111

and C(p, B), which are upper bounds on their final values. When they become final,1112

the corresponding item pq or p is added to F2 or F1. Actually, what the algorithm1113

maintains are tentative values for M1(pq, B), M3(pq, B), M4(pq, B) and C1(p, B), which1114

are initialized to ∞. The values of C(pq, B) and M(pq, B) are kept up-to-date via C(p, B) =1115

min{C1(p, B), C2(p, B)} and M(pq, B) = min{M1(pq, B), M3(pq, B), M4(pq, B), M5(pq, B)}.1116

The core of the algorithm consists in making a tentative value final and adding the1117

corresponding vertex or vertex pair to F1 or F2. The strategy to do so is akin to the strategy1118

of Dijkstra’s algorithm for computing shortest paths: We pick the smallest tentative value1119

and make it final. Then we look at all equations where this value appears on the right-hand1120

side, and update the left-hand side. The pseudo-code in Algorithm 1 implements this in a1121

straightforward way. (The only challenge is the confusion caused by the necessary renaming1122

of the vertices p, q, r, s.)1123

Correctness is established in the same way as for Dijkstra’s algorithm. The smallest1125

tentative value D that is determined at the beginning of each iteration of the main loop is1126

simultaneously a lower bound on all tentative values and an upper bound on all permanent1127

values. The algorithm ensures that every tentative value always fulfills its corresponding1128

equation (14) or (17). Thus, whenever a value is finalized, the equation is fulfilled. The1129

Finding a Shortest Curve that Separates Few Objects from Many 42:31

Algorithm 1 Computation of the values M(pq, B) and C(p, B) for fixed B1124

Input : Set R of required polygons, set O of optional polygons, set B ⊆ R

Output : Values M(pq, B) for every pair of vertices pq and C(p, B) for every vertex p

// For every strict subset B′ ⊂ B, the values M(rs, B′) for every pair of vertices rs

and C(r, B′) for every vertex r have already been computed.
for each vertex p do

Set C1(p, B) := ∞; compute C2(p, B) by equation (16); set C(p, B) := C2(p, B)
for each vertex pair pq do

Set M1(pq, B) := M3(pq, B) := M4(pq, B) := ∞, and compute M5(pq, B) by
equation (24); set M(pq, B) := M5(pq, B) according to (17) and (21)

Set F1 := F2 := ∅ // F1 contains the vertices p for which C(p, B) has been computed,
and F2 the vertex pairs pq for which M(pq, B) has been computed.

while there are vertices not in F1 or vertex pairs not in F2 do
Find the smallest value D among the tentative values C(p, B) with p /∈ F1 and
the tentative values M(pq, B) with pq /∈ F2; ties are broken arbitrarily.

if D is C(p, B) then
Set F1 := F1 ∪ {p} // make C(p, B) permanent
for each free-space edge sp incident to p do

Set M1(sp, B) := min{M1(sp, B), wsp + C(p, B)} // by equation (18)
Update M(sp, B) = min{M1(sp, B), M3(sp, B), M4(sp, B), M5(sp, B)}

if D is M(pq, B) then
Set F2 := F2 ∪ {pq} // make M(pq, B) permanent
if pq is a free-space edge then

Set C1(q, B) := min{C1(q, B), wqp + M(pq, B)} // by equation (15)
Update C(q, B) := min{C1(q, B), C2(q, B)}

for each counterclockwise triangle ∆ = psq with R(∆) = ∅ do
Set M3(ps, B) := min{M3(ps, B), M(pq, B) + M(qs, ∅) + π(∆)} // by (22)
Update M(ps, B) := min{M1(ps, B), M3(ps, B), M4(ps, B), M5(ps, B)};
Set M4(sq, B) := min{M4(sq, B), M(sp, ∅) + M(pq, B) + π(∆)} // by (23)
Update M(sq, B) := min{M1(sq, B), M3(sq, B), M4(sq, B), M5(sq, B)}

values on the right-hand side on which it depends do not change any more because they are1130

smaller than D, and hence they have already been finalized.1131

Thus, when the algorithm terminates, the computed values C(p, B) and M(pq, B) fulfill1132

(14) and (17). The correct values C(p, 6n, B) and M(pq, 6n, B) also fulfill these equations,1133

and by Lemma 22 the solution of (14) and (17) is unique, and hence the computed values1134

agree with the correct values.1135

F.3 Runtime analysis1136

Clearly, there are O(n22k) values M(pq, B) and C(p, B), and this defines the space complexity.1137

We first analyze the computations of the quantities C2(p, B) and M5(pq, B), which are1138

computed directly by equations (16) and (24), respectively. The dominating term for the1139

runtime comes from the computation of the O(n22k) quantities M5(pq, B). For each of them,1140

we have to run through all points r and check each counterclockwise triangle ∆ = prq: We1141

SoCG (submit ted)

42:32 Finding a Shortest Curve that Separates Few Objects from Many

have to find the set1142

R(∆) := {P ∈ R | rP ∈ ∆}, (25)1143

and compute the sum π(∆) of the penalties of the polygons in O whose reference point1144

is in ∆ and, in case R(∆) ⊆ B, run through all partitions of B − R(∆) into two sets B′1145

and B′′. We describe below a preprocessing step that allows us to obtain the quantity π(∆)1146

in constant time. The set R(∆) can be trivially computed in O(k) time. Thus the total1147

running time for computing the quantities M5(pq, B) is1148

n2
∑

B⊆R

(
n ×

(
O(k) + 2|B|

))
= O(n32kk) + O(n3)

∑
B⊆R

2|B| = O(n33k). (26)1149

Let us now look at the running time of the core of the algorithm, in which, repeatedly,1150

a tentative value is made final. Consider a fixed subset B ⊆ R (there are 2k such sets).1151

We need to maintain a priority queue for the O(n2) tentative values for the quantities1152

C(p, B) and M(pq, B). Each of the O(n3) expressions on the right-hand side of any of the1153

equations (15), (16), (18), and (22)–(24) is evaluated exactly once (when the corresponding1154

quantity becomes final) or twice (in case B = ∅, for the expression M(pq, ∅) + M(pq, ∅)). The1155

evaluation potentially triggers an update to the priority queue, which takes O(1) amortized1156

time with Fibonacci heaps [11, 16]. We need to extract the minimum O(n2) times, at an1157

amortized cost of O(log n) per operation. The overall runtime for the heap operations is then1158

O(n2 log n + n3) = O(n3). In summary, the overall runtime for this part of the algorithm is1159

2k · O(n3), which is dominated by (26).1160

Thus, up to showing how π(∆) can be determined in constant time, we have established1161

Theorem 3. ◀1162

F.4 Preprocessing for quickly determining the penalty of a triangle1163

One can set up a table with O(n2) entries from which, for any triangle ∆ whose vertices are1164

vertices of the input polygons, the sum of the penalties of the polygons whose reference point1165

is in ∆ can be obtained in constant time. This is a standard technique in this area, see for1166

example [14, Section 2]. We give some details.1167

A plank is a region bounded by a line segment pq and two vertical upward rays or two1168

vertical downward rays. We consider the right boundary ray and the open line segment pq to1169

be part of the plank, but not the left boundary ray including the point p. Figure 13 shows1170

some downward planks (“bottomless trapezoids”, so-to-speak). Upward planks (or “topless1171

trapezoids”) are used in Section 8.1172

We store for each vertex pair pq, the sum of the penalties in the downward plank below1173

the segment pq. From this, the same data π(∆) can then be computed for any triangle1174

∆ = abc in constant time by addition and subtraction from three planks, see Figure 13 for1175

an example. The table can be computed in O(n2) time and O(n2) space [14, Theorem 2.1].1176

Even a straightforward O(n3) preprocessing would be acceptable for us, as the running time1177

is dominated by the cost of other parts of the algorithm.1178

Reference points of objects with infinite penalties are handled separately, in the same1181

way: Instead of storing the sum of their penalties, they are merely counted, to determine1182

whether the triangle in question contains at least one of them or none. Finally, recall that1183

∆ = prq was defined to be open on segment pq. To handle this, we also calculate the sum the1184

penalties of the reference points on each segment pq (as well as the number of infinite-penalty1185

points). These have then to be added or subtracted as appropriate.1186

Finding a Shortest Curve that Separates Few Objects from Many 42:33

a

b

c = + −
a

b

a
c

b

c

p

q

Figure 13 Left: a plank under the segment pq. Right: A triangle area abc is obtained by addition
and subtraction of planks.

1179

1180

G Details for Section 8: Adapting the Correctness Proof for the1187

Inverted Problem1188

To apply the arguments from Section 6, we have to extend the notion of winding number1189

to regions W ↕ whose boundary includes an upward and a downward vertical ray. We pick1190

an anchor point X− to the left of all object vertices. We define wind(W ↕, X−) = 1, and1191

define the winding number for other points relative X− by connecting them by a curve1192

to X− and counting signed intersections. It follows that wind(W ↕, x) = 0 for any point x1193

that is sufficiently far to the right. The winding number of planks must also be defined1194

appropriately: The winding number of S↓(pq) or S↑(pq) is 1 between the two rays, on the1195

“correct” side of the segment pq, and 0 otherwise.1196

When the region is finished off by adding a right halfplane, W becomes a closed clockwise1197

cycle. By the usual conventions, the interior has winding number −1 and the exterior has1198

winding number 0. The winding number that we are using has an additive offset of 1,1199

due to the stipulation that the point X− has winding number 1. Thus, according to our1200

convention, the winding number is 1 outside W and 0 inside W , which is precisely what we1201

need because the objects whose presence is checked and whose penalties are added are the1202

objects outside W .1203

The correctness proof in Lemma 15 must be adapted as follows. In the inductive step,1204

we have a solution W ↕ consisting of a finite walk W from p to q and two vertical rays. The1205

case that p = q and the walk W is trivial is handled by formula (9) for U−. Suppose that1206

p ̸= q and, w.l.o.g., p is not the leftmost point of W . Then we take the edge pr on the lower1207

convex hull of W . The formula (10) for U↓ shows that W ↕ can be reduced to smaller pieces.1208

There is another issue that we have to address, namely the partial solutions of type C1209

(“closed”) that are incident to the convex hull, such as the pieces Qa, Qd, Qf in Figure 6,1210

are properly handled. Every convex hull edge, such as the edge p6p7, appears once as a1211

mouth in the recursion. As can be checked in Figure 8, it appears always in counterclockwise1212

direction along the boundary. For example, the edge p6p7 appear in a subproblem of the form1213

M(p6p7, t, B), for appropriate parameters B and t. According to Lemma 15, this problem1214

will consider partial solutions in which p6 is not a transition vertex. However, there is no1215

such restriction on p7. Thus we assign all type-C pieces hanging off p7 to this subproblem.1216

(In the example, there is only one such piece, Qd.)1217

The general strategy is as follows. We cut the solution walk W into pieces at the convex1218

hull vertices, and assign a piece to each convex hull edge, which acts as the mouth of the1219

piece. Pieces of type C that start and end at a hull vertex pi are assigned to the hull edge1220

pi−1pi clockwise from pi. In this way, the pieces are uniquely defined, and we have ensured1221

that for each mouth pipi−1, pi−1 is never a transition vertex of the respective piece. Thus, by1222

Lemma 15, the weight of the corresponding piece is an upper bound on M(pipi−1, t, B) with1223

the appropriate parameters t and B. The remainder of the proof, regarding the coverage of1224

SoCG (submit ted)

42:34 Finding a Shortest Curve that Separates Few Objects from Many

outside the convex hull by adding halfspaces and planks, is straightforward.1225

The example of Figure 7 illustrates that the region covered by the planks need not1226

actually be the outside of the convex hull of the solution polygon: Regions 3 and 4 form an1227

indentation in the convex hull. In fact, any “x-monotone hull” of the solution can be taken.1228

H Illustration for Section 9: Splitting a Surface by a Curve1229

Figure 14 illustrates the problem of splitting off a piece of given genus from a surface, which1230

was mentioned in the conclusion, Section 9.1231

Figure 14 Any instance of Graph-Enclosure-with-Penalties with infinite penalties only,
and with parameter k, can be recast as an instance of the problem of splitting off a surface of genus
k − 1. In this example, the graph G that is an instance of Graph-Enclosure-with-Penalties
is embedded in the middle gray disk; each of the k = 3 required faces is connected by a tube (in
cyan) to the top sphere; each of the 6 optional faces, with infinite penalty, is connected by a tube (in
red) to the bottom sphere. Finally, the gray disk is extended to a sphere (not shown), to obtain a
surface S without boundary. Any weakly simple closed walk in G separating the required faces from
the optional ones corresponds to a weakly simple closed walk splitting off a surface of genus k −1 = 2,
and conversely. (The graph G is not cellularly embedded on S, but can be made so by adding edges
of large weight.) Figure inspired by [7].

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

I Point Objects1242

In this section we modify our algorithm to handle input objects that are a mix of points and1243

almost-simple polygons. The condition that polygons have disjoint interiors is replaced by1244

the condition that the interior of an object may not intersect another object. So a point1245

object is either disjoint from all polygon objects, or it lies on the boundaries of some polygon1246

objects. We subdivide polygon edges to ensure that no point object lies in the interior of a1247

polygon edge.1248

Point objects disjoint from polygons could be approximated by tiny polygons, but point1249

objects at polygon vertices cannot be dealt with so cavalierly. Instead, we show how to1250

modify our algorithm to deal directly with point objects.1251

Finding a Shortest Curve that Separates Few Objects from Many 42:35

We must clarify the output requirements in case a point object p lies on the boundary of1252

a solution W . The only reasonable way to decide the matter in this case without making1253

the problem ill-posed is to consider p to be enclosed or not at our discretion, since, by an1254

arbitrarily small perturbation of W in the vicinity of p, either outcome can be achieved. This1255

agrees with the convention used by Eades and Rappaport [13]. More precisely, we adapt the1256

notion of a feasible solution W as follows:1257

For each point object p ∈ R, we require that p lies in the interior or on the boundary1258

of W (possibly several times).1259

The penalty of an optional point object p ∈ O that lies on the boundary of W is not counted1260

towards the cost in formula (1).1261

We use a reference point rP for each object P . For a point object, the reference point1262

must be that point itself. A reference point lying on a mouth in a subproblem M(pq, t, B)1263

was already handled by the algorithm. What is new is the possibility that a vertex is a point1264

object, either required or optional.1265

We make two changes to the dynamic programming algorithm:1266

1. If p ∈ R is a required point object, we add an extra possibility to equation (3) for the1267

case B = {p} as follows:1268

C(p, t, {p}) := 0 for t ≥ 0 (27)1269

2. For equation (7) we used a triangle ∆ = prq that was defined to be open on edge pq1270

and closed on edges pr and qr. We redefine ∆ to exclude its corners p, q, r, i.e., the only1271

boundary points of ∆ that are included are the interiors of edges pr and qr. This affects1272

both π(∆) and R(∆).1273

We explain the effect of these changes informally, and then outline how our proofs of1274

correctness must be modified.1275

First observe that the changes to ∆ mean that π(∆) does not count penalties of optional1276

point objects at the corners of ∆ in equation (7), which is the correct thing to do. This is1277

the only place in the equations where penalties are added.1278

Consider now a required point object p. At the top level, p lies in R, and this is passed to1279

the disjoint sets B used in the recursions. If ever p is contained in R(∆), then this is where1280

p is considered to be enclosed (and it can only be enclosed once in this way). At the bottom1281

of the recursion, rule (27) permits us to consider p as enclosed, and rule (2) permits us to1282

consider p as not enclosed. Thus, we can “catch” the object p on the boundary if we have1283

not done so already in a triangle. If the boundary goes through p several times, we can catch1284

it on one occasion and pass over it on the other occasions.1285

To make this more formal, we adapt Lemma 15 in the following way:1286

▶ Lemma 23. (A) Let W be a weakly simple polygon that goes through some vertex p and1287

consists of ℓ free-space edges. Let Bin be the objects of R that are enclosed by W , and let1288

Bpoint be the point objects of R that coincide with vertices of W . Then, for all t ≥ ℓ and for1289

all B with Bin ⊆ B ⊆ Bin ∪ Bpoint, C(p, t, B) ≤ c(W).1290

(B) Let W0 be an open walk with ℓ free-space edges from vertex p to vertex q such that the1291

polygon W = W0 + qp is weakly simple. Let Bin be the objects of R whose reference points lie1292

inside W and not on pq, and let Bpoint be the point objects of R that coincide with vertices1293

of W , excluding p.1294

In addition, assume that q is not a transition vertex of W . Then, for all t ≥ ℓ and for1295

all B with Bin ⊆ B ⊆ Bin ∪ Bpoint, M(pq, t, B) ≤ c(W0). ◀1296

SoCG (submit ted)

42:36 Finding a Shortest Curve that Separates Few Objects from Many

Note in particular that, in the statement of part (B), we have added the condition that if p1297

is a required point in R, it cannot be in B (in addition to requiring that p is not a transition1298

vertex).1299

The induction basis, treating the trivial polygons with t = 0 edges, is covered by (2)1300

and (27).1301

For the closed walks in statement (A), when p is a point object in B, we cannot apply1302

the strategy for case A.1, because it would lead to the subproblem M(qp, . . .) in which p is a1303

point object, for which the extra requirement for (B) does not hold. Thus, in this case, if p1304

is not a transition vertex anyway, we make a degenerate split as in case A.2, with an empty1305

walk W2 and B2 = {p}, and consequently W1 = W , see Figure 11. Equation 5 yields1306

C(p, t, B) ≤ C(p, t, B \ {p}) + C(p, 0, {p}) ≤ C(p, t, B \ {p}) + 0.1307

To the subproblem C(p, t, B1) with B1 = B \ {p}, case A.1 applies, since p is no longer an1308

element of B1 for this subproblem. This leads to1309

C(p, t, B1) ≤ wpq + M(qp, t − 1, B1) ≤ c(W)1310

and hence to C(p, t, B) ≤ c(W).1311

In case B.2, where we split the set B into B1 ⊔ B2 ⊔ R(∆), the splitting is clear: we1312

have to assign any point objects on W1 to B1 and any point objects on W2 to B2. If the1313

vertex r is a required point and belongs to B, we use the freedom of choice to put it in B21314

(the subproblem belonging to the mouth rp) and not in B1, ensuring that the inductive1315

hypothesis can be applied to the first subproblem M(pr, t1, B1).1316

Case B.1 does not require any changes.1317

The other part of the correctness proof is based the properties of WDP proved in Lemma 6.1318

Lemma 6(B) claims that for P ∈ R, wind(WDP, rP) = 1. But for a point object p ∈ R1319

that lies on WDP, the winding number is undefined. Thus, we have to restrict this claim to1320

required point objects that do not lie on WDP (and ditto in the claims for the subproblems1321

in the inductive proof). For a point object p ∈ R lying on WDP, we simply observe that it1322

will also lie on WALG because the uncrossing algorithm does not remove points from the1323

polygon boundary. Hence p fulfills the adapted requirements of a feasible solution.1324

J Negative Penalties, or Rewards1325

We now consider the extension of Geometric-Enclosure-with-Penalties and Graph-1326

Enclosure-with-Penalties in which we allow objects with negative penalties. In order to1327

have a balanced and general statement, we use a greater variety of types of polygons/faces:1328

there is a set R− of required polygons/faces, a set R+ of forbidden polygons/faces1329

(the notation suggests that these sets correspond to objects with penalty −∞ and +∞,1330

respectively), and a set O+ ⊔ O0 ⊔ O− of optional polygons/faces, whose penalties are1331

finite and positive for the objects in O+, zero for the objects in O0, and finite and negative1332

for the objects in O−. The goal is to find a weakly simple closed curve/walk disjoint from1333

the objects, enclosing R−, excluding R+, and minimizing the length of the curve plus the1334

penalties of the objects in O+ ∪ O0 ∪ O− that are enclosed by the curve.1335

▶ Theorem 24. We can solve these generalized problems in time O(3kn3) time and O(2kn2)1336

space, where k = min{|R−| + |O−|, |R+| + |O+|}.1337

Proof. Let us first consider the case where k = |R−| + |O−|. The idea is to try all subsets1338

of O− that can be enclosed in an optimal solution.1339

Finding a Shortest Curve that Separates Few Objects from Many 42:37

We run the dynamic program with set of required objects R := R− ∪ O− and set of1340

optional objects O := R+ ∪ O+ ∪ O0, where the objects in R+ have infinite penalties and1341

those in O+ ∪ O0 keep their original nonnegative penalties; this takes O(3|R|n3) = O(3kn3)1342

time. As part of the dynamic programming recursion, the algorithm determines C(p, B) for1343

all subsets B ⊆ R and all vertices p. We therefore have available all quantities that enter the1344

following formula for the optimum solution:1345

C∗final := min
O−

1 ⊆O−

(
min

p a vertex
C(p, R− ∪ O−1)

)
+

∑
P∈O−

1

πP

 (28)1346

This formula is justified as follows: The solutions considered for minp C(p, R− ∪ O−1) are1347

those solutions that, among the objects in R = R− ∪ O−, enclose precisely the objects of1348

R− ∪ O−1 and exclude the remaining objects of O−. In this way, we consider all solutions1349

that enclose R plus some arbitrary subset O−1 ⊆ O− of the negative-weight objects. The1350

negative weights of the objects in O−1 are explicitly added in (28) to get the correct value of1351

the objective function.1352

The time O(2|O−|n) for calculating C∗final by (28) is dominated by the runtime O(3kn3)1353

of the dynamic programming algorithm.1354

In the other case where k = |R+| + |O+|, we invoke the inverted algorithm (Section 8)1355

instead of the algorithm of Theorem 1 or 2. This swaps R+ with R− and O+ with O−. The1356

rest of the argument is identical. ◀1357

K Exponential Lower Bounds1358

We first prove a (conditional) exponential lower bound for the Graph-Enclosure-with-1359

Penalties problem. The proof consists of a simple reduction to our problem from the1360

Planar Steiner Tree problem.1361

▶ Theorem 25. Assuming the Exponential Time Hypothesis, the Graph-Enclosure-with-1362

Penalties problem cannot be solved in 2o(k) · nO(1) time, even when all the weights are 1,1363

and all penalties are ∞.1364

Proof. The proof consists of a reduction from the Planar Steiner Tree problem, whose1365

input is an edge-weighted planar graph G with n vertices and a set T of k vertices of G,1366

usually called terminals. The problem asks for a minimum-weight tree in G connecting1367

all terminals. Marx, Pilipczuk, and Pilipczuk [19, Theorem 1.2] proved that the Planar1368

Steiner Tree problem cannot be solved in 2o(k) · nO(1) time, assuming the Exponential1369

Time Hypothesis, even if the input graph is unweighted (that is, all the edge weights are 1).1370

We now describe the reduction.1371

Given an unweighted planar graph G and a set T ⊆ V (G), as the one in Figure 15(a),1377

we replace each terminal v in T with a corresponding terminal cycle Cv, whose number of1378

edges is equal to max{3, dG(v)}, where dG(v) denotes the degree of v in G; each vertex of Cv1379

is connected to a different neighbor of v, and the interior of Cv is a face, see Figure 15(b).1380

Denote by H the obtained plane graph and by γ the total number of terminal edges, i.e., edges1381

in terminal cycles. Every edge of H has weight 1. Let R be the set of faces inside terminal1382

cycles, and let O be the set of all the other faces. The faces in O have penalty ∞. This1383

completes the reduction. We now prove that G contains a tree with weight ≤ w connecting1384

the terminals in T if and only if H has a weakly simple closed walk W with weight ≤ 2w + γ1385

that has the faces in R inside (and the faces in O outside).1386

SoCG (submit ted)

42:38 Finding a Shortest Curve that Separates Few Objects from Many

(a) (b)

Figure 15 (a) An instance of the Planar Steiner Tree problem. Terminals are large empty
disks. Edges of a tree S connecting the terminals are thick and yellow. (b) The corresponding
instance of the Graph-Enclosure-with-Penalties problem. Faces in R are yellow/hatched, faces
in O (including the unbounded face) are gray. The weakly simple closed walk W constructed from
S is represented by a red curve.

1372

1373

1374

1375

1376

For the forward implication, given any tree S in G with weight at most w connecting1387

the terminals in T , one can construct the desired walk as follows. The walk traverses1388

each edge in S twice (once in each direction), and traverses each terminal cycle once, in1389

counter-clockwise direction.1390

For the backward implication, let W be a weakly simple closed walk in H with weight1391

at most 2w + γ that has the faces in R inside and the faces in O outside. W contains each1392

terminal edge at least once, because W must separate R from O. Moreover, W uses each1393

non-terminal edge of H an even number of times, as otherwise one of its incident faces,1394

both of which have penalty ∞, would be inside W . Since W is connected, it contains at1395

least twice each edge of a connected subgraph SH spanning the terminal cycles. The simple1396

graph SG in G corresponding to SH connects all the terminals. The weight of SG is at most1397

((2w + γ) − γ))/2 = w, which it is obtained from the weight 2w + γ of W by subtracting1398

the total weight of the terminal edges, which is at least γ, and by then dividing by two as1399

each edge of SG is used at least twice in W . We conclude the proof by observing that SG1400

contains a tree that spans all terminals and has weight at most w. ◀1401

We now present a reduction similar to, and slightly more technical than, the one of1402

Theorem 25 for the geometric version of our problem.1403

▶ Theorem 26. Assuming the Exponential Time Hypothesis, the Geometric-Enclosure-1404

with-Penalties problem cannot be solved in 2o(k) ·nO(1) time, even when all penalties are ∞.1405

Proof. Consider an instance (G, T) of the Planar Steiner Tree problem in which G1406

has n vertices and edges with weight 1. We start by constructing the O(n)-vertex planar1407

graph H as in the proof of Theorem 25. We now construct a sequence of representations1408

of H, and eventually get the desired instance of Geometric-Enclosure-with-Penalties.1409

First, we construct a visibility representation Γ of H on an O(n) × O(n) grid [22],1410

see Figure 16(a). In Γ, vertices are represented by disjoint horizontal segments lying on1411

grid rows and edges are represented by disjoint vertical segments lying on grid columns.1412

Each vertical segment representing an edge has its endpoints on the horizontal segments1413

representing the end-vertices of the edge and otherwise does not cross any horizontal segment1414

representing a vertex. We scale all the coordinates in the drawing up by a factor of 5.1415

Finding a Shortest Curve that Separates Few Objects from Many 42:39

1416

1417 (a) (b)

Figure 16 (a) A visibility representation Γ of the graph H from Figure 15(b). We stress that the
relative interior of a vertical segment representing an edge of H does not intersect any horizontal
segment representing a vertex of H; vertical lines may consist of several vertical segments. (b) A
poly-line drawing Γ′ of H constructed from Γ. Both representations lie on an O(n) × O(n) grid.

1418

1419

1420

1421

Second, we turn Γ into a poly-line drawing Γ′; this can be done by modifying Γ only1422

“close” to its vertices, see [5, 12] and Figure 16(b). Specifically, each horizontal segment sv1423

representing a vertex v is replaced by a grid point pv on sv. Also, we shorten each vertical1424

segment representing an edge uv by one unit at the top and at the bottom and connect the1425

endpoints to pu and pv.1426

Figure 17 The left part of the figure shows an edge e in the drawing Γ′. The right part shows an
enlarged central section of e in which the drawing of e is modified in order to transform Γ′ into a
poly-line drawing Γ′′ of H in which e has length between n2 and n2 + 1. The edge e is only modified
in its portion σe inside the two gray grid cells.

1427

1428

1429

1430

Third, we turn Γ′ into a poly-line drawing Γ′′ in which all edges have “almost” the same1431

length. Intuitively, we are going to modify the representation of each edge by “orthogonally1432

zig-zagging” in an intermediate part of the edge, so that the edge has length between n2 and1433

n2 + 1, see Figure 17. As a consequence of the scaling of Γ, the representation of each edge e1434

in Γ′ contains a vertical segment σe between two grid points (i, j) and (i, j + 1) such that Γ′1435

has no intersection with the two grid cells incident to σe, other than at σe itself. Let ℓe be1436

the length of the polygonal chain representing e in Γ′ and let ae = n2 − ⌊ℓe⌋ be the increase1437

of length that we want for e. Then we can replace σe by the orthogonal line passing through1438

points (i, j), (i+ 1
2 , j), (i+ 1

2 , j + 1
ae

), (i− 1
2 , j + 1

ae
), (i− 1

2 , j + 2
ae

), (i+ 1
2 , j + 2

ae
), . . . , (i, j +1).1439

The vertical segments of this line have total length 1, while the horizontal segments have1440

total length ae (two of them have length 1
2 , while the other ae − 1 have length 1). Hence,1441

the length of e has increased by n2 − ⌊ℓe⌋ and it is now between n2 and n2 + 1.1442

In order to get the instance of Geometric-Enclosure-with-Penalties, we interpret1443

SoCG (submit ted)

42:40 Finding a Shortest Curve that Separates Few Objects from Many

the faces of Γ′′ as polygons: those inside the terminal cycles are in R and those corresponding1444

to faces of G are in O and have penalty ∞. Since all the edges have approximately the same1445

length, between n2 and n2 + 1, the same proof as in Theorem 25 shows that G contains a tree1446

with weight ≤ w connecting the terminals in T if and only if there exists a weakly simple1447

closed walk W with weight ≤ (2w + γ) · (n2 + 1) in the instance of Geometric-Enclosure-1448

with-Penalties. Indeed, the “only if” part is easy, and the proof for the “if” part uses the1449

following argument. From the weakly simple closed walk W , one can extract a simple graph SG1450

in G spanning all the terminals whose weight is at most (2w+γ)·(n2+1)−γ·n2

2n2 = w + (2w+γ)
2n2 .1451

Since 2w + γ is in O(n), we have that (2w+γ)
2n2 is in o(1), hence SG has at most w edges1452

provided n is large enough, which we can obviously assume. The described reduction takes1453

polynomial time, given that all the vertex coordinates in Γ′′ are rational numbers whose1454

numerators and denominators are polynomially bounded. ◀1455

The above proof essentially contains a polynomial, parameter-preserving reduction from1456

Graph-Enclosure-with-Penalties to Geometric-Enclosure-with-Penalties. In1457

passing, we mention that there is also a polynomial-time, parameter-preserving reduction in1458

the other direction: Given an instance of Geometric-Enclosure-with-Penalties, we1459

know that the output will consist of free-space edges, so one can compute the graph that is1460

the overlay of all free-space edges (equivalently, of the visibility graph of the input vertices),1461

assign each subdivided edge a weight that is its Euclidean length, and assign penalty zero to1462

each face of this arrangement that does not come from an input polygon. This results in an1463

equivalent instance of Graph-Enclosure-with-Penalties.1464

L Weakly Simple Immersed Polygons1465

We can define the precise class of polygons over which the dynamic program optimizes. They1466

are more general than the weakly simple polygons that we want as a solution, because they1467

can self-cross, but they are not arbitrary polygons.1468

It turns out that M(pq, t, B) and C(p, t, B) is the minimum cost (with the extended1469

meaning of Definition 5) of a weakly simple immersed polygon that satisfies appropriately1470

modified constraints that correspond to the intended constraints regarding the number1471

of edges, the set B of objects whose reference points are enclosed, and the mouth pq or1472

startpoint p, respectively.1473

As in Appendix A and Appendix C.2, we describe such a polygon as a sequence of1474

vertices forming its boundary cycle, in the form P = (p1, p2, . . . , pn). The polygon runs1475

counterclockwise around its “enclosed region”, with the interior to its left.1476

Weakly simple immersed polygons (WSImP). A weakly simple immersed polygon1477

(WSImP) is obtained by gluing together triangles and digons in a tree-like fashion.1478

There are two base cases:1479

a counterclockwise nondegenerate triangle (p, q, r)1480

a digon (p, q)1481

The two ways of inductively combining two WSImPs into a larger WSImP are the same1482

combinations that we introduced in Appendix C.2 for arbitrary polygons:1483

Two WSImPs can be glued together along a common edge: If P1 = (p, q, q2, . . . , qn) and1484

P2 = (q, p, p2, . . . , pm) both use the edge pq, but in opposite directions, then we can form1485

the WSImP P = (q, q2, . . . , qn, p, p2, . . . , pm). (This is the same as gluing together two1486

polygons in the plane along a common edge if they lie on different sides of that edge,1487

except that we do not care whether they overlap.)1488

Finding a Shortest Curve that Separates Few Objects from Many 42:41

Two WSImPs P1 = (p, q1, q2, . . . , qn) and P2 = (p, q1, q2, . . . , qn) can be glued together at1489

a shared vertex p, forming a new WSImP P = (p, q1, q2, . . . , qn, p, p1, p2, . . . , pm). (The1490

vertex p becomes a transition vertex.)1491

By construction, our dynamic program computes a WSImP W that has the correct1492

winding number for all objects in R. Since WSImPs can be triangulated, the same proof1493

as that of Lemma 15 shows that the cost of W is optimal. More precisely, M(pq, t, B) and1494

C(p, t, B) is the minimum cost of a weakly simple immersed polygon W under the following1495

constraints:1496

1. For M(pq, t, B), the walk connects the endpoints p and q and is closed by the mouth qp;1497

for C(p, t, B), it goes through the startpoint p.1498

2. The number of free-space edges is at most t, not counting the mouth in case of M(pq, t, B).1499

3. For each object P ∈ B, wind(W, rP) = 1, and for each object P ∈ R\B, wind(W, rP) = 0.1500

The cost is interpreted with the extended meaning of Definition 5, and the weight wpq is1501

subtracted in case of M(pq, t, B).1502

If we restrict the base case to triangles and only allow gluings along edges, we arrive at1503

the subclass of (simple) immersed polygons (SImPs). Here, the construction defines a1504

simply connected surface, which is obtained by starting with the triangles and performing1505

the gluing as an identification of common points. The boundary walk of a SImP is known as1506

a self-overlapping polygon, see for example Evans and Wenk [15] for a recent discussion.1507

The boundary walks of WSImPs are related to self-overlapping polygons in the same way as1508

weakly simple polygons are related to simple polygons.1509

Figure 18 Milnor’s doodle. The hatching indicates one of two symmetric ways of viewing this
self-overlapping polygon as the boundary of an immersed surface.

1510

1511

The relation between a WSImP and its boundary walk is delicate, just as for self-1512

overlapping polygons: It is not the case that the SImP as a boundary determines this surface1513

uniquely. Figure 18 shows the simplest counterexample, which is known under the name1514

Milnor’s doodle. By construction, a SImP comes with a triangulation, but the triangulation1515

is obviously not unique. Shor and Van Wyk [20] define a SImP as an equivalence class of1516

triangulations of a self-overlapping polygon, and they give an algorithm for counting the1517

number of SImPs for a given self-overlapping polygon [20, Section 6].1518

Thus, to specify a WSImP, the boundary walk is not sufficient: We would have to specify1519

the sequence of gluings describing how the WSImP was built. For our purposes, however, the1520

precise SImP or WSImP is irrelevant, and the boundary walk is all we need: By Lemma 19,1521

we can find out how often a point of the plane is covered by P by calculating the winding1522

number.1523

SoCG (submit ted)

42:42 Finding a Shortest Curve that Separates Few Objects from Many

Table of Contents

1 Introduction 1
1.1 Related work . 4

2 Preliminaries 5
2.1 Weakly simple polygons . 5
2.2 Winding number and winding parity . 5

3 Our Common Framework: Enclosure-with-Penalties 6

4 Dynamic Programming Algorithm 6
4.1 Dynamic programming recursion . 7
4.2 Extracting the solution . 8

5 Uncrossing Algorithm and Final Output WALG 9

6 Correctness Proof 11

7 Reducing the Runtime 11

8 The Inverted Problem 12
8.1 The dynamic programming recursion . 13

9 Conclusion 14

– References 15

A Details for Section 2: Weakly Simple Polygons or Walks 17

B Details for Section 3: Common Framework 20

C Details for Section 4: Dynamic Programming Algorithm 20
C.1 Runtime of the dynamic programming algorithm 20
C.2 Details for Section 4.2: Extracting the solution 21

D Details for Section 5: Uncrossing Algorithm 23

E Details for Section 6: Correctness Proof 25

F Details for Section 7: Reducing the Runtime 28
F.1 Setting up a system of equations . 28
F.2 The algorithm . 30
F.3 Runtime analysis . 31
F.4 Preprocessing for quickly determining the penalty of a triangle 32

G Details for Section 8: Adapting the Correctness Proof for the Inverted
Problem 33

H Illustration for Section 9: Splitting a Surface by a Curve 34

I Point Objects 34

J Negative Penalties, or Rewards 36

K Exponential Lower Bounds 37

L Weakly Simple Immersed Polygons 40

	1 Introduction
	1.1 Related work

	2 Preliminaries
	2.1 Weakly simple polygons
	2.2 Winding number and winding parity

	3 Our Common Framework: Enclosure-with-Penalties
	4 Dynamic Programming Algorithm
	4.1 Dynamic programming recursion
	4.2 Extracting the solution

	5 Uncrossing Algorithm and Final Output W(ALG)
	6 Correctness Proof
	7 Reducing the Runtime
	8 The Inverted Problem
	8.1 The dynamic programming recursion

	9 Conclusion
	– References
	A Details for Section 2: Weakly Simple Polygons or Walks
	B Details for Section 3: Common Framework
	C Details for Section 4: Dynamic Programming Algorithm
	C.1 Runtime of the dynamic programming algorithm
	C.2 Details for Section 4.2: Extracting the solution

	D Details for Section 5: Uncrossing Algorithm
	E Details for Section 6: Correctness Proof
	F Details for Section 7: Reducing the Runtime
	F.1 Setting up a system of equations
	F.2 The algorithm
	F.3 Runtime analysis
	F.4 Preprocessing for quickly determining the penalty of a triangle

	G Details for Section 8: Adapting the Correctness Proof for the Inverted Problem
	H Illustration for Section 9: Splitting a Surface by a Curve
	I Point Objects
	J Negative Penalties, or Rewards
	K Exponential Lower Bounds
	L Weakly Simple Immersed Polygons

