
Finding a Curve in a Map ∗

Carola Wenk
†

Helmut Alt
‡

Alon Efrat
†

Lingeshwaran Palaniappan
†

Günter Rote
‡

ABSTRACT
Given a polygonal curve and a geometric graph, we describe
an efficient algorithm to find a path in the graph which
is most similar to the curve, using the well-known Fréchet
distance for curves.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Geometrical problems and com-
putations

General Terms
Algorithms

Keywords
Fréchet distance, shape matching

1. INTRODUCTION
Patterns consisting of line segments occur in many ap-

plications of a geometric nature, like computer vision, geo-
graphic information systems, CAGD, etc. In many cases the
problem occurs to determine whether some given pattern H
is equal to or similar to some part of a larger pattern G.
Here, we define a feasible distance measure for the case that
H is a polygonal curve and G is a geometric graph. This dis-
tance measure is a generalization of the well-known Fréchet
distance for curves, which has been investigated before by
Alt and Godau [2].

∗This work is based on the algorithm published in [1].
†University of Arizona, Computer Science Department, 1040
E 4th Street, Tucson, AZ 85721, USA. {alon, carolaw,
lingesh}@cs.arizona.edu
‡Freie Universität Berlin, Institut für Informatik, Takustr. 9,
14195 Berlin, Germany. {alt,rote}@inf.fu-berlin.de

Copyright is held by the author/owner.
SoCG’03,June 8–10, 2003, San Diego, California, USA.
ACM 1-58113-663-3/03/0006.

Definition 1 (Fréchet distance).
Let f : I = [lI , rI ] → R

2, g : J = [lJ , rJ ] → R
2 be two planar

curves, and let ‖ · ‖ denote the Euclidean norm. Then the
Fréchet distance δF (f, g) is defined as

δF (f, g) := inf
α : [0,1]→I

β : [0,1]→J

max
t∈[0,1]

‖(f(α(t)), g(β(t))‖.

where α and β range over continuous and non-decreasing
reparameterizations with α(0) = lI , α(1) = rI , β(0) = lJ ,
β(1) = rJ .

We consider a given polygonal curve α : [0, p] → R
2, and

a geometric graph G = (V, E) embedded in the plane with
non-crossing straight-line edges. We wish to find a path π
in G such that the Fréchet distance δF (α, π) is minimized.
This is a partial matching variant. This definition allows a
path π in G to travel the same edge in G several times. It
may even directly return on the same edge, but only after
visiting a vertex. We assume that π starts and ends in a
vertex, although this constraint can be easily relaxed.

In [1] we presented an algorithm which computes the op-
timal distance in O(mn log(mn) log n) time if α consists of
m segments and G has n edges. For a given ε > 0, the
decision problem of deciding whether there exists a path π
in G such that δF (α, π) ≤ ε, can be solved in O(mn log n)
time. This algorithm has been implemented in C with a
graphical user interface using OpenGL. The program allows
to edit the graph and the curve, to solve the decision prob-
lem, to perform binary search on δF , and it visualizes the
computed feasible parameterizations in a walk-through an-
imation. Even without any specific optimizations it runs
surprisingly fast. In the accompanying video to this paper
we illustrate the problem, sketch the algorithm, and show
the implementation.

The problem in this form already has many applications.
The following one, for example, looked particularly appeal-
ing to us: Consider a given roadmap, and a person travel-
ling on some of the roads, while recording its position using
a GPS receiver. The roadmap can be modelled by a pla-
nar embedded graph, and the path the person travelled is
represented by a sequence of GPS positions recorded by the
GPS receiver, which we connect by straight line segments
to form a polygonal curve. Since the GPS receiver usually
introduces noise the captured curve will not exactly lie on
the roadmap. The task is to identify those roads which have
actually been travelled. This is a prerequisite for incremen-
tally constructing roadmaps from such GPS curves, which
is especially interesting for roads such as hiking trails in a
forest which are not visible on aerial pictures.



2. ALGORITHM
We first solve the decision problem. Afterwards we ap-

ply parametric search, similar as in [2], to eventually solve
the minimization problem, but this extension has not been
implemented.

2.1 Free Space Diagram
We employ the notion of the free space Fε and the free

space diagram FDε of two curves, which was introduced in
[2]: Let f : I → R

2, g : J → R
2 be two curves; I, J ⊆ R. The

set Fε(f, g) := {(s, t) ∈ I × J | ‖f(s) − g(t)‖ ≤ ε} denotes
the free space of f and g. We call the partition of I ×J into
regions belonging or not belonging to Fε(f, g) the free space
diagram FDε(f, g). We call points in Fε white or feasible
and points in FDε \ Fε black or infeasible. See the figure
below for an illustration.

g

f

In [2] it has been shown that δF (f, g) ≤ ε if and only
if there exists a curve within Fε(f, g) from (0, 0) to (1, 1)
which is monotone in both coordinates. We call a curve
within Fε(f, g) feasible. Observe that the monotone curve
in Fε(f, g) from (0, 0) to (1, 1) as a continuous mapping from
[0, 1] to [0, 1]2 directly gives continuous increasing reparam-
eterizations α and β.

2.2 Free Space Surface
For each edge (i, j) ∈ E let si,j : [0, 1] → R

2 be its em-
bedding as an oriented straight-line segment. For every
edge (i, j) ∈ E consider the free space Fi,j := Fε(α, si,j) ⊆
[0, p] × [0, 1]. The free space diagram FDi,j := FDε(α, si,j)
is the subdivision of [0, p]× [0, 1] into the white points of Fi,j

and into the black points of [0, p] × [0, 1] \ Fi,j .
As shown in [2], FDi,j consists of a row of p cells. Each

such cell corresponds to a line segment of α, and the free
space in each cell is the intersection of an ellipse with that
cell. FDi,j is the same as FDj,i, except that the bottom and
the top edge change roles. For a vertex j ∈ V let FDj :=
FDε(α, j), which is a one-dimensional free space diagram
consisting of black or white intervals. Let Fj := Fε(α, j) be
the corresponding one-dimensional free space, which consists
of a collection of white intervals. Furthermore, let Lj be the
left endpoint and Rj be the right endpoint of FDj .

For each vertex i ∈ V , the free space diagrams FDi,j for
all adjacent vertices j have the one-dimensional free space
diagram FDi in common. Thus we can glue together the
two-dimensional free space diagrams at the one-dimensional
free space diagrams which they share, according to the ad-
jacency of G. In this way we obtain a topological structure
which we call the free space surface of G and α. See the
next figure for an example.

FDi

FDj FD
j,i

FD
k,i

FDk

FD
i,l

FDm

FD
l,n

FDn

FDoFDl

j

k

m

l

n

o

i

2.3 Dynamic Programming and Sweep
The algorithm in [2] computes a monotone feasible path in

the free space diagram of two polygonal curves in a dynamic
programming fashion. We apply a related approach to our
more general setting: We search for a feasible monotone
path in the free space surface. This path has to start at
some white left corner Lk and has to end at some white right
corner Rj , for two vertices j, k ∈ V , since the corresponding
path π in G has to start and end in a vertex of G. Any path
π in G selects a sequence of free space diagrams in the free
space surface, whose concatenation yields FDε(α, π).

For every vertex j ∈ V let R(j) be the set of all points
u ∈ Fj for which there exists a k ∈ V and a path π from k
to j in G such that there is a monotone feasible path from
Lk to u in Fε(α, π). We call an interval of points in R(j)
reachable. We thus know that there is a path π in G with
δF (α, π) ≤ ε iff there is a vertex j ∈ V such that Rj ∈ R(j).

Similar to [2] we first decide whether there is a feasible
path in the free space surface by computing R(j) for all
j ∈ V in a dynamic programming manner. In fact we will
not store the whole R(j) but only parts of it which allow us
to arrive at the correct decision. The algorithm solving the
decision problem consists of three stages: In the preprocess-
ing stage we compute the free space diagrams FDi,j together
with a data structure that supports reachability queries on
the FDi,j .

In the dynamic programming stage we decide whether
there is a feasible monotone path in the free space surface.
Conceptually we sweep all FDi,j at once with a vertical
sweep line from left to right. For each i ∈ V we store a
set Ci ⊆ R(i) of white points which lie to the right of the
sweepline, and for which the last segment of their associated
feasible monotone path crosses or ends at the sweep line. We
compute the Ci in a dynamic programming manner. We
maintain a priority queue Q of white intervals of FDi which
are known to be reachable. Their left endpoints are the
sweep events. During the sweep we update the Ci Dijkstra-
style by querying the precomputed reachability data struc-
tures.

In the path reconstruction stage, if there is a j ∈ V such
that Rj ∈ Cj , we reconstruct a path π in G along with
feasible reparameterizations of π and α that witness the fact
that δF (α, π) ≤ ε.

3. REFERENCES
[1] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching

planar maps. In 14th ACM-SIAM Sympos. Discrete
Algorithms, 2003, pp. 589–598.

[2] H. Alt and M. Godau. Computing the Fréchet distance
between two polygonal curves. Internat. J. Comput.
Geom. Appl. 5 (1995), 75–91.


