
Division-Free Algorithms
for the Determinant and the Pfaffian:

Algebraic and Combinatorial Approaches

Günter Rote

Institut für Informatik, Freie Universität Berlin, Takustraße 9, D-14195 Berlin
rote@inf.fu-berlin.de

1 Introduction

The most common algorithm for computing the determinant of an n×nmatrix A
is Gaussian elimination and needs O(n3) additions, subtractions, multiplications,
and divisions. On the other hand, the explicit definition of the determinant as
the sum of n! products,

detA =
∑

π

signπ · a1π(1)a2π(2) . . . anπ(n) (1)

shows that the determinant can be computed without divisions. The summation
is taken over the set of all permutations π of n elements. Avoiding divisions seems
attractive when working over a commutative ring which is not a field, for example
when the entries are integers, polynomials, or rational or even more complicated
expressions. Such determinants arise in combinatorial problems, see [11].
We will describe an O(n4) algorithm that works without divisions, and we

will look at this algorithm from a combinatorial and an algebraic viewpoint.
We will also consider the Pfaffian of a skew-symmetric matrix, a quantity

closely related to the determinant. The results are in many ways analogous to
those for the determinant, but the algebraic aspect of the algorithms is not
explored yet.
This survey is yet another article which highlights the close connection be-

tween linear algebra and cycles, paths, and matchings in graphs [1,17,25]. Much
of this material is based on the papers of Mahajan and Vinay [14,15] and of
Mahajan, Subramanya, and Vinay [13].

2 Algorithms for the Determinant

2.1 Alternate Expressions for the Determinant

A direct evaluation of the expression (1) requires n!(n− 1) multiplications (plus
a smaller number of additions and subtractions, which will be ignored in the
sequel). One can try to rewrite this expression and factorize it in a clever way
such that common subexpressions need to be evaluated only once. Expanding

H. Alt (Ed.): Computational Discrete Mathematics, LNCS 2122, pp. 119–135, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

120 Günter Rote

one row or columns leads to a recursive procedure which takes T (n) = n · (1 +
T (n− 1)) ≈ n!(e− 1) multiplications. Splitting the matrix into two equal parts
and applying Laplace expansion needs B(n) =

(
n

�n/2�
)
(1+B(�n/2�)+B(�n/2�))

multiplications. This is between 2n (for n > 3) and 22n, which is still exponential.
It will turn out that one has to first extend the expression by additional

redundant terms. Only this will allow to reduce the time to evaluate the expres-
sion.

2.2 Cycle Decompositions

We first rewrite the product a1π(1)a2π(2) . . . anπ(n) in terms of the cycle structure
of the permutation π. Every permutation corresponds to a partition of the set
{1, . . . , n} into disjoint cycles. For example, the cycle decomposition

C = (8 7 4)(6)(5 3 1 2) = (1 2 5 3)(4 8 7)(6) (2)

corresponds to the following permutation.

π =
(
i : 1 2 3 4 5 6 7 8
π(i) : 2 5 1 8 3 6 4 7

)

We can get a canonical form of a cycle decomposition C by letting each cycle start
at its smallest element, which is called the head of the cycle and is underlined in
(2), and by rearranging the cycles in increasing order of their heads. Formally,
a cycle (c1, c2, . . . , ci) of length i can be defined as a sequence of i ≥ 1 distinct
elements from the ground set {1, . . . , n}, where c1 is the smallest element and
is called the head of C. The weight of C is weight(C) = ac1c2ac2c3 . . . acic1 . This
is the product of the weight of its arcs if C is regarded as a cycle in a graph.
A cycle decomposition C is a sequence C1, . . . , Ck of disjoint cycles with

increasing heads, covering every element 1, . . . , n exactly once. The weight of C
is the product of the weights of its cycles, and the sign of a cycle decomposition
C with k cycles is defined as

sign C = signπ := (−1)n+k.

One can check that this coincides with the usual definition of the sign and parity
of a permutation.
So we can rewrite (1) as follows:

detA =
∑

cycle decompositions C
sign C · weight(C) (3)

2.3 Clow Sequences

If we relax the requirement that all elements of a cycle are distinct, we arrive
at the concept of a closed ordered walk or clow for short, in the terminology of
Mahajan and Vinay [14]. A clow (c1, c2, . . . , ci) of length i is a sequence of i ≥ 1

Division-Free Algorithms for the Determinant and the Pfaffian 121

numbers where the head c1 of C is the unique smallest element: c1 < c2, . . . , ci.
The weight of C is again weight(C) = ac1c2ac2c3 . . . acic1 . (Valiant [24], who
introduced this concept, called this a c1-loop.)
A clow sequence C is a sequence C1, . . . , Ck of clows with a strictly increasing

sequence of heads:

C = (c1, . . .), (c2, . . .), . . . , (ck, . . .), (4)

with c1 < c2 < · · · < ck. The weight of C is the product of the weights of its
clows, its length is the sum of the lengths of the clows, and the sign of C is
just (−1)n+k. It is clear that a cycle decomposition is a special case of a clow
sequence for which the notions of weight and sign coincide with the one given
above.
We can replace the summation over the set of cycle decompositions in for-

mula (3) by the summation over the larger class of clow sequences.

Theorem 1.

detA =
∑

clow sequences C of length n

sign C · weight(C) (5)

Proof. It must be shown that all “bad” clow sequences which are not cycle
decompositions cancel because the corresponding weights occur equally often
with a positive and a negative sign. This is done by pairing up the bad clow
sequences such that clow sequences which are matched have opposite signs. This
proof technique is typical of many combinatorial proof for theorems in linear
algebra [20,18,23,25]. The following lemma is stated in Valiant [24]; its proof is
given in full detail in [14,15].

Lemma 1. Let C be a clow sequence that contains repeated elements. Then we
can find a clow sequence C̄ with the same weight and opposite sign. Moreover, this
mapping between C and C̄ is an involution, i. e., if we construct the corresponding
other clow sequence for C̄, we obtain C again.

Proof. Let C = C1, . . . , Ck. We successively add the clows Ck, Ck−1, . . . until
a repetition occurs. Assume that Cm+1, . . . , Ck is a set of disjoint cycles but
Cm, Cm+1, . . . , Ck contains a repeated element, where 1 ≤ m ≤ k. Let Cm =
(c1, . . . , ci), and let cj be the first element in this clow which is either (A) equal
to a previous element c	 in the clow (1 < � < j) or (B) equal to an element in
one of the cycles Cm+1, . . . , Ck. Precisely one of these two cases will occur.
In case (A), we remove the cycle (c	=cj , c	+1, . . . , cj−1) from the clow Cm

and turn it into a separate cycle, which we insert it into C in the proper position
after cyclically shifting its head to the front. In case (B), we insert the cycle into
the clow Cm after the element cj . One easily checks that the operations in cases
(a) and (b) are inverses of each other; they change the number of clows by one,
and hence they invert the sign. This concludes the proof of the lemma and of
Theorem 1. ✷

122 Günter Rote

2.4 Dynamic Programming According to Length

In some sense, (1) and (3) are the most economical formulas for the determinant
because all superfluous terms have been canceled and no further reduction is pos-
sible. However, we shall now see that the redundant form (5) is more amenable to
an efficient algorithm. The idea is to construct clow sequences incrementally, arc
by arc: We use dynamic programming to systematically compute the following
quantities:

[l, c, c0, s] is the sum of all partial clow sequences with length l, ending
in the current vertex c, where the head of the current clow is c0, and the
sign s = ±1 gives the parity of the number of finished clows so far.

A partial clow sequence is an initial piece of the sequence given in (4): It consists
of a number of completed clows, and one incomplete clow. For completing the
clow sequence, we only have to know the head and the current last vertex of the
incomplete clow. In the end, we need to know the parity of the total number of
clows; and therefore we have to store (−1)k, where k is the number of completed
clows so far.
A dynamic programming algorithm can best be described by a dynamic pro-

gramming graph. Our graph has O(n3) nodes corresponding to the quantities
[l, c, c0, s], with 1 ≤ l ≤ n, 1 ≤ c0 ≤ c ≤ n, and s = ±1.
A partial clow sequence can be grown either by extending the current clow or

by closing the current clow and starting a new one. Correspondingly, the dynamic
programming graph has two kinds of outgoing arcs from the node [l, c, c0, s]: arcs
to nodes [l + 1, c′, c0, s] of cost acc′ , for all c′ > c0, and arcs of cost acc0 , to all
nodes [l + 1, c′0, c

′
0,−s], for all c′0 > c0. The latter type of arcs will start a new

clow with head c′0 and no edges yet. We consider all nodes [0, c0, c0, 1] as start
nodes and add two artificial end nodes [n, n+ 1, n+ 1, s] with s = ±1. The sum
of all path lengths from start nodes to end nodes, taken with appropriate sign
according to s, is the desired quantity in (5), i. e., the determinant.
The sum of all path weights in this acyclic graph can be computed in time

proportional to the number of arcs of this graph, which is O(n4): there are O(n)
arcs leaving each of O(n3) nodes. For example, one can calculate node values in
the order or increasing l values. The storage requirement in this case is O(n2)
because only the nodes with two adjacent l values need to be stored at any time.
Mahajan and Vinay [14] used this algorithm to show that the computation

of the determinant belongs to the complexity class GapL, a complexity class
in which summation over path weights in an acyclic graphs can be done, but,
very loosely speaking, subtraction is allowed only once at the very end. One
can simplify the algorithm by collapsing corresponding nodes [l, c, c0,+1] and
[l, c, c0,−1] with opposite sign fields into one node [l, c, c0] and introducing “neg-
ative” arc weights: the second type of arcs have then cost −acc0 instead of acc0 .

2.5 Adding a Vertex at a Time: Combinatorial Approach

The previous algorithm considers all partial clow sequences in order of increasing
length l. A different factorization is possible: we can first consider the clow with

Division-Free Algorithms for the Determinant and the Pfaffian 123

head c1 = 1, if such a clow is present, and the remaining clow sequence, which is
a sequence on the ground set {2, . . . , n}. For expressing the clows with head 1 we
partition the matrix A into its first row r, its first column s, and the remaining
matrix M .

A =

(
a11 r

s M

)

The sum of all clows of length l can be written as follows:

length l = 0: 1
length l = 1: a11

length l = 2:
n∑

i=2

a1iai1 = rs

length l = 3:
n∑

i=2

n∑
j=2

a1iaijaj1 = rMs

...
length l: rM l−2s

The term 1 for length l = 0 corresponds to the “empty” clow consisting of no
edges. It accounts for the case when the head of the first clow is larger than 1.
We denote by q′i the sum of signed weights of all clow-sequences of length n−1−i
which don’t contain the element 1. Here we define the sign of a clow sequence
with k clows as (−1)n−1+k. Then we can write:

detA = −1 · q′−1 + a11 · q′0 + rs · q′1 + · · ·+ rM i−1s · q′i + · · · (6)

The minus sign accounts for the change of the sign convention when going from
q′−1 over a ground set of n−1 elements to the original ground set with n elements.
In the other terms this minus sign is canceled because we have one additional
clow.
By Lemma 1, the quantity q′−1 must be zero: q

′
−1 is the signed sum of all

clow sequences of length n on the ground set {2, . . . , n}. Such sequences must
contain repeated elements and hence all terms cancel. So we get

detA = a11 · q′0 + rs · q′1 + · · ·+ rM i−1s · q′i + · · ·+ rMn−2s · q′n−1.

We intend to compute the values q′i recursively, so we need to consider clow
sequences of all possible lengths. Let us denote by qi the sum of signed weights
of all clow-sequences of length n − i (with the original definition of the sign).
So q0 = detA, and q′0 = detM . By the above argument, we get the following
formula for computing q0, q1, q2, . . . , qn from the sequence q′0, q

′
1, . . . , q

′
n−1.

124 Günter Rote

qn
qn−1
qn−2
...
q2
q1
q0

=

−1 0 · · · 0 0 0
a11 −1 · · · 0 0 0
rs a11 · · · 0 0 0
...

...
. . .

...
...

...
rMn−4s rMn−5s · · · a11 −1 0
rMn−3s rMn−4s · · · rs a11 −1
rMn−2s rMn−3s · · · rMs rs a11

q′n−1
q′n−2
...
q′2
q′1
q′0

(7)

This matrix multiplication is nothing but a convolution between the sequence
q′0, q

′
1, . . . and the sequence −1, a11, rs, rMs, . . . , which can most conveniently

be expressed as a polynomial multiplication:

qnλ
n + qn−1λn−1 + · · ·+ q1λ+ q0

= (−λ+ a11 + rsλ−1 + rMsλ−2 + · · ·+ rM isλ−i−1 + · · ·)
× (q′n−1λ

n−1 + q′n−2λ
n−2 + · · ·+ q′1λ+ q′0) (8)

Actually, these are not polynomials, but something like Laurent series in λ−1.
In explicit form, this means

qn
qn−1
qn−2
...
q2
q1
q0
0
0
...

=

−1 0 · · · 0 0 0 0 · · ·
a11 −1 · · · 0 0 0 0 · · ·
rs a11 · · · 0 0 0 0 · · ·
...

...
. . .

...
...

...
...
. . .

rMn−4s rMn−5s · · · −1 0 0 0 · · ·
rMn−3s rMn−4s · · · a11 −1 0 0 · · ·
rMn−2s rMn−3s · · · rs a11 −1 0 · · ·
rMn−1s rMn−2s · · · rMs rs a11 −1 · · ·
rMns rMn−1s · · · rM2s rMs rs a11 · · ·
...

...
. . .

...
...

...
...
. . .

q′n−1
q′n−2
...
q′1
q′0
0
0
...

This is an extended version of (7) which reveals the “hidden parts” of (8). For
example, the line corresponding to q−1 = 0 yields the relation

0 = rs · q′0 + rMs · q′1 + · · ·+ rM is · q′i + · · ·+ rMn−1s · q′n−1,

which may be an interesting identity but is of little use for computing anything.
Mahajan and Vinay [14] have analyzed the recursive algorithm based on (7)

more carefully, and they have shown that the quantities qi, after omitting irrel-
evant terms like q′−1 from (6), actually represent a subset of the clow-sequences
that are characterized by the so-called prefix property.

2.6 The Characteristic Polynomial

We have associated the polynomial

PA(λ) = qnλn + qn−1λn−1 + · · ·+ q1λ+ q0

Division-Free Algorithms for the Determinant and the Pfaffian 125

to the matrix A, and we have shown how PA(λ) can be computed from the
corresponding polynomial PM (λ) of the (n− 1)× (n− 1) submatrix M :
PA(λ) = (−λ+ a11 + rsλ−1 + rMsλ−2 + · · ·+ rM isλ−i−1 + · · ·) · PM (λ) (9)

This allows us to inductively compute polynomials for larger and larger subma-
trices, starting from P(ann)(λ) = ann − λ, until we finally obtain PA(λ) and the
determinant detA = q0.
We have seen that the inductive approach of adding a vertex at a time nat-

urally leads us to consider not only clow sequences of length n as in (5), but
also clow sequences of all other lengths. We have also found it convenient to
use the corresponding sums of weights as coefficients of a polynomial PA(λ). It
turns out that this polynomial is nothing but the characteristic polynomial of
the matrix A:

PA(λ) := det(A− λI) = qnλn + qn−1λn−1 + · · ·+ q1λ+ q0 (10)

The following well-known formula generalizes formula (3) for the determinant
to all coefficients of the characteristic polynomial.

qi =
∑

families C of disjoint cycles with length n − i

sign C · weight(C) (11)

Here we consider not partitions into cycles, but families C of disjoint cycles with
a total of n − i elements. The sign of such a family with k cycles is defined as
(−1)n−i+k. Formula (11) comes from the fact that a cycle family which covers
n − i vertices leaves i vertices uncovered, at which one can place the diagonal
entries −λ when the determinant of A− λI is expanded.
The following theorem states that the quantities qi defined in the previous

section are indeed the coefficients of the characteristic polynomial (10) as we
know it. It is proved in the same way as Theorem 1, see [14].

Theorem 2. The coefficients qi (i = 0, 1, . . . , n) of the characteristic polyno-
mial of A can be expressed as

qi =
∑

clow sequences C of length n − i

sign C · weight(C), (12)

where the sign of a clow sequence of length n − i with k cycles is defined as
(−1)n−i+k. ✷

The dynamic programming algorithm of Section 2.4 can easily be extended
to compute all coefficients qi: Simply adding artificial terminal nodes [n− i, n+
1, n+ 1], with arcs of the correct sign, will do the job.

2.7 Adding a Vertex at a Time: Algebraic Approach

We will now give an algebraic proof of (7). The determinant of a bordered matrix

A =

(
a11 r

s M

)
(13)

126 Günter Rote

can be expressed as

detA = detM · (a11 − rM−1s) (14)

if the matrixM is invertible. This follows from the fact that detM is the cofactor
of a11, and hence (A−1)11 = detM/ detA. The element (1, 1) of the inverse A−1

can be determined by block Gauss-Jordan elimination of (13), starting with the
lower right blockM . This gives (A−1)11 = (a11−rM−1s)−1 which leads to (14).
Now we wish to express PA(λ) = det(A− λI) in terms of PM (λ) = det(M −

λI). Applying (14) to the matrix A− λI gives

PA(λ) = |A− λI| =
∣∣∣∣a11 − λ r

s M − λI
∣∣∣∣

= |M − λI| · (a11 − λ− r(M − λI)−1s)
= PM (λ) · (ann − λ+ r(λI −M)−1s) =: PM (λ) · F (λ)

For simplifying the expression F (λ), which is the multiplier which turns PM into
PA, we rewrite (λI −M)−1 as follows.

(λI −M)−1 = λ−1(I − λ−1M)−1

= λ−1(I + λ−1M + λ−2M2 + · · ·)
= λ−1I + λ−2M + λ−3M2 + · · ·

This gives

F (λ) = a11 − λ+ r(λI −M)−1s
= −λ+ a11 + rsλ−1 + rMsλ−2 + rM2sλ−3 + rM3sλ−4 + · · · , (15)

which is the same factor as in (8) and (9).
Another proof of (7), based on the Cayley-Hamilton Theorem, is due to

P. Beame, see [3].

2.8 Who Invented the Incremental Algorithm?

Berkowitz [3] used the algorithm based on the recursion (7) to derive a parallel
procedure for evaluating the determinant. He called this algorithm Samuelson’s
method, giving a reference to Samuelson’s original paper [19] and to the textbook
of Faddeev and Faddeeva [8]. Valiant [24], who gave the first combinatorial inter-
pretation of (7), referred to the algorithm as the Samuelson-Berkowitz algorithm.
However, Samuelson’s algorithm for computing the characteristic polynomial is
an O(n3) algorithm that uses divisions. This is also the way in which it is de-
scribed in [8, §45]. So the above algorithm can definitely not be attributed to
Samuelson. However, a passage towards the end of Section §45 in [8] contains the
system (7). Faddeyev and Faddeyeva state this as a possible stricter justifica-
tion of Samuelson’s method. The mention briefly that this formula follows from

Division-Free Algorithms for the Determinant and the Pfaffian 127

the consideration of bordered determinants. This calculation has been sketched
above in Section 2.7.
The fact that (7) appears in the section about Samuelson’s method in the

book [8] may be the reason for the erroneous attribution. It seems that the
method ought to be credited to Faddeyev and Faddeyeva. However, being nu-
merical analysts, they would probably not have considered the implied O(n4)
procedure as a good “method”. Berkowitz [3] was apparently the first one to use
the recursive formula (7) algorithmically.

3 The Pfaffian

The determinant of a skew-symmetric matrix (aij = −aji) is the square of
another expression, which is called the Pfaffian [12,16]. For example,∣∣∣∣∣∣∣∣

0 a12 a13 a14
−a12 0 a23 a24
−a13 −a23 0 a34
−a14 −a24 −a34 0

∣∣∣∣∣∣∣∣
= (a12a34 − a13a24 + a14a23)2

The determinant of a skew-symmetric matrix of odd order is always 0. Formally,
the Pfaffian of a skew-symmetric matrix A with an even number of rows and
columns can be defined as follows:

pf A =
∑

perfect matchings M
signM · weight(M) (16)

Here, a perfect matching M with k = n/2 edges is written as

M = (i1, j1), (i2, j2), . . . , (ik, jk), (17)

where, by convention, il < jl for each l. The sign of the matching M is defined
as the sign of (

1 2 3 4 . . . n− 1 n
i1 j1 i2 j2 . . . ik jk

)

when this is regarded as a permutation of {1, . . . , n}. The weight of M is
ai1j1ai2j2 . . . aikjk

. One can check that the sign of M does not depend on the
order in which the edges are given. Moreover, exchanging a pair il, jl changes
the sign but not the signed weight since aji = −aij . This means that we are in
fact free to choose any convenient permutation π as a representation of a given
matching M.
Because of their close connection with matchings, Pfaffians are of interest

in combinatorics, see [12,21]. For example, for certain graphs, including planar
graphs, it is possible to count the number of perfect matchings in polynomial
time by using Pfaffians. Knuth [10] gives a short history of Pfaffians, and argues
that Pfaffians are in some way more fundamental than determinants, to which
they are closely related (see Section 4).

128 Günter Rote

The Pfaffian can be computed in O(n3) steps by an elimination procedure
that is similar to Gaussian elimination for symmetric matrices. Alternatively, the
square root of the determinant gives the Pfaffian up to the correct sign. Both
approaches may be undesirable if divisions or square roots should be avoided.

3.1 Alternating Cycle Decompositions

The combinatorial approaches to the determinant of Section 2 can be applied to
Pfaffians as well. We consider the product of the Pfaffians of two skew-symmetric
matrices A and B. Expanding the definitions (16) leads to an overlay of two
matchingsMA andMB . The union ofMA withMB decomposes into a disjoint
union of alternating cycles with a total of n edges:

MA � MB = C = C1 ∪ C2 ∪ · · ·
An alternating cycle is a cycle of even length whose edges alternate between
MA and MB . Edges which are contained both in MA and MB must be kept
separate the union MA � MB ; for each “common” edge, MA � MB contains
two (distinguishable) parallel edges, forming an alternating cycle of length 2.
An alternating cycle can be traversed in two orientations. We specify the

orientation by taking the vertex with the smallest number as the “first vertex”
or head of the cycle and insisting that the first edge should belong to MA.
Taking the union of two matchings brings us back into the realm of cycle

decompositions which we studied in Section 2. Now, the weight of an alternating
cycle C = (c1, c2, . . . , ci) with c1 < c2, . . . , ci is

weight(C) = ac1c2bc2c3ac3c4bc4c5 . . . aci−1cibcic1 . (18)

As in Section 2.2, an alternating cycle family C is a set of disjoint alternating
cycles. Its length is the total number of elements in its cycles. If the length is n,
we speak of an alternating cycle decomposition. The weight of C is the product of
the weights of its cycles, and the the sign of an alternating cycle decomposition
C with k cycles is defined as sign C = (−1)k.
Theorem 3.

pf A · pf B =
∑

alternating cycle decompositions C
sign C · weight(C)

Proof. The Pfaffian has been defined as a weighted sum of matchings; so the
left side is a sum over all pairs of matchings (MA,MB), where MA is re-
garded as a matching for A and MB is regarded as a matching for B. Now,
there is a unique correspondence between pairs of matchings and alternating
cycle decompositions. The only thing that has to be checked is that the signs
are correct. Suppose that MA � MB decomposes into k disjoint cycles C =
(c1, c2, . . . , ci), (d1, d2, . . . , dj), We may conveniently representMA andMB

by the permutations

πA =
(
1 2 3 4 · · · i− 1 i i+ 1 i+ 2 · · · i+ j i+ j + 1 · · · n
c1 c2 c3 c4 · · · ci−1 ci d1 d2 · · · dj · · ·

)

Division-Free Algorithms for the Determinant and the Pfaffian 129

and

πB =
(
1 2 3 4 · · · i− 1 i i+ 1 i+ 2 · · · i+ j i+ j + 1 · · · n
c2 c3 c4 c5 · · · ci c1 d2 d3 · · · d1 · · ·

)
,

respectively. This gives signMA · signMB = signπA · signπB = sign((πA)−1 ◦
πB) = (−1)k, since the permutation (πA)−1 ◦ πB decomposes into k even-length
cycles. ✷

As an easy consequence, we obtain the relation between the determinant and
the Pfaffian that was mentioned at the beginning of this section.

Corollary 1.
detA = (pf A)2

Proof. When we set A = B in Theorem 3, we almost get the determinant for-
mula (3): the difference between alternating cycle decompositions and cycle de-
compositions disappears except for the requirement that an alternating cycle
must alway have even length.
Changing the orientation of an odd cycle in the expansion of the determinant

of a skew-symmetric matrix reverses the weight to its negative. Thus it is easy
to establish a sign-reversing bijection among all cycle decompositions containing
odd cycles, for example by reversing the odd cycle with the largest head. So the
cycle decompositions containing odd cycles cancel. ✷

If we want to use Theorem 3 to get an expression for the Pfaffian of a single
matrix A, we must set B to a matrix B0 whose Pfaffian is 1. So we select the
skew-symmetric matrix

B0 =

0 1
−1 0

0 1
−1 0

. . .
0 1

−1 0

(19)

that represents the matching M0 = (1, 2), (3, 4), . . . , (n− 1, n), which we use as
a reference matching. So we immediately get the following alternate expression
for the Pfaffian.

Corollary 2.

pf A =
∑

M0-alternating cycle decompositions C
sign C · weight(C) ✷

Here, the general concepts of alternating cycles, cycles families, etc., specialize
as follows: An M0-alternating cycle (c1, c2, . . . , ci) is a cycle of even length i. In
addition, we must have c3 = c2 − 1 if c2 is even and c3 = c2 +1 if c2 is odd, and
the same relation holds between c4 and c5, . . . , ci and c1. Its weight is given by
(18) with respect to B0, i. e., b2j−1,2j = 1 and b2j,2j−1 = −1. All other notions
are unchanged.

130 Günter Rote

3.2 Alternating Clow Sequences

Generalizing Theorem 1 in Section 2.3, Mahajan, Subramanya, and Vinay [13]
have extended the notion of an alternating cycle cover to an alternating clow
sequence. This gives the following theorem.

Theorem 4.

pf A · pf B =
∑

alternating clow sequences C of length n

sign C · weight(C) (20)

pf A =
∑

M0-alternating clow sequences C of length n

sign C · weight(C) (21)

Here, an alternating clow (c1, c2, . . . , ci) of length i is defined like a clow, with
the additional restriction that i must be even. The condition on the clow head
is unchanged: c1 < c2, . . . , ci. The weight of alternating clows is defined like
in (18) for alternating cycles. An M0-alternating clow (c1, c2, . . . , ci) must have
every other edge (c2, c3), (c4, c5), . . . , (ci, c1) belonging to M0. Alternating
clow sequences, their length, weight, and sign are defined just as for clows and
alternating cycle families. (Our notation and terminology differs from [13].)
The proof of (20), and of (21) which is a special case of it, follows the lines

of the proof of Lemma 1: a sign-reversing bijection among “bad” alternating
clow sequences which contain repeated elements is established. The only change
occurs in case (A), when a clow Ck forms a sub-cycle (c	=cj , c	+1, . . . , cj−1). If
that sub-cycle has odd length, we cannot split it from the current clow because it
does not form an alternating cycle. In this case, we simply reverse the orientation
and replace this part of Ck by (c	=cj , cj−1, . . . , c	+1). The weight of Ck changes
sign, and it can also be checked easily that the resulting mapping between bad
alternating clow sequences remains an involution. ✷

Mahajan, Subramanya, and Vinay [13] considered only the case (21) of a
single matrix, and they gave a slightly different proof.

3.3 Incremental Algorithms for the Pfaffian

A dynamic programming algorithm for evaluating (21) by summing over all
partial alternating clow sequences in order of increasing length can easily be
formulated in analogy to Section 2.4, see [13]. However, we shall instead formu-
late another algorithm along the lines of the recursive algorithm based on (7) in
Section 2.5.
Since Pfaffians only make sense for matrices of even order, we partition the

given skew-symmetric matrix by splitting two rows and columns from it.

A =

0 a12 r
−a12 0 −sT
−rT s M

Division-Free Algorithms for the Determinant and the Pfaffian 131

Enumeration of alternating clow sequences with head c1 = 1 according to length
yields the power series

G(λ) = −λ2 + a12 + rB0sλ−2 + rB0MB0sλ−4 + rB0MB0MB0sλ−6 + · · ·
(22)

B0 is the “skew-symmetric unit matrix” (19) of appropriate dimension, here
(n − 2) × (n − 2). The coefficient of λ−i+2, for i ≥ 2, represents the negative
sum of all weights of all alternating clow sequences with head 1 and length i.
Note that a clow starting with vertex 1 must terminate with the edge (2, 1), and
hence the factor b21 = −1 is alway present in the above terms. We define the
Pfaffian-characteristic polynomial of a skew-symmetric n× n matrix A as

P̃A(λ) := q̃nλn + q̃n−2λn−2 + · · ·+ q̃2λ2 + q̃0,
where the quantities q̃i denote the sum of signed weights of all M0-alternating
clow-sequences of length n− i. This definition can also be used for odd n. Sim-
ilarly as in Theorem 2, q̃i is equal to the sum of signed weights of all M0-
alternating cycle decompositions of length n − i. It can also be interpreted the
sum of signed weights of certain matchings with (n− i)/2 edges as in (16), with
an appropriate definition of signs.
Note that an alternating clow cannot have head 2. So we split alternating clow

sequences into the (possibly empty) clow with head 1 and the remaining clow
sequence, which consists of elements {3, . . . , n} only, in analogy to Section 2.5.
We obtain the recursive equation

P̃A(λ) = G(λ) · P̃M (λ), (23)

which immediately leads to a recursive division-free algorithm for computing
P̃A(λ) and the Pfaffian pf A = q̃0.

4 Open Questions

The relation

detA = pf
(

0 A
−AT 0

)
shows that determinants are just special cases of Pfaffians that correspond to
bipartite graphs. In this sense, the Pfaffian is a more basic notion, which would
deserve a more thorough understanding, despite the traditional prevalence of the
determinant in the curriculum and in applications. We mention a few questions
that arise from the results which we have surveyed.

4.1 The Pfaffian-Characteristic Polynomial:
Algebraic Interpretation

As in the case of the determinant, our algorithm has naturally lead to a poly-
nomial P̃A(λ) of degree n that is associated to a skew-symmetric matrix A of

132 Günter Rote

order n. In contrast to the case of the determinant, we have no idea what an
algebraic interpretation of this polynomial might be, or how one might prove
the relation (23) by algebraic means. It is not generally the case that the char-
acteristic polynomial is the square of P̃A(

√
(λ)), as the relation q0 = q̃20 between

their constant terms would suggest.
In Theorems 3 and 4, it has turned out that it appears more natural to

deal with the product of Pfaffians of two different matrices A and B: after all,
Corollary 2 is only a special case of Theorem 3 which is by no means easier to
formulate, and the same relation holds between (20) and (21) in Theorem 4.
Many identities about Pfaffians involve products of two Pfaffians that are taken
from submatrices of a single given matrix. One might speculate that taking two
different matrices and their submatrices could lead to more general theorems
and at the same time more transparent proofs is some other cases as well.
Instead of substituting the matrix B0 from (19) into (20) of Theorem 4, one

could also use the matrix

B1 =

0 1 1 1 · · · 1
−1 0 1 1 · · · 1
−1 −1 0 1 · · · 1
−1 −1 −1 0 · · · 1
...

...
...

...
. . .

...
−1 −1 −1 −1 · · · 0

,

which might be called the skew-symmetric analog of the all-ones matrix and
has pf B1 = 1. This results in a different expression for pf A than (21) in The-
orem 4 and to another algorithm. That algorithm is in a way simpler than the
incremental algorithm given in Section 3.3, since it increments the matrix by
one row and column at a time instead of two. However, it uses more computa-
tions. The matrix B1 also leads to a different concept of a Pfaffian-characteristic
polynomial.
There is an analogous algorithm for directly computing the product of two

Pfaffians according to equation (20) of Theorem 4. It seems that the Pfaffian-
characteristic polynomial ought to be associated to two matrices instead of one.
The incremental algorithm corresponding to equation (20) leads to a polynomial
P̃A,B(λ) that is related to the characteristic polynomial by the equation

P̃A,A(λ) = PA(λ),

for skew-symmetric matrices A.
Is there a way to introduce a second matrix B also into the computation of

determinants in the same natural way? This might be related to the generalized
eigenvalue problem that requires the solution of the characteristic equation

det(A− λB) = 0,
for an arbitrary matrix B instead of the usual identity matrix. The above charac-
teristic equation is equal to the characteristic equation of AB−1 if B is invertible.
This problem is important for some applications. Can any of the algorithms of
Section 2 be adapted to compute the coefficients of this polynomial?

Division-Free Algorithms for the Determinant and the Pfaffian 133

4.2 Complexity

All division-free methods for computing the determinant or the Pfaffian that
we have described take O(n4) steps. This has already been mentioned for the
dynamic programming algorithm of Section 2.4. In the recursive algorithms (7)
and (23) of Sections 2.5 and 3.3, the step of the recursion from the (n−1)×(n−1)
matrix M to the n×n matrix A takes O(n3) time for computing the coefficients
of the factor F (λ) or G(λ) respectively, and O(n2) steps for multiplying the two
polynomials, if this is done in the straightforward way. This amounts to a total
of O(n4) steps.
The bottleneck is thus the computation of the iterated matrix-vector prod-

ucts in (15) and (22): for F (λ) in (15), we successively compute the row vectors
r, rM , rM2, . . . , and multiply these by the column vector s. When the matrix
A is sparse, this computation will be faster: If A has m nonzero elements, each
matrix-vector product will take only O(m) steps instead of O(n2) (assuming
m ≥ n). This leads to an algorithm with a running time of O(mn2). Thus, when
m is small, this algorithm may be preferable to ordinary Gaussian elimination
even when divisions are not an issue. Due to its simplicity, the iterative algo-
rithm gains an additional advantage over Gaussian elimination or other direct
methods, which must be careful about the choice of pivots in order to avoid
numerical problems or to exploit sparsity.
Sparsity will also improve the dynamic programming algorithm of Section 2.4

from O(n4) to O(mn2) steps. It is a challenging problem to devise a division-free
O(n3) method for computing the determinant.
The algorithms discussed in this paper can also be used to design good par-

allel algorithms for determinants and Pfaffians [3,14,13].
Despite their advantages, the methods described in this article are not well-

known. A straightforward implementation of the incremental algorithm of Sec-
tion 2.5 in Maple started to beat the built-in Maple procedure for the char-
acteristic polynomial for random integer matrices of order 20, and was clearly
faster already for matrices of order 40. For a simple 5 × 5 matrix with rational
entries like (aij) = (1

xi+xj
), our algorithm for the characteristic polynomial was

two times faster than Maple’s algorithm for computing the determinant only.

4.3 Alternative Algorithms

In the introduction it was mentioned that division-free algorithms might be use-
ful for evaluating determinants of integers. The most straightforward algorithm
would be to carry out Gaussian elimination with rational arithmetic. This ap-
proach may result in an explosive growth in the lengths of the numbers unless
fractions are reduced after every step. However, to avoid the excessive growth
of numbers, it is not necessary to reduce fractions by their greatest common
divisor: one can perform pivots involving divisions for which the result is known
to be integral. This form of integral pivoting is attributed to Camille Jordan [5,
p. 69], see also [6,2,9,7]. Edmonds [6] has shown that the numbers do not explode

134 Günter Rote

and hence, this algorithm runs in polynomial time. The same approach can be
extended to Pfaffians [9].
Thus, for evaluating determinants or Pfaffians of integers, this approach is

superior to our division-free algorithms because it takes only O(n3) operations.
However, when dealing with multivariate polynomials, even “integer division”
can be awkward, and division-free algorithms may prove to be worthwhile.
Strassen [22] has given a general recipe for converting an algorithm that uses

divisions to obtain an integral final result into an algorithm without divisions. Di-
visions are simulated by expanding expressions into truncated power series. This
is somehow reminiscent of the recursion (9) which also involves power series that
can be truncated because the result is a polynomial. According to [4], Strassen’s
approach leads to an algorithm with O(n5) steps in the case of Gaussian elimi-
nation. It would be interesting to see if there is any relation of this algorithm to
the algorithms presented here.

References

1. Martin Aigner, Lattice paths and determinants. In: Computational Discrete Math-
ematics, ed. Helmut Alt, (this volume), Lecture Notes Comput. Sci., Vol. 2122 2001,
pp. 1–12.

2. Erwin H. Bareiss, Sylvester’s identity and multistep integer-preserving Gaussian
elimination. Math. Comput. 22 (1968), 565–578.

3. Stuart J. Berkowitz, On computing the determinant in small parallel time using a
small number of processors. Inf. Process. Lett. 18 (1984), 147–150.

4. Allan Borodin, Joachim von zur Gathen, John Hopcroft, Fast parallel matrix and
GCD computations. Inf. Control 52 (1982), 241–256

5. E. Durant, Solution numérique des équations algébriques, tome II: systèmes des
plusieurs équations. Masson & Cie., Paris 1961.

6. Jack Edmonds, Systems of distinct representatives and linear algebra. J. Res. Nat.
Bur. Standards, Sect. B 71 (1967), 241–245.

7. Jack Edmonds, J.-F. Maurras, Note sur les Q-matrices d’Edmonds. RAIRO, Rech.
opér. 31 (1997), 203–209.

8. D. K. Faddeyev, V. N. Faddeyeva, Vyčislitel′nye metody linĕınŏı algebry (in Rus-
sian), Moscow, 1960. English translation: D. K. Faddeev, V. N. Faddeeva, Numeri-
cal Methods of Linear Algebra. Freeman, San Francisco 1963. German translation:
D. K. Faddejew, W. N. Faddejewa, Numerische Methoden der linearen Algebra,
several editions since 1964.

9. G. Galbiati and Franceso Maffioli, On the computation of pfaffians. Discr. Appl.
Math. 51 (1994), 269–275.

10. Donald E. Knuth, Overlapping Pfaffians. Electron. J. Comb. 3 (1996), No. 2, arti-
cle R5, 13 pp. Printed version: J. Comb. 3 (1996), No. 2, 147–159.

11. Christian Krattenthaler, Advanced determinant calculus. Séminaire Lotharingien
de Combinatoire B42q (1999), 67 pp.

12. László Lovász, M. D. Plummer, Matching Theory. Ann. Discr. Math., Vol. 29.
North-Holland Mathematics Studies, Vol. 121. Amsterdam 1986.

13. Meena Bhaskar Mahajan, P R Subramanya, V Vinay, A combinatorial algorithm
for Pfaffians. In: Computing and combinatorics. Proc. 5th annual international
conference. (COCOON ’99), Tokyo, July 1999, ed. Takao Asano et al., Lecture

Division-Free Algorithms for the Determinant and the Pfaffian 135

Notes Comput. Sci. 1627, Springer-Verlag, pp. 134–143 (1999). Extended version:
DIMACS Technical Report 99-39, Rutgers University, July 1999.

14. Meena Bhaskar Mahajan, V Vinay, Determinant: Combinatorics, algorithms, and
complexity. Chicago J. Theor. Comput. Sci., Vol. 1997, Article no. 1997-5, 26 pp.

15. Meena Mahajan, V. Vinay, Determinant: Old algorithms, new insights. SIAM J.
Discrete Math. 12 (1999), 474–490.

16. Thomas Muir, A Treatise on the Theory of Determinants. MacMillan and Co.,
London 1882; repr. Dover, New York 1960.

17. Günter Rote, Path problems in graphs. In: Computational graph theory, ed. Got-
tfried Tinhofer et al., Computing Suppl. 7, 155–189, Springer-Verlag, Wien 1990.

18. D. E. Rutherford, The Cayley-Hamilton theorem for semi-rings. Proc. Roy. Soc.
Edinburgh, Sect. A 66 (1961–64), 211–215 (1964).

19. Paul A. Samuelson, A method of determining explicitly the coefficients of the
characteristic equation. Ann. Math. Statist. 13 (1942), 424–429.

20. Dennis Stanton, Dennis White, Constructive combinatorics. Springer-Verlag, New
York 1986.

21. John R. Stembridge, Nonintersecting paths, pfaffians, and plane partitions. Adv.
Math. 83 (1990), 96–113.

22. Volker Strassen, Vermeidung von Divisionen. J. reine angew. Math. 264 (1973),
184–202.

23. Howard Straubing, A combinatorial proof of the Cayley-Hamilton theorem. Dis-
crete Math. 43 (1983), 273–279.

24. Leslie G. Valiant, Why is Boolean complexity theory difficult? In: Boolean Function
Complexity, ed. M. S. Paterson, LMS Lecture Notes Series, Vol. 169, Cambridge
Univ. Press, 1992, pp. 84–94.

25. Doron Zeilberger, A combinatorial approach to matrix algebra. Discrete Math. 56
(1985), 61–72.

	Introduction
	Algorithms for the Determinant
	Alternate Expressions for the Determinant
	Cycle Decompositions
	Clow Sequences
	Dynamic Programming According to Length
	Adding a Vertex at a Time: Combinatorial Approach
	The Characteristic Polynomial
	Adding a Vertex at a Time: Algebraic Approach
	Who Invented the Incremental Algorithm?

	The Pfaffian
	Alternating Cycle Decompositions
	Alternating Clow Sequences
	Incremental Algorithms for the Pfaffian

	Open Questions
	The Pfaffian-Characteristic Polynomial:hfill penalty -@M Algebraic Interpretation
	Complexity
	Alternative Algorithms

	References

